In-Vivo Optical Monitoring of the Efficacy of Epidermal Growth Factor Receptor Targeted Photodynamic Therapy: The Effect of Fluence Rate
<p>Cell survival of OSC-19-luc2-cGFP (black bar), scc-U2 (striped bar), and scc-U8 (white bar) treated with cetuximab-IRDye700DX using a 24 h DLI and illuminated with different fluence rates to a fluence of 15 J·cm<sup>−2</sup> for OSC-19-luc2-cGFP and scc-U2 and 7 J·cm<sup>−2</sup> for scc-U8. † statistically significant from all other fluence rates investigated with the same cell line with <span class="html-italic">p</span> < 0.05, ‡ statistically significant from all other fluence rates investigated with the same cell line with <span class="html-italic">p</span> < 0.01.</p> "> Figure 2
<p>Cell survival of OSC-19-luc2-cGFP (black bar), scc-U2 (dashed bar), and scc-U8 (white bar) cells treated with either NaN<sub>3</sub> only, cetuximab-IRDye700DX mediated photodynamic therapy (PDT) or the combination using a 24 h DLI and illuminated with 20 mW·cm<sup>−2</sup> to a fluence of 15 J·cm<sup>−2</sup> for OSC-19-luc2-cGFP and scc-U2 and 7 J·cm<sup>−2</sup> for scc-U8. ‡ statistically significant from PDT only with <span class="html-italic">p</span> < 0.001.</p> "> Figure 3
<p>Examples of 2D images and 3D surface plots from images collected pre and post PDT of scc-U2 and scc-U8 cells incubated with cetuximab-IRDye700DX for 24 h and singlet oxygen sensor green (SOSG) for 2 h. White arrows point to some of the endo/lysosomes showing cetuximab-IRDye700DX fluorescence. Blue arrow point to blebs formed in response to the PDT treatment. Bar is 20 µm. Height of the peaks correspond to the fluorescence intensities of SOSG (green).</p> "> Figure 4
<p>Example of a set of fluorescence images recorded of scc-U8 cells incubated with cetuximab-IRDye700DX for 24 h and SOSG for 2 h, illuminated with 20 mW·cm<sup>−2</sup> to a fluence of 7 J·cm<sup>−2</sup>. (<b>a</b>) transmission image of cells pre illumination. (<b>b</b>) Cetuximab-IRDye700DX fluorescence (red) and SOSG fluorescence (green) at the start of illumination. (<b>c</b>) Cetuximab-IRDye700DX fluorescence (red) and SOSG fluorescence (green) at the end of illumination. (<b>d</b>) Zoomed in image of region shown in image c. White bar is 200 µm and black bar is 50 µm. Blue arrows point to examples of blebs formed in response to the PDT treatment. (<b>e</b>) The rate of SOSG-EP fluorescence increase in counts per J·cm<sup>−2</sup> during illumination with either 20 or 150 mW·cm<sup>−2</sup> in scc-U2 (orange) and scc-U8 (violet) cells. Open circles express the weighted mean for a set of images as shown in a-c and the solid bar expresses the weighted mean over 3–5 sets of images. (<b>f</b>) The rate of cetuximab-IRDye700DX photobleaching in counts per J·cm<sup>−2</sup> during illumination with either 20 or 150 mW·cm<sup>−2</sup> in scc-U2 (orange) and scc-U8 (violet) cells. Open circles express the weighted mean for a set of images as shown in a-c and the solid bar expresses the weighted mean over 3–5 sets of images.</p> "> Figure 5
<p>Reflectance measurements during PDT using different fluence rates. (<b>a</b>) Example of a collected reflectance spectrum recorded pre illumination (cyan), fitted spectrum (black solid line), and scattering background (dashed line) to determine StO<sub>2</sub>, BVF, and VD. (<b>b</b>) Weighted mean StO<sub>2</sub> determined during PDT at 20 mW·cm<sup>−2</sup> (blue diamonds), 50 mW·cm<sup>−2</sup> (red squares), and 150 mW·cm<sup>−2</sup> (green circles). (<b>c</b>) Weighted mean blood volume fraction (BVF) determined during PDT at 20 mW·cm<sup>−2</sup> (blue diamonds), 50 mW·cm<sup>−2</sup> (red squares), and 150 mW·cm<sup>−2</sup> (green circles). (<b>d</b>) Weighted mean vessel diameter (VD) determined during PDT at 20 mW·cm<sup>−2</sup> (blue diamonds), 50 mW·cm<sup>−2</sup> (red squares), and 150 mW·cm<sup>−2</sup> (green circles). No significant differences in vessel density and blood volume fraction were observed between tumors in each group.</p> "> Figure 6
<p>Fluorescence measurements during PDT using different fluence rates. (<b>a</b>) Example of a collected fluorescence spectrum recorded during illumination (azure blue) and the IRDye700DX basis spectrum (black). (<b>b</b>) Weighted mean intrinsic fluorescence intensity determined during PDT at 20 mW·cm<sup>−2</sup> (blue diamonds), 50 mW·cm<sup>−2</sup> (red squares), and 150 mW·cm<sup>−2</sup> (green circles). (<b>c</b>) Weighted mean of reciprocal of normalized fluorescence during the first 5 J·cm<sup>−2</sup> delivered at 20 mW·cm<sup>−2</sup> (blue diamonds), 50 mW·cm<sup>−2</sup> (red squares), and 150 mW·cm<sup>−2</sup> (green circles) and their corresponding linear regression line.</p> "> Figure 7
<p>Effect of PDT using different fluence rates on the growth of OSC-19-luc2-cGFP tumor. (<b>a</b>) Relative tumor volume in time after treatment with control (black), 20 mW·cm<sup>−2</sup> (blue diamonds), 50 mW·cm<sup>−2</sup> (red squares), and 150 mW·cm<sup>−2</sup> (green circles). (<b>b</b>) Kaplan–Meier plot of the percentage of tumors that didn’t grow to more than 200% of the treatment volume after treatment with control (black), 20 mW·cm<sup>−2</sup> (blue), 50 mW·cm<sup>−2</sup> (red), and 150 mW·cm<sup>−2</sup> (green).</p> "> Figure 8
<p>Schematic drawing of the illumination and single fiber spectroscopy set-up.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Effect of Different Fluence Rates In Vitro
2.2. Formation of Singlet Oxygen
2.2.1. Quenching Singlet Oxygen
2.2.2. Detection of Singlet Oxygen
2.3. Single Fiber Reflectance and Fluorescence Spectroscopy on Tumor Surface In-Vivo
2.3.1. Reflectance Spectroscopy
2.3.2. Fluorescence Spectroscopy
2.4. Tumor Response to PDT
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Culture
4.2. Targeted Photosensitizer
4.3. In-Vitro PDT Illumination
4.4. Cell Survival
4.5. Formation of Reactive Oxygen Species
4.5.1. Quenching Singlet Oxygen
4.5.2. Detection of Reactive Oxygen Species
4.6. Solid Tumor Model
4.7. In-Vivo PDT Illuminiation
4.8. Single Fiber Reflectance and Fluorescence Spectroscopy
4.9. Mathematical Analysis of Spectra
4.10. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Van Straten, D.; Mashayekhi, V.; de Bruijn, H.S.; Oliveira, S.; Robinson, D.J. Oncologic photodynamic therapy: Basic principles, current clinical status and future directions. Cancers 2017, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Moan, J.; Sommer, S. Oxygen dependence of the photosensitizing effect of hematoporphyrin derivative in nhik 3025 cells. Cancer Res. 1985, 45, 1608–1610. [Google Scholar] [PubMed]
- Robinson, D.J.; de Bruijn, H.S.; van der Veen, N.; Stringer, M.R.; Brown, S.B.; Star, W.M. Fluorescence photobleaching of ala-induced protoporphyrin ix during photodynamic therapy of normal hairless mouse skin: The effect of light dose and irradiance and the resulting biological effect. Photochem. Photobiol. 1998, 67, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.W.; Busch, T.M.; Snyder, J.W. Fluence rate as a modulator of PDT mechanisms. Lasers Surg. Med. 2006, 38, 489–493. [Google Scholar] [CrossRef]
- Star, W.M.; Marijnissen, H.P.; van den Berg-Blok, A.E.; Versteeg, J.A.; Franken, K.A.; Reinhold, H.S. Destruction of rat mammary tumor and normal tissue microcirculation by hematoporphyrin derivative photoradiation observed in vivo in sandwich observation chambers. Cancer Res. 1986, 46, 2532–2540. [Google Scholar]
- Van der Veen, N.; van Leengoed, H.L.; Star, W.M. In vivo fluorescence kinetics and photodynamic therapy using 5-aminolaevulinic acid-induced porphyrin: Increased damage after multiple irradiations. Br. J. Cancer 1994, 70, 867–872. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Chen, H.; Hetzel, F.W. Tumor oxygenation changes post-photodynamic therapy. Photochem. Photobiol. 1996, 63, 128–131. [Google Scholar] [CrossRef]
- Van Leeuwen-van Zaane, F.; de Bruijn, H.S.; van der Ploeg-van den Heuvel, A.; Sterenborg, H.J.; Robinson, D.J. The effect of fluence rate on the acute response of vessel diameter and red blood cell velocity during topical 5-aminolevulinic acid photodynamic therapy. Photodiagn. Photodyn. Ther. 2014, 11, 71–81. [Google Scholar] [CrossRef]
- Fingar, V.H.; Kik, P.K.; Haydon, P.S.; Cerrito, P.B.; Tseng, M.; Abang, E.; Wieman, T.J. Analysis of acute vascular damage after photodynamic therapy using benzoporphyrin derivative (BPD). Br. J. Cancer 1999, 79, 1702–1708. [Google Scholar] [CrossRef] [Green Version]
- Weston, M.A.; Patterson, M.S. Calculation of singlet oxygen dose using explicit and implicit dose metrics during benzoporphyrin derivative monoacid ring a (BPD-MA)-PDT in vitro and correlation with mll cell survival. Photochem. Photobiol. 2011, 87, 1129–1137. [Google Scholar] [CrossRef]
- Wilson, B.C.; Patterson, M.S.; Lilge, L. Implicit and explicit dosimetry in photodynamic therapy: A new paradigm. Lasers Med. Sci. 1997, 12, 182–199. [Google Scholar] [CrossRef] [PubMed]
- De Souza, A.L.; Marra, K.; Gunn, J.; Samkoe, K.S.; Kanick, S.C.; Davis, S.C.; Chapman, M.S.; Maytin, E.V.; Hasan, T.; Pogue, B.W. Comparing desferrioxamine and light fractionation enhancement of ala-ppix photodynamic therapy in skin cancer. Br. J. Cancer 2016, 115, 805–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegehuis, P.L.; Boogerd, L.S.; Inderson, A.; Veenendaal, R.A.; van Gerven, P.; Bonsing, B.A.; Sven Mieog, J.; Amelink, A.; Veselic, M.; Morreau, H.; et al. Toward optical guidance during endoscopic ultrasound-guided fine needle aspirations of pancreatic masses using single fiber reflectance spectroscopy: A feasibility study. J. Biomed. Opt. 2017, 22, 24001. [Google Scholar] [CrossRef] [PubMed]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Civantos, F.J.; Karakullukcu, B.; Biel, M.; Silver, C.E.; Rinaldo, A.; Saba, N.F.; Takes, R.P.; Vander Poorten, V.; Ferlito, A. A review of photodynamic therapy for neoplasms of the head and neck. Adv. Ther. 2018, 35, 324–340. [Google Scholar] [CrossRef]
- Grandis, J.R.; Tweardy, D.J. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger rna are early markers of carcinogenesis in head and neck cancer. Cancer Res. 1993, 53, 3579–3584. [Google Scholar]
- Mew, D.; Wat, C.K.; Towers, G.H.; Levy, J.G. Photoimmunotherapy: Treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J. Immunol. 1983, 130, 1473–1477. [Google Scholar]
- Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L.T.; Choyke, P.L.; Kobayashi, H. Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat. Med. 2011, 17, 1685–1691. [Google Scholar] [CrossRef] [Green Version]
- Shirasu, N.; Yamada, H.; Shibaguchi, H.; Kuroki, M.; Kuroki, M. Potent and specific antitumor effect of cea-targeted photoimmunotherapy. Int. J. Cancer 2014, 135, 2697–2710. [Google Scholar] [CrossRef]
- Sato, K.; Watanabe, R.; Hanaoka, H.; Harada, T.; Nakajima, T.; Kim, I.; Paik, C.H.; Choyke, P.L.; Kobayashi, H. Photoimmunotherapy: Comparative effectiveness of two monoclonal antibodies targeting the epidermal growth factor receptor. Mol. Oncol. 2014, 8, 620–632. [Google Scholar] [CrossRef]
- Nagaya, T.; Sato, K.; Harada, T.; Nakamura, Y.; Choyke, P.L.; Kobayashi, H. Near infrared photoimmunotherapy targeting egfr positive triple negative breast cancer: Optimizing the conjugate-light regimen. PLoS ONE 2015, 10, e0136829. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, S.; Bernardo, M.; Saito, K.; Koyasu, S.; Mitchell, J.B.; Choyke, P.L.; Krishna, M.C. Evaluation of oxygen dependence on in vitro and in vivo cytotoxicity of photoimmunotherapy using ir-700-antibody conjugates. Free Radic. Biol. Med. 2015, 85, 24–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, W.; de Bruijn, H.S.; Farrell, E.; Sioud, M.; Mashayekhi, V.; Oliveira, S.; van Dam, G.M.; Roodenburg, J.L.N.; Witjes, M.J.H.; Robinson, D.J. Epidermal growth factor receptor (EGFR) density may not be the only determinant for the efficacy of egfr-targeted photoimmunotherapy in human head and neck cancer cell lines. Lasers Surg. Med. 2018, 50, 513–522. [Google Scholar] [CrossRef]
- Peng, W.; de Bruijn, H.S.; ten Hagen, T.L.M.; van Dam, G.M.; Roodenburg, J.L.N.; Berg, K.; Witjes, M.J.H.; Robinson, D.J. Targeted photodynamic therapy of human head and neck squamous cell carcinoma with anti-epidermal growth factor receptor antibody cetuximab and photosensitiser ir700dx in the mouse skin-fold window chamber model. Photochem. Photobiol. 2020. in preparation. [Google Scholar]
- Gillenwater, A.M. Photoimmunotherapy (PIT) Study in Recurrent Head/Neck Cancer for Patients Who Failed at Least Two Lines of Therapy. Available online: https://clinicaltrials.gov/ct2/show/study/NCT03769506 (accessed on 18 November 2019).
- Gillenwater, A.M.; Cognetti, D.; Johnson, J.M.; Curry, J.; Kochuparambil, S.T.; McDonald, D.; Fidler, M.J.; Stenson, K.; Vasan, N.; Razaq, M.; et al. Rm-1929 photo-immunotherapy in patients with recurrent head and neck cancer: Results of a multicenter phase 2a open-label clinical trial. J. Clin. Oncol. 2018, 36, 6039. [Google Scholar] [CrossRef]
- Van Leeuwen-van Zaane, F.; Gamm, U.A.; van Driel, P.B.; Snoeks, T.J.; de Bruijn, H.S.; van der Ploeg-van den Heuvel, A.; Sterenborg, H.J.; Lowik, C.W.; Amelink, A.; Robinson, D.J. Intrinsic photosensitizer fluorescence measured using multi-diameter single-fiber spectroscopy in vivo. J. Biomed. Opt. 2014, 19, 15010. [Google Scholar] [CrossRef]
- Zilberstein, J.; Bromberg, A.; Frantz, A.; Rosenbach-Belkin, V.; Kritzmann, A.; Pfefermann, R.; Salomon, Y.; Scherz, A. Light-dependent oxygen consumption in bacteriochlorophyll-serine-treated melanoma tumors: On-line determination using a tissue-inserted oxygen microsensor. Photochem. Photobiol. 1997, 65, 1012–1019. [Google Scholar] [CrossRef] [Green Version]
- Henderson, B.W.; Gollnick, S.O.; Snyder, J.W.; Busch, T.M.; Kousis, P.C.; Cheney, R.T.; Morgan, J. Choice of oxygen-conserving treatment regimen determines the inflammatory response and outcome of photodynamic therapy of tumors. Cancer Res. 2004, 64, 2120–2126. [Google Scholar] [CrossRef] [Green Version]
- Foster, T.H.; Murant, R.S.; Bryant, R.G.; Knox, R.S.; Gibson, S.L.; Hilf, R. Oxygen consumption and diffusion effects in photodynamic therapy. Radiat. Res. 1991, 126, 296–303. [Google Scholar] [CrossRef]
- Schouwink, H.; Oppelaar, H.; Ruevekamp, M.; van der Valk, M.; Hart, G.; Rijken, P.; Baas, P.; Stewart, F.A. Oxygen depletion during and after mthpc-mediated photodynamic therapy in rif1 and h-meso1 tumors. Radiat. Res. 2003, 159, 190–198. [Google Scholar] [CrossRef]
- Coutier, S.; Bezdetnaya, L.N.; Foster, T.H.; Parache, R.M.; Guillemin, F. Effect of irradiation fluence rate on the efficacy of photodynamic therapy and tumor oxygenation in meta-tetra (hydroxyphenyl) chlorin (mthpc)-sensitized ht29 xenografts in nude mice. Radiat. Res. 2002, 158, 339–345. [Google Scholar] [CrossRef]
- Robinson, D.J.; de Bruijn, H.S.; Star, W.M.; Sterenborg, H.J. Dose and timing of the first light fraction in two-fold illumination schemes for topical ala-mediated photodynamic therapy of hairless mouse skin. Photochem. Photobiol. 2003, 77, 319–323. [Google Scholar] [CrossRef]
- Middelburg, T.A.; Van Zaane, F.; De Bruijn, H.S.; Van Der Ploeg-van den Heuvel, A.; Sterenborg, H.J.; Neumann, H.A.; De Haas, E.R.; Robinson, D.J. Fractionated illumination at low fluence rate photodynamic therapy in mice. Photochem. Photobiol. 2010, 86, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Berg, K.; Madslien, K.; Bommer, J.C.; Oftebro, R.; Winkelman, J.W.; Moan, J. Light induced relocalization of sulfonated meso-tetraphenylporphines in nhik 3025 cells and effects of dose fractionation. Photochem. Photobiol. 1991, 53, 203–210. [Google Scholar] [CrossRef]
- Berg, K.; Madslien, K.; Moan, J. Retention and phototoxicity of tetra(4-sulfonatophenyl)porphine in cultivated human cells. The effect of fractionation of light. Photochem. Photobiol. 1992, 56, 177–183. [Google Scholar] [CrossRef]
- Gollmer, A.; Arnbjerg, J.; Blaikie, F.H.; Pedersen, B.W.; Breitenbach, T.; Daasbjerg, K.; Glasius, M.; Ogilby, P.R. Singlet oxygen sensor green(R): Photochemical behavior in solution and in a mammalian cell. Photochem. Photobiol. 2011, 87, 671–679. [Google Scholar] [CrossRef]
- Somerville, G.A.; Proctor, R.A. Cultivation conditions and the diffusion of oxygen into culture media: The rationale for the flask-to-medium ratio in microbiology. BMC Microbiol. 2013, 13, 9. [Google Scholar] [CrossRef] [Green Version]
- Vendruscolo, F.; Rossi, M.; Schmidell, W.; Ninow, J.L. Determination of oxygen solubility in liquid media. ISRN Chem. Eng. 2012, 2012, 5. [Google Scholar] [CrossRef] [Green Version]
- Maeding, N.; Verwanger, T.; Krammer, B. Boosting tumor-specific immunity using PDT. Cancers 2016, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Van Driel, P.B.; van der Vorst, J.R.; Verbeek, F.P.; Oliveira, S.; Snoeks, T.J.; Keereweer, S.; Chan, B.; Boonstra, M.C.; Frangioni, J.V.; van Bergen en Henegouwen, P.M.; et al. Intraoperative fluorescence delineation of head and neck cancer with a fluorescent anti-epidermal growth factor receptor nanobody. Int. J. Cancer 2014, 134, 2663–2673. [Google Scholar] [CrossRef] [Green Version]
- Heukers, R.; van Bergen en Henegouwen, P.M.; Oliveira, S. Nanobody-photosensitizer conjugates for targeted photodynamic therapy. Nanomedicine 2014, 10, 1441–1451. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Sedlářová, M.; Pospíšil, P. Singlet oxygen imaging using fluorescent probe singlet oxygen sensor green in photosynthetic organisms. Sci. Rep. 2018, 8, 13685. [Google Scholar] [CrossRef] [PubMed]
- Kanick, S.C.; Sterenborg, H.J.; Amelink, A. Empirical model of the photon path length for a single fiber reflectance spectroscopy device. Opt. Express 2009, 17, 860–871. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen-van Zaane, F.; Gamm, U.A.; van Driel, P.B.; Snoeks, T.J.; de Bruijn, H.S.; van der Ploeg-van den Heuvel, A.; Mol, I.M.; Lowik, C.W.; Sterenborg, H.J.; Amelink, A.; et al. In vivo quantification of the scattering properties of tissue using multi-diameter single fiber reflectance spectroscopy. Biomed. Opt. Express 2013, 4, 696–708. [Google Scholar] [CrossRef]
- Gamm, U.A.; Kanick, S.C.; Sterenborg, H.J.; Robinson, D.J.; Amelink, A. Quantification of the reduced scattering coefficient and phase-function-dependent parameter gamma of turbid media using multidiameter single fiber reflectance spectroscopy: Experimental validation. Opt. Lett. 2012, 37, 1838–1840. [Google Scholar] [CrossRef]
- Gamm, U.A.; Kanick, S.C.; Sterenborg, H.J.; Robinson, D.J.; Amelink, A. Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: In silico sensitivity analysis. Biomed. Opt. Express 2011, 2, 3150–3166. [Google Scholar] [CrossRef] [Green Version]
- Amelink, A.; Robinson, D.J.; Sterenborg, H.J. Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements. J. Biomed. Opt. 2008, 13, 054044. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, W.; de Bruijn, H.S.; ten Hagen, T.L.M.; Berg, K.; Roodenburg, J.L.N.; van Dam, G.M.; Witjes, M.J.H.; Robinson, D.J. In-Vivo Optical Monitoring of the Efficacy of Epidermal Growth Factor Receptor Targeted Photodynamic Therapy: The Effect of Fluence Rate. Cancers 2020, 12, 190. https://doi.org/10.3390/cancers12010190
Peng W, de Bruijn HS, ten Hagen TLM, Berg K, Roodenburg JLN, van Dam GM, Witjes MJH, Robinson DJ. In-Vivo Optical Monitoring of the Efficacy of Epidermal Growth Factor Receptor Targeted Photodynamic Therapy: The Effect of Fluence Rate. Cancers. 2020; 12(1):190. https://doi.org/10.3390/cancers12010190
Chicago/Turabian StylePeng, Wei, Henriette S. de Bruijn, Timo L. M. ten Hagen, Kristian Berg, Jan L. N. Roodenburg, Go M. van Dam, Max J. H. Witjes, and Dominic J. Robinson. 2020. "In-Vivo Optical Monitoring of the Efficacy of Epidermal Growth Factor Receptor Targeted Photodynamic Therapy: The Effect of Fluence Rate" Cancers 12, no. 1: 190. https://doi.org/10.3390/cancers12010190
APA StylePeng, W., de Bruijn, H. S., ten Hagen, T. L. M., Berg, K., Roodenburg, J. L. N., van Dam, G. M., Witjes, M. J. H., & Robinson, D. J. (2020). In-Vivo Optical Monitoring of the Efficacy of Epidermal Growth Factor Receptor Targeted Photodynamic Therapy: The Effect of Fluence Rate. Cancers, 12(1), 190. https://doi.org/10.3390/cancers12010190