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Simple Summary: This study describes a novel way to delineate intratumoral regions
within clear cell renal cell carcinoma (ccRCC) based on the clustering of quantitative
metabolic images from clinical hyperpolarised [1-13C]pyruvate MRI. We show that these
clusters, combining metabolic and perfusion metrics, predict the most aggressive tumour
region with the highest specificity and outperform clusters derived from standard clinical
perfusion imaging. The cluster representing perfusion/metabolism mismatch via imaging
showed the highest metabolic dysregulation, with markers of aggressiveness identified
through molecular analyses from collected tissue samples. This approach has the potential
to guide biopsies to the most aggressive tumour regions, to reduce sampling error and
undergrading, as well as to improve risk stratification and clinical management.

Abstract: Background: Early and accurate grading of renal cell carcinoma (RCC) improves
patient risk stratification and has implications for clinical management and mortality. How-
ever, current diagnostic approaches using imaging and renal mass biopsy have limited
specificity and may lead to undergrading. Methods: This study explored the use of hy-
perpolarised [1-13C]pyruvate MRI (HP 13C-MRI) to identify the most aggressive areas
within the tumour of patients with clear cell renal cell carcinoma (ccRCC) as a method to
guide biopsy targeting and to reduce undergrading. Six patients with ccRCC underwent
presurgical HP 13C-MRI and conventional contrast-enhanced MRI. From the imaging data,
three k-means clusters were computed by combining the kPL as a marker of metabolic
activity, and the 13C-pyruvate signal-to-noise ratio (SNRPyr) as a perfusion surrogate. The
combined clusters were compared to those derived from individual parameters and to
those derived from the percentage of enhancement on the nephrographic phase (%NG).
The diagnostic performance of each cluster was assessed based on its ability to predict the
highest histological tumour grade in postsurgical tissue samples. The postsurgical tissue
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samples underwent immunohistochemical staining for the pyruvate transporter (mono-
carboxylate transporter 1, MCT1), as well as RNA and whole-exome sequencing. Results:
The clustering approach combining SNRPyr and kPL demonstrated the best performance for
predicting the highest tumour grade: specificity 85%; sensitivity 64%; positive predictive
value 82%; and negative predictive value 68%. Epithelial MCT1 was identified as the
major determinant of the HP 13C-MRI signal. The perfusion/metabolism mismatch cluster
showed an increased expression of metabolic genes and markers of aggressiveness. Con-
clusions: This study demonstrates the potential of using HP 13C-MRI-derived metabolic
clusters to identify intratumoral variations in tumour grade with high specificity. This work
supports the use of metabolic imaging to guide biopsies to the most aggressive tumour
regions and could potentially reduce sampling error.

Keywords: hyperpolarised [1-13C]pyruvate MRI; clear cell renal cell carcinoma; k-means
clustering; RNA sequencing

1. Introduction
Renal cell carcinoma (RCC) represents 2% of cancer diagnoses globally, and an increas-

ing incidence is partly attributed to incidental detection via imaging [1]. However, mortality
has not decreased over the last 50 years, despite its earlier detection and improved treat-
ment, with RCC remaining the most lethal urological malignancy [2]. A major diagnostic
challenge is differentiating between aggressive small renal masses and indolent lesions, as
well as accurately determining tumour grade before surgery [3]. Conventional imaging
modalities such as CT and MRI are increasingly used to detect renal masses, but their
specificity for determining the presence of ccRCC remains limited [4]. Although a biopsy
has a high specificity when a diagnostic sample is acquired, non-diagnostic rates and the
potential for undergrading are high (14% and 16%, respectively [5]). While non-invasive di-
agnostic approaches are highly desirable, there is a lack of blood or urine-based biomarkers
in RCC which is attributed to significant intra- and intertumoral heterogeneity [6]. Hence,
there is an unmet clinical need for imaging methods to both improve non-invasive diagnosis
and to enhance image-guided targeting to the most aggressive intratumoral regions.

Metabolism is particularly useful for phenotyping RCCs, which are characterised by a
high degree of metabolic reprogramming, driving tumour formation [7]. For example, in
the most common and aggressive RCC subtype, clear cell RCC (ccRCC), the inactivation of
the von Hippel-Lindau (VHL) gene leads to the stabilisation of hypoxia-inducible factor
(HIF) with the downstream activation of angiogenesis and glycolysis and the suppression
of the oxidative metabolic pathways [8]. Intratumoral metabolic heterogeneity within RCC
has been observed across grades and within spatially separated tumour regions via ex
vivo molecular analyses [9,10]. The major clinically available metabolic imaging tool to
assess this heterogeneity in vivo is radioactive [18F]fluorodeoxyglucose (FDG), detected by
positron emission tomography (PET), but this tool has a limited role in renal imaging due
to renal excretion of FDG [11]. Hyperpolarised [1-13C]pyruvate MRI (HP 13C-MRI) is an
emerging metabolic imaging technique which involves the injection of a non-radioactive
carbon-13 labelled form of pyruvate—an endogenous breakdown product of glucose—
which may have a more promising role in renal imaging [12]. Recent studies have shown
the potential of the technique in stratifying tumours based on higher World Health Organi-
sation/International Society of Urological Pathology (WHO/ISUP) grade [13,14]. Increased
pyruvate metabolism by the enzyme lactate dehydrogenase (LDH), as measured by the
resulting lactate formation, correlates with the expression of the pyruvate importer or
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monocarboxylate transporter 1 (MCT1), which is an independent marker of poor prognosis
in ccRCC [14,15].

In this study, we have explored the role of metabolic imaging in assessing tumour
aggressiveness by combining metrics of perfusion and metabolism, acquired using HP
13C-MRI, to assess whether a combined approach may be more powerful in assessing grade
than the individual metrics alone or with conventional contrast-enhanced proton (1H) MRI.
K-means clustering was used as an unsupervised learning algorithm to cluster pixels based
on intensity and spatial positioning to disaggregate areas of metabolic similarity in the
tumour, similar to how it has been used previously in 1H-MRI to evaluate perfusion in
distinct tumour regions [16]. Imaging results were validated on postsurgical tissue samples
using MCT1 immunohistochemistry, RNA sequencing (RNAseq) for metabolic pathways
and whole-exome sequencing (WES) were performed to determine potential genetic drivers
of the imaged signal. The results have shown the potential of metabolic MRI to detect areas
of increased tumour aggressiveness, which could be used to guide a biopsy to the most
aggressive areas within an individual tumour in the future.

2. Materials and Methods
2.1. Ethics and Recruitment

Patients were prospectively recruited and provided written informed consent to the
following ethically approved studies: Molecular Imaging and Spectroscopy with Sta-
ble Isotopes in Oncology and Neurology (MISSION)-Ovary Substudy Renal (ClinicalTri-
als.gov Identifier NCT03526809) and A translational research Approach to development
of optimal Renal cancer Treatments In Surgical and systemic Therapy patients (ARTIST)
(NCT04060537). This cohort of patients overlaps with previously published work [14]. Fur-
ther details are summarised in Supplementary Materials S1, under the section Supplemen-
tary Methods (Ethics and Recruitment), and in Supplementary Table S1.

2.2. MRI Acquisition and Processing

The 13C-pyruvate injection and the HP 13C-MRI acquisition were performed as de-
scribed in previously published work and summarised in Supplementary Materials S1,
under the section Supplementary Methods (MRI acquisition and processing).

1H-MRI sequences, including T1- and T2-weighted (T1w, T2w) and Gd-contrast-
enhanced imaging, were acquired after replacing the 13C-tuned coil with the 32-channel
cardiac 1H-array coil (GE Healthcare, Waukesha WI, USA), and processed as described
previously [14]. Percentage nephrographic enhancement (%NG) as a measure of vascular
permeability was calculated by subtracting the non-enhanced T1-weighted sequence from
the nephrographic contrast-enhanced phase, the latter defined as the timepoint of maximal
and homogeneous enhancement across renal parenchyma, corresponding to −100 s after
the start of Gd injection [17]. To match the imaging planes and correct for any potential
movement, the final 1H maps were reoriented and manually registered to match the HP
13C-MRI using ITK-SNAP 4.0 [18] and in-house-developed MATLAB (MathWorks Inc.,
Natick MA, USA) scripts. Using the OsiriX Lite 12.0.3 (Pixmeo SARL, Bernex, Switzer-
land), the regions of interest (ROIs) of whole tumours were drawn on axial T1w LavaFlex
images by avoiding cystic/necrotic areas via the simultaneous inspection of T2w- and
Gd-enhanced images.

2.3. K-Means Clustering

ROIs drawn on anatomical T1w images were transferred to co-registered HP 13C-MRI
and %NG images to create masked maps as shown in Figure 1. Masked tumour ROIs
were extracted from each map, and clustering was performed using a readily available
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k-means clustering package as part of the Statistics and Machine Learning Toolbox of
the MATLAB software. This was performed on individual HP 13C-MRI parameter maps,
including SNRPyr and kPL, on combined HP 13C-MRI maps [SNRPyr + kPL], as well as on
the %NG map. Outputs of k-means clustering included three clusters, followed by a sorting
algorithm to arrange the habitats in order of magnitude to ensure that the highest-numbered
cluster always corresponded to the highest magnitude of the imaging data.
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Figure 1. Workflow of the study, as described in Methods. Colour coding of the clusters: lowest
mean value = light blue, medium mean value = green, highest mean value = yellow; dark blue
regions denoted the background or any voxels with poor signal-to-noise ratio which was matched to
background.

2.4. Tissue Sampling and Analyses

To enable co-registration of the biopsies to the MRI images, the patient-specific pathol-
ogy sampling maps were produced from MRI biomarker maps, and a matching 3D-printed
tumour mould was created, as described previously [19]. After nephrectomy, each tumour
was sliced at a specified location to match the imaging acquisition plane using the tumour
mould, and the location of the biopsies was recorded on the patient-specific pathology
maps. These were overlaid on top of each cluster as shown in Figure 1, with the normal
kidney in purple, perirenal fat in blue, and the location of the biopsies drawn as crosses.
Four to fourteen multiregional samples were collected from viable tumour regions by avoid-
ing visible cystic/necrotic areas, and each biopsy was split into half with one part being
formalin-fixed paraffin-embedded (FFPE) and the other half flash-frozen. A consultant
uropathologist determined the WHO/ISUP grade on H&E of all the biopsies with >75%
tumour cellularity. Immunohistochemical (IHC) staining for the MCT1 was performed on
the FFPE sections and analysed as described previously [14], while fresh frozen samples
underwent RNAseq, WES, and analysis, as described in Supplementary Materials S1.

2.5. Statistical Analysis

Statistical analysis was performed in GraphPad Prism v.10 (Dotmatics, Boston MA,
USA). All biopsies were assigned to a cluster based on the co-registration of the MRI and the
pathology. The diagnostic performance for predicting the highest-grade within the tumour
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was calculated for all clusters derived from individual and combined clustering. Diagnostic
performance was assessed using sensitivity, specificity, and positive and negative predictive
values (PPV and NPV), and the area under curve (AUC) of the receiver operating charac-
teristic (ROC) curves served as a consistency measure. MCT1 and cell-type compositions
were compared across clusters by applying a one-way analysis of variance (ANOVA) test
with Holm–Šidak’s multiple comparison correction for normally distributed data and the
Kruskal–Wallis test with Dunn’s multiple comparison correction for nonparametric data, as
tested using the Shapiro–Wilk test for normality. Binary comparisons were correspondingly
performed using unpaired Student’s t-test and the Mann–Whitney U test for gaussian and
non-gaussian data, respectively. p value < 0.05 was set as a cut-off for statistical significance.

3. Results
3.1. Study Workflow and Patient Clinical Characteristics

The study workflow is shown in Figure 1, and the summary characteristics of the six
patients are presented in Supplementary Table S1. Median age was 59.5 years (range 51–69),
and one patient was female. The tumour size ranged from 4.0 to 13.3 cm. Metastatic disease
was present in one patient. Median time between imaging and surgery was 16.5 (range 1–119)
days. In total, forty-four multiregional samples were post-operatively collected, of which two
were excluded due to insufficient tumour cellularity.

3.2. K-Means Clustering of HP 13C-MRI Detects Intratumoral Heterogeneity of Pyruvate Delivery
and Pyruvate-to-Lactate Conversion

Figure 2 shows an overview of the clustering results for all patients. Nephrectomy
specimens from patients 1 and 5 were sliced at two different axial levels based on the
3D-printed mould which was registered to the HP 13C-MRI images as described previ-
ously [14]. Slices from patient 1 were sufficiently separated to correspond to two different
HP 13C-MRI slices (1a and 1b), while the slicing levels of the study patient 5 were both
constrained within a single slice on the HP 13C-MRI images; thus, biopsies from both levels
were overlaid onto the same clustering map. Differences between tissue perfusion (as
measured by pyruvate delivery with SNRPyr and Gd-enhancement with %NG) and tumour
metabolism (pyruvate-to-lactate conversion using kPL) indicated intratumoral heterogeneity
in both, which was captured by combining an [SNRPyr + kPL] clustering approach.

The normalised individual and combined SNRPyr and kPL means within each combined
cluster group were compared in order to quantify the level of heterogeneity of perfusion and
metabolism within and between the combined clusters (Supplementary Figure S1).

The medium cluster showed the greatest degree of perfusion/metabolism mis-
match with low perfusion and high metabolic conversion, which may represent in-
creased glycolytic metabolism secondary to tumour hypoxia (medium cluster mean
kPL/SNRPyr ratio = 1.4, compared to 1.0 and 0.9 in the low and high combined clusters,
respectively; Supplementary Figure S1A). This is analogous to discrepancies found
through 18F-FDG-PET imaging, which have been reported as a feature of tumour ag-
gressiveness [20–22].

Supplementary Figure S1B shows values of individual SNRPyr, kPL, and combined
[SNRPyr + kPL] across combined [SNRPyr + kPL] clusters. SNRPyr was significantly different
in the low vs. high (Dunn’s multiple comparison test adjusted p < 0.01) and medium vs.
high (p < 0.001) clusters, but not in the low vs. medium combined clusters (p > 0.99). kPL

across combined clusters was significantly different in the low vs. medium (p < 0.01) and
low vs. high (p < 0.0001) clusters, but not between medium vs. high clusters (p = 0.20). The
normalised mean of the combined [SNRPyr + kPL] metric increased from the low to the high
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cluster and showed a significant difference in the low vs. high (p < 0.0001) and medium vs.
high (p < 0.001) comparison, but not between the low vs. medium clusters (p = 0.06).
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Figure 2. Overview of k-means clustering results in the 6 patients. Tumour from patient 1 was large
enough to acquire imaging and biopsies on two slices (1a and 1b), while in other patients, only a
single slice was imaged and registered to the post-nephrectomy biopsies. Intratumoral heterogeneity
was observed in all clustering approaches.

Altogether, these results suggest significant inter- and intra-cluster variations in perfu-
sion and metabolism.

3.3. The Cluster with the Greatest Perfusion/Metabolism Mismatch Predicts the Highest
Intratumoral Grade

The diagnostic performance of each clustering approach in predicting the highest-
grade intratumoral region, by comparing these results to clusters derived from %NG en-
hancement, was assessed in order to explore the hypothesis that perfusion/metabolism
mismatch may correspond to the most aggressive tumour regions. The diagnostic
performance metrics of all the clustering approaches for detecting the highest grade
within the tumour are shown in Table 1 intratumoral variation in grades or investi-
gated metabolism beyond pyruvate-to-lactate conversion. ROC curves are presented in
Supplementary Figure S2. Calculations are shown in Supplementary Tables S2 and S3.
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Table 1. Comparison of the diagnostic performance of the k-means clustering approaches for the de-
tection of the highest grade within an individual tumour. PPV = positive predictive value, NPV = neg-
ative predictive value, AUC = area under the curve.

Clustering
Approach Sensitivity Specificity PPV NPV AUC

SNRPyr only
Low 40% 70% 60% 52% 0.58
Medium 46% 50% 50% 46% 0.58
High 23% 85% 63% 50% 0.54

kPL only
Low 18% 70% 40% 44% 0.58
Medium 55% 80% 75% 62% 0.58
High 36% 55% 47% 44% 0.59

Combined
SNRPyr + kPL
Low 32% 65% 50% 46% 0.56
Medium 64% 85% 82% 68% 0.67
High 14% 55% 25% 37% 0.50

%Nephrographic
enhancement
Low 27% 60% 43% 43% 0.60
Medium 64% 65% 67% 62% 0.60
High 18% 80% 50% 47% 0.57

The medium combined [SNRPyr + kPL] cluster exhibited the highest diagnostic per-
formance rates amongst all the clustered parameters: specificity 85%; sensitivity 64%;
PPV 82%; and NPV 68%. Although specificity was comparable to the high SNRPyr clus-
ter and the sensitivity to the medium %NG cluster, the combined clustering showed the
highest consistency, as suggested via the ROC curve analysis (AUC 0.67). Therefore, the
medium combined [SNRPyr + kPL] cluster, reflecting the low pyruvate delivery and high
metabolic conversion (Supplementary Figure S1A), demonstrated the best predictor of
the highest-grade within the tumour. This prompted further exploration into molecular
processes underlying HP 13C-MRI clustering.

3.4. The Epithelial Compartment Is the Predominant Cell Type and Demonstrates High Pyruvate
Transporter Expression, Suggesting a Significant Role in HP 13C-MRI Signal Generation

A possible contribution of the tumour microenvironment (TME) and the pyruvate
transporter MCT1 to the generation of combined clusters was analysed by deconvoluting
the bulk RNAseq for cell-type-specific signatures and by quantifying the epithelial and
stromal MCT1 staining. Results were compared in binary fashion where the medium
combined cluster was compared to the others (low + high), as presented in Figure 3.

Deconvoluted RNAseq-derived cell specific signatures revealed that tumour epithe-
lium contributed the largest relative cellular contribution in the samples, followed by the
endothelial component. Both compartments exhibited significantly higher contributions
compared to other compartments, as determined by Dunn’s multiple comparison test
(Figure 3A). However, no difference in cell composition was observed in the comparisons
between the medium combined [SNRPyr + kPL] cluster and the others.

MCT1 expression was significantly higher in the epithelial compartment compared to
the stromal portion (Figure 3B), but no significant differences were found in the intra-cluster
comparison. As MCT1 is the main transporter for pyruvate uptake, this is consistent with
the epithelial compartment being a major determinant of the HP 13C-MRI signal, similar
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to what has been demonstrated in other tumour types such as prostate cancer [23]. Taken
together, these results support the hypothesis that the HP 13C-MRI signal may be weighted
towards metabolism in the epithelial tumour compartment, but between the clusters, no
TME differences were identified.
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3.5. The Medium Combined Cluster Revealed the Highest Metabolic Gene Expression and
Aggressive Tumour Signatures Based on the Transcriptomic Analysis

To understand the metabolic dysregulation underlying the combined [SNRPyr + kPL]
clusters, GSEA was performed using KEGG MSigDB gene sets. Figure 4 displays pathways
with significance as defined by Benjamini–Hochberg p-adjusted values < 0.05 based on the
comparison of the medium combined cluster to the others (low + high). Supplementary
Materials S2 contains detailed statistical results.
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The medium combined cluster exhibited upregulated metabolic signatures compared
to the (low + high) combined clusters together. Notably, the energy-yielding metabolic
pathways including the tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OX-
PHOS), and pyruvate metabolism ranked among the highest normalised enrichment scores.
This was associated with upregulated glutathione and peroxisomal pathways, indicating
changes in oxidative stress and redox homeostasis. Other significantly enriched metabolic
pathways included fatty acid metabolism, N-glycan biosynthesis, glycolysis and gluco-
neogenesis, and tryptophan metabolism. The upregulation of the proteasome and valine–
leucine–isoleucine degradation pathways suggested increased peptide turnover, which
may be explained by enhanced proliferation and the requirement for biosynthetic ma-
terial. In support of this, cell cycle, DNA replication (increased pyrimidine and purine
metabolism), and mismatch repair mechanisms were upregulated. The antigen processing
and presentation (APP) pathway was also upregulated in the medium cluster compared to
the others.

3.6. Genetic Divergence May Partly Underlie the Aggressive Phenotype

The genetic drivers of ccRCC are well-established, with VHL loss found in 75% of cases,
leading to downstream metabolic phenotype perturbations [24]. To examine the impact of
genetic drivers in differentiating the imaging clusters derived from the combined approach,
we performed genetic phylogeny analysis, as depicted in Figure 5. Tissue samples from
patients 3 and 6 failed to meet the WES quality control criteria, limiting analysis to the
remaining patients.

VHL loss was identified as the truncal mutation in all four patients, indicating that
it is not a causative factor for intratumoral metabolic heterogeneity. Similarly, 3p loss
of heterozygosity (LOH) was detected in all patients, and most other genetic alterations
were truncal in origin, such as 14q LOH in patient 1 and PBRM1 alterations in patients
2, 4, and 5. The only exception was the early branching of 9, 14 LOH, and the SETD2
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arginine-to-histidine substitution in patient 4, which was notably detected in all samples
from the combined [SNRPyr + kPL] medium clusters.
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4. Discussion
Here, we have employed HP 13C-MRI combined with k-means clustering analysis to

investigate whether regional changes in metabolism across renal tumours can be used to
detect the most aggressive intratumoral regions, with the ultimate aim of guiding biopsy
procedures in the future.

To the best of our knowledge, this is the first report of clustering on clinical HP 13C-
MRI data to define intratumoral metabolic habitats in order to assess their ability to detect
the highest ccRCC grade within the tumour [25]. In particular, combining the metrics for
pyruvate delivery and metabolic conversion to lactate [SNRPyr + kPL] demonstrated the
highest diagnostic performance for predicting tumour grade, and this method was superior
to the clustering approach where each component was used separately or compared to
conventional contrast-enhanced MRI. The medium combined cluster showed the high-
est sensitivity for the detection of aggressive disease and the greatest disparity between
metabolism and perfusion. Such perfusion/metabolism mismatch as a feature of tumour ag-
gressiveness is analogous to that reported previously via FDG-PET imaging [20], but these
studies either employed different probes to separately determine blood flow and glucose
uptake (e.g., 15O-H2O and 18F-FDG respectively reported in pancreatic [26], breast [21], and
cervical cancer [22]) or different modalities (e.g., contrast-enhanced CT with FDG-PET
in oesophageal cancer [27]). Here, we have used a single injection of hyperpolarised
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13C-pyruvate and HP 13C-MRI to extract these parameters within seconds of injection
and in the absence of ionising radiation, which is of particular importance in imaging
of the kidneys due to the renal excretion of 18F-FDG, which complicates any interpreta-
tion [11]. The investigation of perfusion/metabolism mismatch using HP 13C-MRI has been
reported preclinically using a dual contrast agent approach (13C-pyruvate and 13C-urea) in
a murine prostate cancer model which found a correlation between decreased perfusion
and increased metabolism with higher intertumoral grades [28].

It has been previously reported that imaging metrics of pyruvate-to-lactate conver-
sion, such as kPL and the LAC/PYR ratio, positively correlate with higher renal tumour
aggressiveness [13,14]. Conventional proton MRI metrics of perfusion have been used to
detect higher ccRCC grades; for example, lower arterial spin labelling (ASL)-measured per-
fusion has been reported in higher ccRCC grades [29], consistent with lower microvascular
density as assessed using IHC. However, Ktrans as a measure of vascularity via DCE-MRI
has shown variability between and within tumours, suggesting inter- and intratumoral
heterogeneity [29]. Ktrans is not a pure measure of perfusion but reflects the inflow of the
contrast agent from large vessels and its exchange rate into the interstitial space, therefore
incorporating a measure of tumour vascular permeability [30]. Here, we show that the high
cluster of the vascularity parameter (%NG) had the best specificity to predict higher grade
region within the tumour, while other metrics varied in their performance. Similarly, Xi et al.
reported that the high Gd-enhancing k-means cluster within a tumour is most predictive
of a higher grade across a cohort of 18 patients with ccRCC [31]; however, these results
relied on a single postsurgical grade for the whole tumour rather than examining the grade
variation across the entire tumour. Udayakumar et al. correlated the intratumoral variation
in early nephrogenic enhancement with angiogenic and immune transcriptomic signatures
of biopsies from the same regions [32], and Yao et al. reported two types of microvessels
which are differentially expressed between low- and high-grade ccRCCs, indicating the
complexity of ccRCC perfusion [33]. These results indicate that tumour perfusion is an
important determinant of aggressiveness, but when used alone, it is insufficient to fully and
accurately characterise the tumour grade non-invasively. Therefore, combining perfusion
with other biological processes such as metabolism, as we have undertaken here, has the
potential to improve prediction.

Although intratumoral heterogeneity of pyruvate metabolism in ccRCC has been
studied before, this work has extended this by evaluating the predictive power of HP
13C-MRI-derived metabolic clusters and by investigating the underlying biology beyond
pyruvate, including cellular compartmentalisation and transcriptomic and genomic sig-
natures. The epithelial cell compartment exhibited the highest expression of the pyruvate
importer MCT1 and may be the driving factor for the generation of the HP 13C-MRI signal
as previously suggested [23,34], although no differences were found between the clusters.
Thus, the intratumoral clusters were attributed to variations in metabolic dysregulation as
identified via our transcriptomic analysis. This is supported by Okegawa et al. [10] who
identified differential pyruvate profiles across spatially separated tumour biopsies of eight
ccRCC patients, and the high pyruvate cluster was matched with low LDHA expression.
Through isotope tracing experiments, they found higher PDH flux in certain regions
but have not investigated how this relates to tumour grade or the signal via imaging.
Hakimi et al. [35] and Li et al. [36] have identified how ccRCC metabolic clusters are linked
to tumour stage and to survival outcomes, but they have only addressed intertumoral
rather than intratumoral heterogeneity. Applying HP 13C-MRI, Tran et al. [37] reported the
highest lactate level, determined via mass spectrometry (MS), corresponding to the highest
13C-lactate signal within a single ccRCC, but they did not investigate the intratumoral
variation in grades or investigated metabolism beyond pyruvate-to-lactate conversion.
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Through RNAseq analysis, we identified upregulated metabolic pathways in the
medium combined [SNRPyr + kPL] cluster, particularly the notably upregulated TCA cycle
pathway. Bezwada et al. have previously detected enhanced labelling of TCA intermediates
in ccRCC metastases compared to the primary tumour during isotope labelling experiments
in patients, suggesting that the harnessing of oxidative pathways provides a selective
advantage for ccRCC progression [38]. This was further linked to the maintenance of
redox balance, which contributes to aggressiveness by enabling the survival of tumour
cells [39]. In our study, the antioxidant-sustaining pathways including the glutathione
and peroxisome pathways were highly upregulated. Glutathione acts as a scavenger for
reactive oxygen species (ROS) to sustain malignant growth [40], and peroxisomes are also
known to regulate lipid droplet formation, which is the defining histological feature of
ccRCC [41]. The storage of these increased fatty acids is necessary to suppress lipotoxicity
and to maintain cell membranes in ccRCC [41]. Glycogen is known to accumulate in these
droplets, altering protein glycosylation [42]. Such abnormal glycosylation was shown to
promote cell–cell signalling, invasion, and migration [43], and we have shown increased N-
glycan biosynthesis in the most aggressive combined cluster in this study. The tryptophan
metabolic pathway was the most prominently upregulated among the amino acid pathways,
which is well described in ccRCC for its immunosuppressive effects via the kynurenine
pathway [44]. In the medium combined [SNRPyr + kPL] cluster, the cell proliferation
pathways were upregulated, which is tightly linked to higher cancer aggressiveness and
used in clinical routine histological grading of ccRCC based on nucleolar prominence [45].

This study is the first to compare gene aberrations to metabolic phenotypes detected
using HP 13C-MRI in ccRCC. The intratumoral genomic clonality of ccRCC has been exten-
sively studied [46,47], but it remains unclear how this translates to a variation in metabolic
phenotypes, but evidence suggests that it is only partly related to genetic alterations [48]. We
identified truncal VHL loss in all the patients, and although this is a major driver of the
difference in metabolism between tumour and normal tissue, it is unlikely to contribute to
the intratumoral metabolic heterogeneity detected using HP 13C-MRI. This finding was
consistent with Okegawa et al. [10], who reported intratumoral variation in pyruvate-to-
lactate conversion via mass spectrometry that was independent of VHL gene status. While
most other genetic alterations were truncal, the single exception of genetic branching was
the LOH of chromosomes 9 and 14 and the SETD2 mutation in patient 4, which were all
found within the combined medium cluster. LOH of chromosomes 9 and 14, as well as
elevated genomic intratumoral heterogeneity, has been previously associated with more
adverse outcomes [49–51], and this supports our finding that the medium combined cluster
represents the most aggressive intratumoral region. In addition, SETD2 loss has been previ-
ously found to promote ccRCC expansion through replication stress and defective DNA
damage repair [52], as well as a switch of ccRCC metabolism towards OXPHOS [53], in
line with our finding of upregulated OXPHOS pathway in the medium combined cluster.
Although this was the first study to link intratumoral genomic variations with metabolic
clusters via imaging, no direct causation was observed due to the limited number of pa-
tients. Future studies will need to further elucidate the extent to which additional factors,
such as epigenetics and noncanonical metabolic flux, regulate metabolic phenotypes [54].

Our research faced unavoidable technical challenges: HP 13C-MRI images have inher-
ently low resolution (voxel size: 17 × 17 × 30 mm3), which may dilute the border between
heterogeneous regions, especially in the superior–inferior direction. This was the reason
for allocating biopsies from two different axial levels of tissue sampling onto the same HP
13C-image for patient 5 in the study. Therefore, only the 2D analysis of HP 13C-MRI was
possible. Also, biopsy sampling was performed only on slices of nephrectomised kidneys
since whole-tumour tissue analyses are technically challenging even for research purposes
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and impossible in a clinical setting due to the need for diagnostic samples. However,
multiregional sampling with the 3D-printed tumour mould enabled a good correspondence
between imaging and pathology [19], and by clustering 13C-data, we mitigated the effects
of any possible misregistration, thereby providing a larger confidence space for potential
future biopsy targeting. Finally, it is important to state that while the findings of this study
appear promising for the clinical management of RCC, the feasibility of implementing
HP 13C-MRI with subsequent k-means clustering analysis currently presents a challenge
due to the high cost and technical requirements. However, this research field is rapidly
advancing, and further innovations may enable the clinical integration of HP 13C-MRI in
the near future [55].

5. Conclusions
In summary, we present a novel clustering method of HP 13C-MRI data that predicts

the most aggressive intratumoral ccRCC grades with high specificity, outperforming indi-
vidual parameters and the clinical standard. This work supports the potential of metabolic
imaging to guide a biopsy to the most aggressive tumour region, thereby reducing sam-
pling error and undergrading, improving both risk stratification and ultimately clinical
management strategies. Additionally, the analysis of underlying molecular processes sets
the ground for future research into the intratumoral metabolic heterogeneity of ccRCC with
potential for the development of novel treatments.
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