Downregulation of Aging-Associated Gene SUCLG1 Marks the Aggressiveness of Liver Disease
<p>SUCLG1 mRNA levels decrease with liver-tissue deterioration alterations. Expression mRNA levels of B2M, C1qA, and SUCLG1 in tissues with normal appearance (<span class="html-italic">n</span> = 9) or tissue specimen with diagnosis: Fatty liver (<span class="html-italic">n</span> = 5), hepatitis (<span class="html-italic">n</span> = 3), cirrhosis (<span class="html-italic">n</span> = 5), hepatocellular carcinoma (<span class="html-italic">n</span> = 24) or cholangiocarcinoma (<span class="html-italic">n</span> = 3). Significant differences are indicated by asterisks: <0.05 (*), <0.01 (**), and <0.001 (***). All tissue samples in the liver cancer cohorts are biopsied from the tumor tissue area.</p> "> Figure 2
<p>Boxplot of SUCLG1 expression levels in tumor and control samples. The plot compares SUCLG1 expression levels (FPKM) in hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) tumor samples with their respective normal control tissues. The analysis included 377 HCC tumor samples, 59 control HCC samples, 36 CC tumor samples, and 9 control CC samples. HCC tumor samples exhibit a median SUCLG1 expression of 10.69 FPKM, while the corresponding controls show a higher median expression of 11.76 FPKM. Similarly, CC tumor samples have a median SUCLG1 expression of 11.91 FPKM compared to a median of 11.56 FPKM in controls.</p> "> Figure 3
<p>Kaplan–Meier survival curves for SUCLG1 expression in HCC. Kaplan–Meier survival plots display the survival probabilities for patients grouped by SUCLG1 expression levels in hepatocellular carcinoma (HCC). In HCC, high SUCLG1 expression (≥12.58) was associated with improved survival compared to low expression (<12.58) (log-rank test: <span class="html-italic">p</span> = 0.0419, χ2 = 4.14). The high-expression group comprised 24 samples, while the low-expression group included 330 samples.</p> "> Figure 4
<p>Kaplan–Meier survival curves for SUCLG1 expression in CC. Kaplan–Meier survival plots display the survival probabilities for patients grouped by SUCLG1 expression levels in cholangiocarcinoma (CC). In CC, patients with high SUCLG1 expression (≥10.39) had significantly better survival compared to those with low expression (<10.39) (log-rank test: <span class="html-italic">p</span> = 0.0123, χ2 = 6.26). The high-expression group included 23 samples, while the low-expression group consisted of 13 samples.</p> ">
1. Introduction
2. Materials and Methods
2.1. Human Tissue
2.2. Real-Time qPCR
Gene | Forward Primer | Reverse Primer | Annealing Temperature (°C) |
Actin β | CTTCCTGGGCATGGAGTC | CGCTCAGGAGGAGCAATGAT | 60 |
GAPDH | CATCACTGCCACCCAGAAGACTG | ATGCCAGTGAGCTTCCCGTTCAG | 60 |
B2M | GCCGCATTTGGATTGGATGAA | CCTAGAGCTACCTGTGGAGC | 58 |
C1qA | AAACATCAAGGACCAGCCGA | CGGTTCTTCCTGGTTGGTGA | 55 |
SUCLG1 | CTTTTGCTGCTGCTGCCATTA | AGCCTTGTCTTTTCCTGGCG | 58 |
2.3. Data Acquisition and Bioinformatics Analysis
2.4. Statistical Analysis
3. Results
3.1. SUCLG1 Is Downregulated in Liver Disease and Cancers
3.2. Survival Analysis of SUCLG1 Expression in HCC and CC Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campisi, J. Aging, Cellular Senescence, and Cancer. Annu. Rev. Physiol. 2013, 75, 685–705. [Google Scholar] [CrossRef]
- De Magalhães, J.P. How Ageing Processes Influence Cancer. Nat. Rev. Cancer 2013, 13, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Pawelec, G. Age and Immunity: What Is “Immunosenescence”? Exp. Gerontol. 2018, 105, 4–9. [Google Scholar] [CrossRef] [PubMed]
- López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The Hallmarks of Aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]
- Shay, J.W.; Wright, W.E. Telomeres and Telomerase in Normal and Cancer Stem Cells. FEBS Lett. 2010, 584, 3819–3825. [Google Scholar] [CrossRef]
- Baylin, S.B.; Jones, P.A. Epigenetic Determinants of Cancer. Cold Spring Harb. Perspect. Biol. 2016, 8, a019505. [Google Scholar] [CrossRef] [PubMed]
- Horvath, S.; Raj, K. DNA Methylation-Based Biomarkers and the Epigenetic Clock Theory of Ageing. Nat. Rev. Genet. 2018, 19, 371–384. [Google Scholar] [CrossRef]
- Finkel, T.; Serrano, M.; Blasco, M.A. The Common Biology of Cancer and Ageing. Nature 2007, 448, 767–774. [Google Scholar] [CrossRef]
- Keyes, B.E.; Fuchs, E. Stem Cells: Aging and Transcriptional Fingerprints. J. Cell Biol. 2018, 217, 79–92. [Google Scholar] [CrossRef]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A New Immune–Metabolic Viewpoint for Age-Related Diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef]
- Xie, H.; Wei, L.; Ruan, G.; Zhang, H.; Shi, H. Inflammaging Score as a Potential Prognostic Tool for Cancer: A Population-Based Cohort Study. Mech. Ageing Dev. 2024, 219, 111939. [Google Scholar] [CrossRef] [PubMed]
- Anisimov, V.N. Biology of Aging and Cancer. Cancer Control 2007, 14, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Sheedfar, F.; Biase, S.D.; Koonen, D.; Vinciguerra, M. Liver Diseases and Aging: Friends or Foes? Aging Cell 2013, 12, 950–954. [Google Scholar] [CrossRef]
- Vinciguerra, M. Old Age and Steatohepatitis: A Dangerous Liaison? Hepatology 2013, 58, 830–831. [Google Scholar] [CrossRef]
- Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of Liver Diseases in the World. J. Hepatol. 2019, 70, 151–171. [Google Scholar] [CrossRef]
- Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380, 1450–1462. [Google Scholar] [CrossRef] [PubMed]
- Banales, J.M.; Cardinale, V.; Carpino, G.; Marzioni, M.; Andersen, J.B.; Invernizzi, P.; Lind, G.E.; Folseraas, T.; Forbes, S.J.; Fouassier, L.; et al. Cholangiocarcinoma: Current Knowledge and Future Perspectives Consensus Statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 261–280. [Google Scholar] [CrossRef]
- Lee, W.; Wang, Z.; Saffern, M.; Jun, T.; Huang, K. Genomic and Molecular Features Distinguish Young Adult Cancer from Later-Onset Cancer. Cell Rep. 2021, 37, 110005. [Google Scholar] [CrossRef]
- Shah, Y.; Verma, A.; Marderstein, A.R.; White, J.; Bhinder, B.; Garcia Medina, J.S.; Elemento, O. Pan-Cancer Analysis Reveals Molecular Patterns Associated with Age. Cell Rep. 2021, 37, 110100. [Google Scholar] [CrossRef]
- Chatsirisupachai, K.; Lagger, C.; De Magalhães, J.P. Age-Associated Differences in the Cancer Molecular Landscape. Trends Cancer 2022, 8, 962–971. [Google Scholar] [CrossRef]
- Palmer, D.; Fabris, F.; Doherty, A.; Freitas, A.A.; De Magalhães, J.P. Ageing Transcriptome Meta-Analysis Reveals Similarities and Differences between Key Mammalian Tissues. Aging 2021, 13, 3313–3341. [Google Scholar] [CrossRef] [PubMed]
- Chatsirisupachai, K.; Lesluyes, T.; Paraoan, L.; Van Loo, P.; De Magalhães, J.P. An Integrative Analysis of the Age-Associated Multi-Omic Landscape across Cancers. Nat. Commun. 2021, 12, 2345. [Google Scholar] [CrossRef] [PubMed]
- Davidson-Pilon, C. Lifelines: Survival Analysis in Python. J. Open Source Softw. 2019, 4, 1317. [Google Scholar] [CrossRef]
- Borghesan, M.; Fusilli, C.; Rappa, F.; Panebianco, C.; Rizzo, G.; Oben, J.A.; Mazzoccoli, G.; Faulkes, C.; Pata, I.; Agodi, A.; et al. DNA Hypomethylation and Histone Variant macroH2A1 Synergistically Attenuate Chemotherapy-Induced Senescence to Promote Hepatocellular Carcinoma Progression. Cancer Res. 2016, 76, 594–606. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.; Kitano, Y.; Yamashita, Y.; Yamao, T.; Kajiyama, K.; Yoshizumi, T.; Fukuzawa, K.; Sugimachi, K.; Ikeda, Y.; Takamori, H.; et al. Cancer-Associated Fibroblast Senescence and Its Relation with Tumour-Infiltrating Lymphocytes and PD-L1 Expressions in Intrahepatic Cholangiocarcinoma. Br. J. Cancer 2022, 126, 219–227. [Google Scholar] [CrossRef]
- Rosenberg, N.; Van Haele, M.; Lanton, T.; Brashi, N.; Bromberg, Z.; Adler, H.; Giladi, H.; Peled, A.; Goldenberg, D.S.; Axelrod, J.H.; et al. Combined Hepatocellular-Cholangiocarcinoma Derives from Liver Progenitor Cells and Depends on Senescence and IL-6 Trans-Signaling. J. Hepatol. 2022, 77, 1631–1641. [Google Scholar] [CrossRef]
- Du, X.; Zhang, X.; Qi, Z.; Zeng, Z.; Xu, Y.; Yu, Z.; Cao, X.; Xia, J. HELLS Modulates the Stemness of Intrahepatic Cholangiocarcinoma through Promoting Senescence-Associated Secretory Phenotype. Comput. Struct. Biotechnol. J. 2023, 21, 5174–5185. [Google Scholar] [CrossRef]
- Kovacovicova, K.; Skolnaja, M.; Heinmaa, M.; Mistrik, M.; Pata, P.; Pata, I.; Bartek, J.; Vinciguerra, M. Senolytic Cocktail Dasatinib+Quercetin (D+Q) Does Not Enhance the Efficacy of Senescence-Inducing Chemotherapy in Liver Cancer. Front. Oncol. 2018, 8, 459. [Google Scholar] [CrossRef]
- Raffaele, M.; Kovacovicova, K.; Frohlich, J.; Lo Re, O.; Giallongo, S.; Oben, J.A.; Faldyna, M.; Leva, L.; Giannone, A.G.; Cabibi, D.; et al. Mild Exacerbation of Obesity- and Age-Dependent Liver Disease Progression by Senolytic Cocktail Dasatinib + Quercetin. Cell Commun. Signal. 2021, 19, 44. [Google Scholar] [CrossRef]
- El-Hattab, A.W.; Scaglia, F. Mitochondrial DNA Depletion Syndromes: Review and Updates of Genetic Basis, Manifestations, and Therapeutic Options. Neurotherapeutics 2013, 10, 186–198. [Google Scholar] [CrossRef]
- Yan, W.; Xie, C.; Sun, S.; Zheng, Q.; Wang, J.; Wang, Z.; Man, C.-H.; Wang, H.; Yang, Y.; Wang, T.; et al. SUCLG1 Restricts POLRMT Succinylation to Enhance Mitochondrial Biogenesis and Leukemia Progression. EMBO J. 2024, 43, 2337–2367. [Google Scholar] [CrossRef] [PubMed]
- Pourbaghi, M.; Haghani, L.; Zhao, K.; Karimi, A.; Marinelli, B.; Erinjeri, J.P.; Geschwind, J.-F.H.; Yarmohammadi, H. Anti-Glycolytic Drugs in the Treatment of Hepatocellular Carcinoma: Systemic and Locoregional Options. Curr. Oncol. 2023, 30, 6609–6622. [Google Scholar] [CrossRef]
- Pant, K.; Richard, S.; Peixoto, E.; Gradilone, S.A. Role of Glucose Metabolism Reprogramming in the Pathogenesis of Cholangiocarcinoma. Front. Med. 2020, 7, 113. [Google Scholar] [CrossRef]
- Li, Y.; Adeniji, N.T.; Fan, W.; Kunimoto, K.; Török, N.J. Non-Alcoholic Fatty Liver Disease and Liver Fibrosis during Aging. Aging Dis. 2022, 13, 1239. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Yang, X.; Du, C.; Hao, H.; Liu, S.; Liu, G.; Zhang, G.; Fan, K.; Ma, J. Up-Regulated Succinylation Modifications Induce a Senescence Phenotype in Microglia by Altering Mitochondrial Energy Metabolism. J. Neuroinflammation 2024, 21, 296. [Google Scholar] [CrossRef] [PubMed]
- Drapela, S.; Ilter, D.; Gomes, A.P. Metabolic Reprogramming: A Bridge between Aging and Tumorigenesis. Mol. Oncol. 2022, 16, 3295–3318. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.; Sharma, R.; Kale, P.R.; Trehanpati, N.; Ramakrishna, G. Is the Liver Resilient to the Process of Ageing? Ann. Hepatol. 2025, 30, 101580. [Google Scholar] [CrossRef]
- Chen, Y.; Gu, D.; Wen, Y.; Yang, S.; Duan, X.; Lai, Y.; Yang, J.; Yuan, D.; Khan, A.; Wu, W.; et al. Identifying the Novel Key Genes in Renal Cell Carcinoma by Bioinformatics Analysis and Cell Experiments. Cancer Cell Int. 2020, 20, 331. [Google Scholar] [CrossRef]
- Latonen, L.; Afyounian, E.; Jylhä, A.; Nättinen, J.; Aapola, U.; Annala, M.; Kivinummi, K.K.; Tammela, T.T.L.; Beuerman, R.W.; Uusitalo, H.; et al. Integrative Proteomics in Prostate Cancer Uncovers Robustness against Genomic and Transcriptomic Aberrations during Disease Progression. Nat. Commun. 2018, 9, 1176. [Google Scholar] [CrossRef]
- Nam, H.; Kundu, A.; Karki, S.; Brinkley, G.J.; Chandrashekar, D.S.; Kirkman, R.L.; Liu, J.; Liberti, M.V.; Locasale, J.W.; Mitchell, T.; et al. The TGF-β/HDAC7 Axis Suppresses TCA Cycle Metabolism in Renal Cancer. JCI Insight 2021, 6, e148438. [Google Scholar] [CrossRef]
- Kovac, S.; Abramov, A.Y.; Walker, M.C. Energy Depletion in Seizures: Anaplerosis as a Strategy for Future Therapies. Neuropharmacology 2013, 69, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Ramón, J.; Vila-Julià, F.; Molina-Granada, D.; Molina-Berenguer, M.; Melià, M.J.; García-Arumí, E.; Torres-Torronteras, J.; Cámara, Y.; Martí, R. Therapy Prospects for Mitochondrial DNA Maintenance Disorders. Int. J. Mol. Sci. 2021, 22, 6447. [Google Scholar] [CrossRef] [PubMed]
- Naing, C.; Ni, H.; Aung, H.H.; Htet, N.H.; Nikolova, D. Gene Therapy for People with Hepatocellular Carcinoma. Cochrane Database Syst. Rev. 2024, 2024, CD013731. [Google Scholar] [CrossRef]
- Bai, W.; Cheng, L.; Xiong, L.; Wang, M.; Liu, H.; Yu, K.; Wang, W. Protein Succinylation Associated with the Progress of Hepatocellular Carcinoma. J. Cell. Mol. Med. 2022, 26, 5702–5712. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Dai, J.; Dai, L.; Tan, M.; Cheng, Z.; Wu, Y.; Boeke, J.D.; Zhao, Y. Lysine Succinylation and Lysine Malonylation in Histones. Mol. Cell. Proteom. 2012, 11, 100–107. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, M.; Xie, Z.; Dai, L.; Chen, Y.; Zhao, Y. Identification of Lysine Succinylation as a New Post-Translational Modification. Nat. Chem. Biol. 2011, 7, 58–63. [Google Scholar] [CrossRef]
Gene | Gene Full Name | With Age | p-Value | Source (For a Complete List of Database See Supplemental Table S1 of Original Study https://www.aging-us.com/article/202648/text) |
---|---|---|---|---|
C1qa | complement C1q A chain | Up | 3.54 × 10−22 | Microarray and RNA-Seq datasets |
B2M | Beta-2-microglobulin | Up | 2.55 × 10−20 | Microarray and RNA-Seq datasets |
SUCLG1 | Succinate-CoA ligase GDP/ADP-forming subunit alpha | Down | 4.11 × 10−9 | Microarray and RNA-Seq datasets |
Patient n | Gender | Age | Sample Diagnosis | Patient Diagnosis | Tumor Grade | Stage |
---|---|---|---|---|---|---|
P1 | Male | 81 | Normal | HCC | Not applicable | Not applicable |
P2 | Male | 73 | Normal | HCC | Not applicable | Not applicable |
P3 | Male | 71 | Normal | HCC | Not applicable | Not applicable |
P4 | Male | 86 | Normal | HCC | Not applicable | Not applicable |
P5 | Male | 52 | Normal | Granuloma | Not applicable | Not applicable |
P6 | Female | 33 | Normal | Hyperplasia | Not applicable | Not applicable |
P7 | Male | 66 | Normal | HCC | Not applicable | Not applicable |
P8 | Male | 68 | Normal | HCC | Not applicable | Not applicable |
P9 | Female | 79 | Hepatitis | HCC | Not applicable | Not applicable |
P10 | Male | 68 | Hepatitis | HCC | Not applicable | Not applicable |
P11 | Female | 58 | Hepatitis | HCC | Not applicable | Not applicable |
P12 | Male | 73 | Fatty liver | HCC | Not applicable | Not applicable |
P13 | Female | 32 | Fatty liver | Hyperplasia | Not applicable | Not applicable |
P14 | Male | 79 | Fatty liver | HCC | Not applicable | Not applicable |
P15 | Male | 56 | Fatty liver | HCC | Not applicable | Not applicable |
P16 | Male | 26 | Fatty liver | HCC | Not applicable | Not applicable |
P17 | Female | 31 | Adenoma | Adenoma | Not reported | Not reported |
P18 | Male | 71 | Cirrhosis | HCC | Not applicable | Not applicable |
P19 | Male | 43 | Cirrhosis | HCC | Not applicable | Not applicable |
P20 | Male | 60 | Cirrhosis | HCC | Not applicable | Not applicable |
P21 | Male | 50 | Cirrhosis | HCC | Not applicable | Not applicable |
P22 | Male | 77 | Cirrhosis | HCC | Not applicable | Not applicable |
P23 | Male | 81 | HCC | HCC | AJCC G1: Well-differentiated | I |
P24 | Male | 79 | HCC | HCC | AJCC G2: Moderately differentiated | I |
P25 | Female | 61 | HCC | HCC | AJCC G1: Well-differentiated | I |
P26 | Female | 58 | HCC | HCC | Not reported | I |
P27 | Male | 66 | HCC | HCC | AJCC G3: Poorly differentiated | I |
P28 | Female | 63 | HCC | HCC | AJCC G2: Moderately differentiated | II |
P29 | Male | 73 | HCC | HCC | AJCC G2: Moderately differentiated | II |
P30 | Male | 68 | HCC | HCC | Not Reported | II |
P31 | Male | 60 | HCC | HCC | AJCC G3: Poorly differentiated | II |
P32 | Female | 62 | HCC | HCC | AJCC G1: Well-differentiated | II |
P33 | Male | 60 | HCC | HCC | AJCC G2: Moderately differentiated | II |
P34 | Male | 77 | HCC | HCC | AJCC G1: Well-differentiated | II |
P35 | Male | 63 | HCC | HCC | AJCC G2: Moderately differentiated | II |
P36 | Female | 39 | HCC | HCC | AJCC G1: Well-differentiated | IIIA |
P37 | Male | 43 | HCC | HCC | AJCC G3: Poorly differentiated | IIIA |
P38 | Female | 79 | HCC | HCC | AJCC G2: Moderately differentiated | IIIA |
P39 | Male | 56 | HCC | HCC | AJCC G2: Moderately differentiated | IIIA |
P40 | Male | 71 | HCC | HCC | AJCC G2: Moderately differentiated | IIIA |
P41 | Male | 86 | HCC | HCC | AJCC G1: Well-differentiated | IIIA |
P42 | Male | 26 | HCC | HCC | AJCC G2: Moderately differentiated | IIIA |
P43 | Male | 68 | HCC | HCC | AJCC G2: Moderately differentiated | IIIA |
P44 | Male | 21 | HCC | HCC | AJCC G2: Moderately differentiated | IV |
P45 | Male | 70 | HCC | HCC | AJCC G3: Poorly differentiated | IV |
P46 | Female | 62 | CC | CC | AJCC G2: Moderately differentiated | I |
P47 | Female | 78 | CC | CC | AJCC G2: Moderately differentiated | I |
P48 | Male | 66 | CC | CC | Not reported | IV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsoneva, D.K.; Napoli, A.; Teneva, M.; Mazza, T.; Vinciguerra, M. Downregulation of Aging-Associated Gene SUCLG1 Marks the Aggressiveness of Liver Disease. Cancers 2025, 17, 339. https://doi.org/10.3390/cancers17030339
Tsoneva DK, Napoli A, Teneva M, Mazza T, Vinciguerra M. Downregulation of Aging-Associated Gene SUCLG1 Marks the Aggressiveness of Liver Disease. Cancers. 2025; 17(3):339. https://doi.org/10.3390/cancers17030339
Chicago/Turabian StyleTsoneva, Desislava K., Alessandro Napoli, Mariya Teneva, Tommaso Mazza, and Manlio Vinciguerra. 2025. "Downregulation of Aging-Associated Gene SUCLG1 Marks the Aggressiveness of Liver Disease" Cancers 17, no. 3: 339. https://doi.org/10.3390/cancers17030339
APA StyleTsoneva, D. K., Napoli, A., Teneva, M., Mazza, T., & Vinciguerra, M. (2025). Downregulation of Aging-Associated Gene SUCLG1 Marks the Aggressiveness of Liver Disease. Cancers, 17(3), 339. https://doi.org/10.3390/cancers17030339