Snap Diagnosis: Developing an Artificial Intelligence Algorithm for Penile Cancer Detection from Photographs
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, A.; Necchi, A.; Muneer, A.; Tobias-Machado, M.; Tran, A.T.H.; Van Rompuy, A.-S.; Spiess, P.E.; Albersen, M. Penile cancer. Nat. Rev. Dis. Primers 2021, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Douglawi, A.; Masterson, T.A. Penile cancer epidemiology and risk factors: A contemporary review. Curr Opin Urol. 2019, 29, 145–149. [Google Scholar] [CrossRef]
- Douglawi, A.; Masterson, T.A. Updates on the epidemiology and risk factors for penile cancer. Transl. Androl. Urol. 2017, 6, 785–790. [Google Scholar] [CrossRef]
- Fu, L.; Tian, T.; Yao, K.; Chen, X.F.; Luo, G.; Gao, Y.; Lin, Y.F.; Wang, B.; Sun, Y.; Zheng, W.; et al. Global Pattern and Trends in Penile Cancer Incidence: Population-Based Study. JMIR Public Health Surveill. 2022, 8, e34874. [Google Scholar] [CrossRef] [PubMed]
- Pow-Sang, M.R.; Ferreira, U.; Pow-Sang, J.M.; Nardi, A.C.; Destefano, V. Epidemiology and natural history of penile cancer. Urology 2010, 76 (Suppl. 1), S2–S6. [Google Scholar] [CrossRef] [PubMed]
- Ficarra, V.; Akduman, B.; Bouchot, O.; Palou, J.; Tobias-Machado, M. Prognostic factors in penile cancer. Urology 2010, 76 (Suppl. 1), S66–S73. [Google Scholar] [CrossRef] [PubMed]
- Burnett, A.L. Penile preserving and reconstructive surgery in the management of penile cancer. Nat. Rev. Urol. 2016, 13, 249–257. [Google Scholar] [CrossRef]
- Yuvaraja, T.B.; Waigankar, S.; Dharmadhikari, N.; Pednekar, A. Organ Preservation Surgery for Carcinoma Penis. Indian J. Surg. Oncol. 2017, 8, 59–63. [Google Scholar] [CrossRef]
- Zekan, D.; Praetzel, R.; Luchey, A.; Hajiran, A. Local Therapy and Reconstruction in Penile Cancer: A Review. Cancers 2024, 16, 2704. [Google Scholar] [CrossRef]
- Yao, H.H.; Sengupta, S.; Chee, J. Penile sparing therapy for penile cancer. Transl. Androl. Urol. 2020, 9, 3195–3209. [Google Scholar] [CrossRef]
- Falcone, M.; Preto, M.; Gül, M.; Şahin, A.; Scavone, M.; Cirigliano, L.; Peretti, F.; Ferro, I.; Plamadeala, N.; Gontero, P. Functional outcomes of organ sparing surgery for penile cancer confined to glans and premalignant lesions. Int. J. Impot. Res. 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Skeppner, E.; Andersson, S.O.; Johansson, J.E.; Windahl, T. Initial symptoms and delay in patients with penile carcinoma. Scand. J. Urol. Nephrol. 2012, 46, 319–325. [Google Scholar] [CrossRef]
- Abbas, S.; Asif, M.; Rehman, A.; Alharbi, M.; Khan, M.A.; Elmitwally, N. Emerging research trends in artificial intelligence for cancer diagnostic systems: A comprehensive review. Heliyon 2024, 10, e36743. [Google Scholar] [CrossRef]
- Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021, 11, 900–915. [Google Scholar] [CrossRef]
- Davenport, T.; Kalakota, R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019, 6, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Lyakhova, U.A.; Lyakhov, P.A. Systematic review of approaches to detection and classification of skin cancer using artificial intelligence: Development and prospects. Comput. Biol. Med. 2024, 178, 108742. [Google Scholar] [CrossRef] [PubMed]
- Melarkode, N.; Srinivasan, K.; Qaisar, S.M.; Plawiak, P. AI-Powered Diagnosis of Skin Cancer: A Contemporary Review, Open Challenges and Future Research Directions. Cancers 2023, 15, 1183. [Google Scholar] [CrossRef]
- Jones, O.T.; Matin, R.N.; van der Schaar, M.; Prathivadi Bhayankaram, K.; Ranmuthu, C.K.I.; Islam, M.S.; Behiyat, D.; Boscott, R.; Calanzani, N.; Emery, J.; et al. Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: A systematic review. Lancet Digit. Health 2022, 4, e466–e476. [Google Scholar] [CrossRef]
- Salinas, M.P.; Sepúlveda, J.; Hidalgo, L.; Peirano, D.; Morel, M.; Uribe, P.; Rotemberg, V.; Briones, J.; Mery, D.; Navarrete-Dechent, C. A systematic review and meta-analysis of artificial intelligence versus clinicians for skin cancer diagnosis. NPJ Digit Med. 2024, 7, 125. [Google Scholar] [CrossRef]
- Ye, Z.; Zhang, D.; Zhao, Y.; Chen, M.; Wang, H.; Seery, S.; Qu, Y.; Xue, P.; Jiang, Y. Deep learning algorithms for melanoma detection using dermoscopic images: A systematic review and meta-analysis. Artif. Intell. Med. 2024, 155, 102934. [Google Scholar] [CrossRef]
- Engelsgjerd, J.S.; Leslie, S.W.; LaGrange, C.A. Penile Cancer and Penile Intraepithelial Neoplasia; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Cancer Council Australia: Penile Cancer. Available online: https://www.cancer.org.au/cancer-information/types-of-cancer/rare-cancers/penile-cancer (accessed on 25 January 2024).
- Kwong, J.C.C.; McLoughlin, L.C.; Haider, M.; Goldenberg, M.G.; Erdman, L.; Rickard, M.; Lorenzo, A.J.; Hung, A.J.; Farcas, M.; Goldenberg, L.; et al. Standardized Reporting of Machine Learning Applications in Urology: The STREAM-URO Framework. Eur Urol Focus. 2021, 7, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Chipollini, J.; De la Rosa, A.H.; Azizi, M.; Shayegan, B.; Zorn, K.C.; Spiess, P.E. Patient presentation, differential diagnosis, and management of penile lesions. Can Urol Assoc. J. 2019, 13 (Suppl 1), S2–S8. [Google Scholar] [PubMed]
- Teichman, J.M.H.; Mannas, M.; Elston, D.M. Noninfectious Penile Lesions. Am. Fam. Physician 2018, 97, 102–110. [Google Scholar] [PubMed]
- Crispen, P.L.; Mydlo, J.H. Penile intraepithelial neoplasia and other premalignant lesions of the penis. Urol. Clin. N. Am. 2010, 37, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Menzies, S.W.; Sinz, C.; Menzies, M.; Lo, S.N.; Yolland, W.; Lingohr, J.; Razmara, M.; Tschandl, P.; Guitera, P.; Scolyer, R.A.; et al. Comparison of humans versus mobile phone-powered artificial intelligence for the diagnosis and management of pigmented skin cancer in secondary care: A multicentre, prospective, diagnostic, clinical trial. Lancet Digit. Health 2023, 5, e679–e691. [Google Scholar] [CrossRef]
- Jobson, D.; Mar, V.; Freckelton, I. Legal and ethical considerations of artificial intelligence in skin cancer diagnosis. Australas. J. Dermatol. 2022, 63, e1–e5. [Google Scholar] [CrossRef]
- Sangers, T.E.; Kittler, H.; Blum, A.; Braun, R.P.; Barata, C.; Cartocci, A.; Combalia, M.; Esdaile, B.; Guitera, P.; Haenssle, H.A.; et al. Position statement of the EADV Artificial Intelligence (AI) Task Force on AI-assisted smartphone apps and web-based services for skin disease. J. Eur. Acad. Dermatol. Venereol. 2024, 38, 22–30. [Google Scholar] [CrossRef]
Comparators | AUROC | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|
Benign versus penile SCC | 0.94 | 0.82 | 0.87 | 0.95 | 0.72 |
Precancerous versus penile SCC | 0.74 | 0.75 | 0.65 | 0.45 | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; O’Brien, J.S.; Nandakishor, K.; Sathianathen, N.J.; Teh, J.; Manning, T.; Woon, D.T.S.; Murphy, D.G.; Bolton, D.; Chee, J.; et al. Snap Diagnosis: Developing an Artificial Intelligence Algorithm for Penile Cancer Detection from Photographs. Cancers 2024, 16, 3971. https://doi.org/10.3390/cancers16233971
Liu J, O’Brien JS, Nandakishor K, Sathianathen NJ, Teh J, Manning T, Woon DTS, Murphy DG, Bolton D, Chee J, et al. Snap Diagnosis: Developing an Artificial Intelligence Algorithm for Penile Cancer Detection from Photographs. Cancers. 2024; 16(23):3971. https://doi.org/10.3390/cancers16233971
Chicago/Turabian StyleLiu, Jianliang, Jonathan S. O’Brien, Kishor Nandakishor, Niranjan J. Sathianathen, Jiasian Teh, Todd Manning, Dixon T. S. Woon, Declan G. Murphy, Damien Bolton, Justin Chee, and et al. 2024. "Snap Diagnosis: Developing an Artificial Intelligence Algorithm for Penile Cancer Detection from Photographs" Cancers 16, no. 23: 3971. https://doi.org/10.3390/cancers16233971
APA StyleLiu, J., O’Brien, J. S., Nandakishor, K., Sathianathen, N. J., Teh, J., Manning, T., Woon, D. T. S., Murphy, D. G., Bolton, D., Chee, J., Palaniswami, M., & Lawrentschuk, N. (2024). Snap Diagnosis: Developing an Artificial Intelligence Algorithm for Penile Cancer Detection from Photographs. Cancers, 16(23), 3971. https://doi.org/10.3390/cancers16233971