Nanopore Sequencing for T-Cell Receptor Rearrangement Analysis in Cutaneous T-Cell Lymphoma
"> Figure 1
<p>Correlation of TCF data for TCR analysis via Illumina (MiSeq) or ONT amplicon sequences. For all samples the calculated TCF values for both analyzed T-cell receptor chains (TRG and TRB) are shown and correlation between both sequencing methods is depicted. (<b>a</b>,<b>b</b>) FFPE samples, TRG <span class="html-italic">n</span> = 27, TRB <span class="html-italic">n</span> = 23. (<b>c</b>,<b>d</b>) CD3-isolated cell samples, TRG <span class="html-italic">n</span> = 9, TRB <span class="html-italic">n</span> = 9. (<b>e</b>,<b>f</b>) fresh frozen (FF) samples, TRG <span class="html-italic">n</span> = 9, TRB <span class="html-italic">n</span> = 9.</p> "> Figure 2
<p>Chord diagrams of TRG repertoires. A monoclonal sample in TRG sequenced by MiSeq (<b>a</b>) and ONT (<b>b</b>) compared to a polyclonal example in TRG analyzed with MiSeq (<b>c</b>) and ONT (<b>d</b>).</p> "> Figure 3
<p>Relative quantification of the top clones (TCF) in replicates for 3 samples: a healthy donor, Jurkat cell line and a PBMC sample isolated from a patient with active immune state. The blue spots are the MiSeq (Illumina) data; the green spots, the ONT-Q20 data (Guppy Version 5.1.13); and the one spot in purple (in TRG–Jurkat 100%) is another ONT-Q20 spot analyzed with Guppy version 6.1.5.</p> ">
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Processing
2.3. Amplicon Preparation
2.4. Sequencing of TCR Library and Data Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
bp | base pair(s) |
CE | capillary electrophoresis |
CTCL | cutaneous T-cell lymphoma |
EORTC | European Organization for Research and Treatment of Cancer |
FF | fresh frozen |
FFPE | formalin-fixed in paraffin-embedded tissue |
MF | Mycosis fungoides |
NGS | next-generation sequencing |
ONT | Oxford Nanopore Technologies |
SS | Sézary syndrome |
TCR | T-cell receptor |
TRB | T-cell receptor ß chain |
TRG | T-cell receptor γ chain |
TCF | tumor clone frequency |
References
- Hodak, E.; Amitay-Laish, I.; Atzmony, L.; Prag-Naveh, H.; Yanichkin, N.; Barzilai, A.; Kershenovich, R.; Feinmesser, M. New Insights into Folliculotropic Mycosis Fungoides (FMF): A Single-Center Experience. J. Am. Acad. Dermatol. 2016, 75, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Tomasini, C.; Kempf, W.; Novelli, M.; Fava, P.; Annessi, G.; Rongioletti, F.; Fierro, M.T.; Quaglino, P. Spiky Follicular Mycosis Fungoides: A Clinicopathologic Study of 8 Cases. J. Cutan. Pathol. 2015, 42, 164–172. [Google Scholar] [CrossRef] [PubMed]
- van Santen, S.; Roach, R.E.J.; van Doorn, R.; Horváth, B.; Bruijn, M.S.; Sanders, C.J.G.; de Pooter, J.C.; van Rossum, M.M.; de Haas, E.R.M.; Veraart, J.C.J.M.; et al. Clinical Staging and Prognostic Factors in Folliculotropic Mycosis Fungoides. JAMA Dermatol. 2016, 152, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Treatment of Early-Stage Mycosis Fungoides: Results from the PROspective Cutaneous Lymphoma International Prognostic Index (PROCLIPI) Study. Available online: https://pubmed.ncbi.nlm.nih.gov/32479678/ (accessed on 10 January 2024).
- Scarisbrick, J.J.; Kim, Y.H.; Whittaker, S.J.; Wood, G.S.; Vermeer, M.H.; Prince, H.M.; Quaglino, P. Prognostic Factors, Prognostic Indices and Staging in Mycosis Fungoides and Sézary Syndrome: Where Are We Now? Br. J. Dermatol. 2014, 170, 1226–1236. [Google Scholar] [CrossRef] [PubMed]
- Scarisbrick, J.J.; Quaglino, P.; Prince, H.M.; Papadavid, E.; Hodak, E.; Bagot, M.; Servitje, O.; Berti, E.; Ortiz-Romero, P.; Stadler, R.; et al. The PROCLIPI International Registry of Early-Stage Mycosis Fungoides Identifies Substantial Diagnostic Delay in Most Patients. Br. J. Dermatol. 2019, 181, 350–357. [Google Scholar] [CrossRef]
- Long-Term Outcome of 525 Patients with Mycosis Fungoides and Sezary Syndrome: Clinical Prognostic Factors and Risk for Disease Progression. Available online: https://pubmed.ncbi.nlm.nih.gov/12873880/ (accessed on 19 January 2024).
- Arulogun, S.O.; Prince, H.M.; Ng, J.; Lade, S.; Ryan, G.F.; Blewitt, O.; McCormack, C. Long-Term Outcomes of Patients with Advanced-Stage Cutaneous T-Cell Lymphoma and Large Cell Transformation. Blood 2008, 112, 3082–3087. [Google Scholar] [CrossRef]
- Wilcox, R.A. Cutaneous T-Cell Lymphoma: 2016 Update on Diagnosis, Risk-Stratification, and Management. Am. J. Hematol. 2016, 91, 151–165. [Google Scholar] [CrossRef]
- Schachter, O.; Tabibian-Keissar, H.; Debby, A.; Segal, O.; Baum, S.; Barzilai, A. Evaluation of the Polymerase Chain Reaction–Based T-Cell Receptor β Clonality Test in the Diagnosis of Early Mycosis Fungoides. J. Am. Acad. Dermatol. 2020, 83, 1400–1405. [Google Scholar] [CrossRef]
- Olsen, E.A.; Whittaker, S.; Willemze, R.; Pinter-Brown, L.; Foss, F.; Geskin, L.; Schwartz, L.; Horwitz, S.; Guitart, J.; Zic, J.; et al. Primary Cutaneous Lymphoma: Recommendations for Clinical Trial Design and Staging Update from the ISCL, USCLC, and EORTC. Blood 2022, 140, 419–437. [Google Scholar] [CrossRef]
- Berg, H.; Otteson, G.E.; Corley, H.; Shi, M.; Horna, P.; Jevremovic, D.; Olteanu, H. Flow Cytometric Evaluation of TRBC1 Expression in Tissue Specimens and Body Fluids Is a Novel and Specific Method for Assessment of T-Cell Clonality and Diagnosis of T-Cell Neoplasms. Cytom. B Clin. Cytom. 2021, 100, 361–369. [Google Scholar] [CrossRef]
- Capone, M.; Peruzzi, B.; Palterer, B.; Bencini, S.; Sanna, A.; Puccini, B.; Nassi, L.; Salvadori, B.; Statello, M.; Carraresi, A.; et al. Rapid Evaluation of T Cell Clonality in the Diagnostic Work-up of Mature T Cell Neoplasms: TRBC1-Based Flow Cytometric Assay Experience. Transl. Oncol. 2022, 26, 101552. [Google Scholar] [CrossRef] [PubMed]
- Langerak, A.W.; Wolvers-Tettero, I.L.; van Dongen, J.J. Detection of T Cell Receptor Beta (TCRB) Gene Rearrangement Patterns in T Cell Malignancies by Southern Blot Analysis. Leukemia 1999, 13, 965–974. [Google Scholar] [CrossRef]
- van Dongen, J.J.M.; Langerak, A.W.; Brüggemann, M.; Evans, P.a.S.; Hummel, M.; Lavender, F.L.; Delabesse, E.; Davi, F.; Schuuring, E.; García-Sanz, R.; et al. Design and Standardization of PCR Primers and Protocols for Detection of Clonal Immunoglobulin and T-Cell Receptor Gene Recombinations in Suspect Lymphoproliferations: Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003, 17, 2257–2317. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, I.-S.; Chang, C.L.; Kong, S.-Y.; Lim, Y.T.; Kong, S.G.; Cho, E.H.; Lee, E.-Y.; Shin, H.-J.; Park, H.J.; et al. T-Cell Receptor Rearrangements Determined Using Fragment Analysis in Patients With T-Acute Lymphoblastic Leukemia. Ann. Lab. Med. 2019, 39, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Mandel, J.; Gleason, L.; Joffe, D.; Bhatti, S.; Nikbakht, N. Immunosequencing Applications in Cutaneous T-Cell Lymphoma. Front. Immunol. 2023, 14, 1300061. [Google Scholar] [CrossRef]
- Dippel, E.; Assaf, C.; Becker, J.C.; von Bergwelt-Baildon, M.; Bernreiter, S.; Cozzio, A.; Eich, H.T.; Elsayad, K.; Follmann, M.; Grabbe, S.; et al. S2k-Guidelines—Cutaneous lymphomas (ICD10 C82–C86): Update 2021. J. Dtsch. Dermatol. Ges. 2022, 20, 537–554. [Google Scholar] [CrossRef]
- Kirsch, I.R.; Watanabe, R.; O’Malley, J.T.; Williamson, D.W.; Scott, L.-L.; Elco, C.P.; Teague, J.E.; Gehad, A.; Lowry, E.L.; LeBoeuf, N.R.; et al. TCR Sequencing Facilitates Diagnosis and Identifies Mature T Cells as the Cell of Origin in CTCL. Sci. Transl. Med. 2015, 7, 308ra158. [Google Scholar] [CrossRef]
- Sufficool, K.E.; Lockwood, C.M.; Abel, H.J.; Hagemann, I.S.; Schumacher, J.A.; Kelley, T.W.; Duncavage, E.J. T-Cell Clonality Assessment by next-Generation Sequencing Improves Detection Sensitivity in Mycosis Fungoides. J. Am. Acad. Dermatol. 2015, 73, 228–236.e2. [Google Scholar] [CrossRef]
- De Masson, A.; O’Malley, J.T.; Elco, C.P.; Garcia, S.S.; Divito, S.J.; Lowry, E.L.; Tawa, M.; Fisher, D.C.; Devlin, P.M.; Teague, J.E.; et al. High-Throughput Sequencing of the T Cell Receptor β Gene Identifies Aggressive Early-Stage Mycosis Fungoides. Sci. Transl. Med. 2018, 10, eaar5894. [Google Scholar] [CrossRef]
- Scarisbrick, J.J.; Kim, Y.H. Qol-O-03—Prognostic Factors in Mycosis Fungoides and Sézary Syndrome: Results from the PROCLIPI Study. Eur. J. Cancer 2021, 156, S28–S29. [Google Scholar] [CrossRef]
- Kohlmann, A.; Grossmann, V.; Haferlach, T. Integration of Next-Generation Sequencing into Clinical Practice: Are We There Yet? Semin. Oncol. 2012, 39, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Hain, C.; Stadler, R.; Kalinowski, J. Unraveling the Structural Variations of Early-Stage Mycosis Fungoides—CD3 Based Purification and Third Generation Sequencing as Novel Tools for the Genomic Landscape in CTCL. Cancers 2022, 14, 4466. [Google Scholar] [CrossRef] [PubMed]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of Next Generation Sequencing Technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef] [PubMed]
- Desai, A.; Jere, A. Next-Generation Sequencing: Ready for the Clinics? Clin. Genet. 2012, 81, 503–510. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Holt, K.E. Assembling the Perfect Bacterial Genome Using Oxford Nanopore and Illumina Sequencing. PLOS Comput. Biol. 2023, 19, e1010905. [Google Scholar] [CrossRef]
- Method of the Year: Long-Read Sequencing|Nature Methods. Available online: https://www.nature.com/articles/s41592-022-01730-w (accessed on 14 March 2024).
- Brüggemann, M.; Kotrová, M.; Knecht, H.; Bartram, J.; Boudjogrha, M.; Bystry, V.; Fazio, G.; Froňková, E.; Giraud, M.; Grioni, A.; et al. Standardized Next-Generation Sequencing of Immunoglobulin and T-Cell Receptor Gene Recombinations for MRD Marker Identification in Acute Lymphoblastic Leukaemia; a EuroClonality-NGS Validation Study. Leukemia 2019, 33, 2241–2253. [Google Scholar] [CrossRef]
- Scheijen, B.; Meijers, R.W.J.; Rijntjes, J.; van der Klift, M.Y.; Möbs, M.; Steinhilber, J.; Reigl, T.; van den Brand, M.; Kotrová, M.; Ritter, J.-M.; et al. Next-Generation Sequencing of Immunoglobulin Gene Rearrangements for Clonality Assessment: A Technical Feasibility Study by EuroClonality-NGS. Leukemia 2019, 33, 2227–2240. [Google Scholar] [CrossRef]
- Knecht, H.; Reigl, T.; Kotrová, M.; Appelt, F.; Stewart, P.; Bystry, V.; Krejci, A.; Grioni, A.; Pal, K.; Stranska, K.; et al. Quality Control and Quantification in IG/TR next-Generation Sequencing Marker Identification: Protocols and Bioinformatic Functionalities by EuroClonality-NGS. Leukemia 2019, 33, 2254–2265. [Google Scholar] [CrossRef] [PubMed]
- Protocols—EuroClonality. Available online: https://api.euroclonality.org/protocols/2 (accessed on 10 October 2023).
- Bolotin, D.A.; Poslavsky, S.; Mitrophanov, I.; Shugay, M.; Mamedov, I.Z.; Putintseva, E.V.; Chudakov, D.M. MiXCR: Software for Comprehensive Adaptive Immunity Profiling. Nat. Methods 2015, 12, 380–381. [Google Scholar] [CrossRef]
- Bagaev, D.V.; Zvyagin, I.V.; Putintseva, E.V.; Izraelson, M.; Britanova, O.V.; Chudakov, D.M.; Shugay, M. VDJviz: A Versatile Browser for Immunogenomics Data. BMC Genom. 2016, 17, 453. [Google Scholar] [CrossRef]
- Sherwood, A.M.; Desmarais, C.; Livingston, R.J.; Andriesen, J.; Haussler, M.; Carlson, C.S.; Robins, H. Deep Sequencing of the Human TCRγ and TCRβ Repertoires Provides Evidence That TCRβ Rearranges after Aβ, Γδ T-Cell Commitment. Sci. Transl. Med. 2011, 3, 90ra61. [Google Scholar] [CrossRef] [PubMed]
- Liu-Wei, W.; Van Der Toorn, W.; Bohn, P.; Hölzer, M.; Smyth, R.; Von Kleist, M. Sequencing Accuracy and Systematic Errors of Nanopore Direct RNA Sequencing. BMC Genom. 2024, 25, 528. [Google Scholar] [CrossRef]
- Delahaye, C.; Nicolas, J. Sequencing DNA with Nanopores: Troubles and Biases. PLoS ONE 2021, 16, e0257521. [Google Scholar] [CrossRef] [PubMed]
- Vasiljevic, N.; Lim, M.; Humble, E.; Seah, A.; Kratzer, A.; Morf, N.V.; Prost, S.; Ogden, R. Developmental Validation of Oxford Nanopore Technology MinION Sequence Data and the NGSpeciesID Bioinformatic Pipeline for Forensic Genetic Species Identification. Forensic Sci. Int. Genet. 2021, 53, 102493. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.D.; Ganesamoorthy, D.; Elliott, A.G.; Zhang, H.; Cooper, M.A.; Coin, L.J.M. Streaming Algorithms for Identification of Pathogens and Antibiotic Resistance Potential from Real-Time MinIONTM Sequencing. Gigascience 2016, 5, 32. [Google Scholar] [CrossRef] [PubMed]
- Ammar, R.; Paton, T.A.; Torti, D.; Shlien, A.; Bader, G.D. Long Read Nanopore Sequencing for Detection of HLA and CYP2D6 Variants and Haplotypes. F1000Res 2015, 4, 17. [Google Scholar] [CrossRef]
- Quick, J.; Loman, N.J.; Duraffour, S.; Simpson, J.T.; Severi, E.; Cowley, L.; Bore, J.A.; Koundouno, R.; Dudas, G.; Mikhail, A.; et al. Real-Time, Portable Genome Sequencing for Ebola Surveillance. Nature 2016, 530, 228–232. [Google Scholar] [CrossRef]
- Stahl-Rommel, S.; Jain, M.; Nguyen, H.N.; Arnold, R.R.; Aunon-Chancellor, S.M.; Sharp, G.M.; Castro, C.L.; John, K.K.; Juul, S.; Turner, D.J.; et al. Real-Time Culture-Independent Microbial Profiling Onboard the International Space Station Using Nanopore Sequencing. Genes 2021, 12, 106. [Google Scholar] [CrossRef]
- Castro-Wallace, S.L.; Chiu, C.Y.; John, K.K.; Stahl, S.E.; Rubins, K.H.; McIntyre, A.B.R.; Dworkin, J.P.; Lupisella, M.L.; Smith, D.J.; Botkin, D.J.; et al. Nanopore DNA Sequencing and Genome Assembly on the International Space Station. Sci. Rep. 2017, 7, 18022. [Google Scholar] [CrossRef]
- Johnson, S.S.; Zaikova, E.; Goerlitz, D.S.; Bai, Y.; Tighe, S.W. Real-Time DNA Sequencing in the Antarctic Dry Valleys Using the Oxford Nanopore Sequencer. J. Biomol. Tech. 2017, 28, 2–7. [Google Scholar] [CrossRef]
Characteristics | |||
---|---|---|---|
Age | median | 64 | |
mean | 65.8 | ||
range | 26–92 | ||
Sex | female | 13 (28.9%) | |
male | 32 (71.1%) | ||
Diagnosis | FFPE (n = 27) | CD3 cells (n = 9) | Fresh Frozen (n = 9) |
Mycosis fungoides | 19 (70.4%) | 9 (100.0%) | 9 (100.0%) |
Sezary Syndrom | 2 (7.4%) | ||
Other Cutaneous T-cell Lymphoma | 1 (3.7%) | ||
Other benign skin diseases | 5 (18.5%) | ||
EORTC stage * | FFPE (n = 27) | CD3 cells (n = 9) | Fresh Frozen (n = 9) |
IA | 10 (37.0%) | 7 (77.8%) | |
IB | 4 (14.8%) | 1 (11.1%) | 2 (22.2%) |
IIB | 5 (18.5%) | 1 (11.1%) | 7 (77.8%) |
Erythroderma, IVA1 | 2 (7.4%) | ||
IVA2 | 1 (3.7%) | ||
no tumor | 5 (18.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieslak, C.; Hain, C.; Rückert-Reed, C.; Busche, T.; Klages, L.J.; Schaper-Gerhardt, K.; Gutzmer, R.; Kalinowski, J.; Stadler, R. Nanopore Sequencing for T-Cell Receptor Rearrangement Analysis in Cutaneous T-Cell Lymphoma. Cancers 2024, 16, 3700. https://doi.org/10.3390/cancers16213700
Cieslak C, Hain C, Rückert-Reed C, Busche T, Klages LJ, Schaper-Gerhardt K, Gutzmer R, Kalinowski J, Stadler R. Nanopore Sequencing for T-Cell Receptor Rearrangement Analysis in Cutaneous T-Cell Lymphoma. Cancers. 2024; 16(21):3700. https://doi.org/10.3390/cancers16213700
Chicago/Turabian StyleCieslak, Cassandra, Carsten Hain, Christian Rückert-Reed, Tobias Busche, Levin Joe Klages, Katrin Schaper-Gerhardt, Ralf Gutzmer, Jörn Kalinowski, and Rudolf Stadler. 2024. "Nanopore Sequencing for T-Cell Receptor Rearrangement Analysis in Cutaneous T-Cell Lymphoma" Cancers 16, no. 21: 3700. https://doi.org/10.3390/cancers16213700
APA StyleCieslak, C., Hain, C., Rückert-Reed, C., Busche, T., Klages, L. J., Schaper-Gerhardt, K., Gutzmer, R., Kalinowski, J., & Stadler, R. (2024). Nanopore Sequencing for T-Cell Receptor Rearrangement Analysis in Cutaneous T-Cell Lymphoma. Cancers, 16(21), 3700. https://doi.org/10.3390/cancers16213700