A Phthalimide-Functionalized Heptamethine Cyanine Dye for Tumor-Targeted Photothermal Therapy
<p>(<b>a</b>) Synthetic process and (<b>b</b>) mass data of Ph790H. (<b>c</b>) Physicochemical and optical properties of ICG [<a href="#B24-cancers-16-04155" class="html-bibr">24</a>] and Ph790H.</p> "> Figure 2
<p>(<b>a</b>) Absorbance and fluorescence of Ph790H measured in serum. (<b>b</b>) Cytotoxicity analysis of Ph790H using NIH/3T3, NCI-H460, MDA-MB-231, MCF-7, and HT-29 cells. (<b>c</b>) Cell binding of Ph790H in HT-29 cells. Scale bars = 100 μM.</p> "> Figure 3
<p>(<b>a</b>) Thermal images of PBS and Ph790H (100 μM) solutions before and after laser irradiation for 1 min. (<b>b</b>) Temperature changes in PBS and Ph790H (20, 50, and 100 μM) solutions were monitored for 120 s under laser irradiation. (<b>c</b>) Heating and cooling curve of Ph790H (50 μM) under laser irradiation. (<b>d</b>) Three on/off cycles of the Ph790H (50 μM) solution.</p> "> Figure 4
<p>Fluorescence images of HT-29 cells treated with or without PTT treatment. Calcein-AM (green color) and propidium iodide (red color) were used to stain the HT-29 cells after each treatment. Scale bars = 100 μm.</p> "> Figure 5
<p>(<b>a</b>) In vivo NIR fluorescence imaging of HT-29 xenografts after injection of Ph790H. Arrowheads indicate the tumor area. Scale bars = 1 cm. (<b>b</b>) Fluorescence intensity and (<b>c</b>) tumor-to-background ratio at the tumor area for 72 h. (<b>d</b>) Thermal images and (<b>e</b>) temperature changes in each mouse group at the tumor area. Data are expressed as mean ± S.D. (<span class="html-italic">n</span> = 3). ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 6
<p>(<b>a</b>) Photographs of changes in tumor volume in HT-29 xenografts for 11 days. Arrowheads indicate the tumor area. Scale bars = 1 cm. (<b>b</b>) Tumor volumes, (<b>c</b>) a photograph of tumors collected from each mouse group at day 11, and (<b>d</b>) body weights were measured for 11 days. Data are expressed as mean ± S.D. (<span class="html-italic">n</span> = 3). ** <span class="html-italic">p</span> < 0.01; *** <span class="html-italic">p</span> < 0.001. (<b>e</b>) H&E staining of tumor sections collected from each mouse group (<span class="html-italic">n</span> = 3). Scale bars = 50 μm.</p> ">
1. Introduction
2. Materials and Methods
2.1. Synthesis of the Heptamethine Cyanine Dye Ph790H
2.2. Optical and Physicochemical Property Analyses
2.3. In Vitro Cytotoxicity Assay
2.4. In Vitro Live-Cell Imaging
2.5. In Vitro Photothermal Conversion Efficiency
2.6. In Vitro Photothermal Cytotoxicity
2.7. HT-29 Xenograft Mouse Model
2.8. In Vivo Time-Dependent Tumor Imaging
2.9. In Vivo Photothermal Therapeutic Efficacy
2.10. Histological Analysis
2.11. Statistical Analysis
3. Results
3.1. Synthesis and Characterization of Ph790H
3.2. In Vitro Cytotoxicity, Cell Binding, and Photothermal Effect
3.3. Time-Dependent In Vivo Tumor Retention and Photothermal Effect
3.4. In Vivo Photothermal Therapeutic Efficacy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xie, Z.; Fan, T.; An, J.; Choi, W.; Duo, Y.; Ge, Y.; Zhang, B.; Nie, G.; Xie, N.; Zheng, T.; et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem. Soc. Rev. 2020, 49, 8065–8087. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Cheng, Y.; Feng, Y.; Stiles, W.R.; Park, S.H.; Kang, H.; Choi, H.S. Phototheranostics for multifunctional treatment of cancer with fluorescence imaging. Adv. Drug Deliv. Rev. 2022, 189, 114483. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cheng, Y.; Li, D.; An, Q.; Zhang, W.; Zhang, Y.; Fu, Y. Antitumor Applications of Photothermal Agents and Photothermal Synergistic Therapies. Int. J. Mol. Sci. 2022, 23, 7909. [Google Scholar] [CrossRef]
- Li, J.; Pu, K. Semiconducting Polymer Nanomaterials as Near-Infrared Photoactivatable Protherapeutics for Cancer. Acc. Chem. Res. 2020, 53, 752–762. [Google Scholar] [CrossRef]
- Anilkumar, T.S.; Lu, Y.-J.; Chen, J.-P. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy. Int. J. Mol. Sci. 2020, 21, 5187. [Google Scholar] [CrossRef] [PubMed]
- Gallo, J.; Villasante, A. Recent Advances in Biomimetic Nanocarrier-Based Photothermal Therapy for Cancer Treatment. Int. J. Mol. Sci. 2023, 24, 15484. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, Y.; Yue, X.; Dai, Z. Cyanine conjugates in cancer theranostics. Bioact. Mater. 2021, 6, 794–809. [Google Scholar] [CrossRef]
- Zhang, C.; Long, L.; Shi, C. Mitochondria-Targeting IR-780 Dye and Its Derivatives: Synthesis, Mechanisms of Action, and Theranostic Applications. Adv. Therap. 2018, 1, 1800069. [Google Scholar] [CrossRef]
- Shi, C.; Wu, J.B.; Pan, D. Review on near-infrared heptamethine cyanine dyes as theranostic agents for tumor imaging, targeting, and photodynamic therapy. J. Biomed. Opt. 2016, 21, 050901. [Google Scholar] [CrossRef] [PubMed]
- Usama, S.M.; Burgess, K. Hows and Whys of Tumor-Seeking Dyes. Acc. Chem. Res. 2021, 54, 2121–2131. [Google Scholar] [CrossRef] [PubMed]
- Usama, S.M.; Lin, C.M.; Burgess, K. On the mechanisms of uptake of tumor-seeking cyanine dyes. Bioconjugate Chem. 2018, 29, 3886–3895. [Google Scholar] [CrossRef] [PubMed]
- Usama, S.M.; Park, G.K.; Nomura, S.; Baek, Y.; Choi, H.S.; Burgess, K. Role of albumin in accumulation and persistence of tumor-seeking cyanine dyes. Bioconjugate Chem. 2020, 31, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-J.; Anilkumar, T.S.; Chuang, C.C.; Chen, J.-P. Liposomal IR-780 as a Highly Stable Nanotheranostic Agent for Improved Photothermal/Photodynamic Therapy of Brain Tumors by Convection-Enhanced Delivery. Cancers 2021, 13, 3690. [Google Scholar] [CrossRef] [PubMed]
- Thavornpradit, S.; Usama, S.M.; Park, G.K.; Shrestha, J.P.; Nomura, S.; Baek, Y.; Choi, H.S.; Burgess, K. QuatCy: A Heptamethine Cyanine Modification With Improved Characteristics. Theranostics 2019, 9, 2856–2867. [Google Scholar] [CrossRef]
- Cooper, E.; Choi, P.J.; Denny, W.A.; Jose, J.; Dragunow, M.; Park, T.I.H. The use of heptamethine cyanine dyes as drug-conjugate systems in the treatment of primary and metastatic brain tumors. Front. Oncol. 2021, 11, 654921. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Gibbs, S.L.; Lee, J.H.; Kim, S.H.; Ashitate, Y.; Liu, F.; Hyun, H.; Park, G.; Xie, Y.; Bae, S.; et al. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat. Biotechnol. 2013, 31, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Long, S.; Kang, Y.; Guo, L.; Wang, J.; Fan, J.; Du, J.; Peng, X. De Novo Design of Phototheranostic Sensitizers Based on Structure-Inherent Targeting for Enhanced Cancer Ablation. J. Am. Chem. Soc. 2018, 140, 15820–15826. [Google Scholar] [CrossRef]
- Liu, T.; Luo, S.; Wang, Y.; Tan, X.; Qi, Q.; Shi, C. Synthesis and characterization of a glycine-modified heptamethine indocyanine dye for in vivo cancer-targeted near-infrared imaging. Drug Des. Dev. Ther. 2014, 8, 1287–1297. [Google Scholar]
- Fukuda, T.; Yokomizo, S.; Casa, S.; Monaco, H.; Manganiello, S.; Wang, H.; Lv, X.; Ulumben, A.D.; Yang, C.; Kang, M.W.; et al. Fast and Durable Intraoperative Near-infrared Imaging of Ovarian Cancer Using Ultrabright Squaraine Fluorophores. Angew. Chem. Int. Ed. 2022, 61, e202117330. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, T.; Luo, P.; Gao, L.; Liao, X.; Ma, L.; Jiang, Z.; Liu, D.; Yang, Z.; Jiang, Q.; et al. Near-infrared oxidative phosphorylation inhibitor integrates acute myeloid leukemia-targeted imaging and therapy. Sci. Adv. 2021, 7, eabb6104. [Google Scholar] [CrossRef]
- Kang, H.; Shamim, M.; Yin, X.; Adluru, E.; Fukuda, T.; Yokomizo, S.; Chang, H.; Park, S.H.; Cui, Y.; Moy, A.J.; et al. Tumor-Associated Immune-Cell-Mediated Tumor-Targeting Mechanism with NIR-II Fluorescence Imaging. Adv. Mater. 2022, 34, e2106500. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Shi, C.; Tong, R.; Qian, W.; Zhau, H.E.; Wang, R.; Zhu, G.; Cheng, J.; Yang, V.W.; Cheng, T.; et al. Near IR heptamethine cyanine dye-mediated cancer imaging. Clin. Cancer Res. 2010, 16, 2833–2844. [Google Scholar] [CrossRef] [PubMed]
- Roper, D.K.; Ahn, W.; Hoepfner, M. Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles. J. Phys. Chem. C Nanomater. Interfaces 2007, 111, 3636–3641. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Nasr, K.; Alyabyev, S.; Feith, D.; Lee, J.H.; Kim, S.H.; Ashitate, Y.; Hyun, H.; Patonay, G.; Strekowski, L.; et al. Synthesis and In Vivo Fate of Zwitterionic Near-Infrared Fluorophores. Angew. Chem. Int. Ed. 2011, 50, 6258–6263. [Google Scholar] [CrossRef] [PubMed]
- Hyun, H.; Bordo, M.W.; Nasr, K.; Feith, D.; Lee, J.H.; Kim, S.H.; Ashitate, Y.; Moffitt, L.A.; Rosenberg, M.; Henary, M.; et al. cGMP-compatible preparative scale synthesis of near-infrared fluorophores. Contrast Media Mol. Imaging 2012, 7, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Yuan, B.; Wang, Y.; Wei, Z.; Sun, S.; Akakuru, O.U.; Li, Y.; Li, J.; Wu, A. Near-infrared heptamethine cyanine dye-based nanoscale coordination polymers with intrinsic nucleus-targeting for low temperature photothermal therapy. Nano Today 2020, 34, 100910. [Google Scholar] [CrossRef]
- Qian, H.; Cheng, Q.; Tian, Y.; Dang, H.; Teng, C.; Yan, L. An anti-aggregation NIR-II heptamethine-cyanine dye with a stereo-specific cyanine for imaging-guided photothermal therapy. J. Mater. Chem. B 2021, 9, 2688–2696. [Google Scholar] [CrossRef]
- Lee, S.; Jo, G.; Jung, J.S.; Yang, D.H.; Hyun, H. Near-infra-red fluorescent chitosan oligosaccharide lactate for targeted cancer imaging and photothermal therapy. Artif. Cells Nanomed. Biotechnol. 2020, 48, 1144–1152. [Google Scholar] [CrossRef]
- Spada, A.; Emami, J.; Tuszynski, J.A.; Lavasanifar, A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol. Pharm. 2021, 18, 1862–1894. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, G.F.S.; Lopes, J.R.; Dos Santos, J.L.; Scarim, C.B. Phthalimide as a versatile pharmacophore scaffold: Unlocking its diverse biological activities. Drug Dev. Res. 2023, 84, 1346–1375. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.; Yang, J.; Hyun, H. A Phthalimide-Functionalized Heptamethine Cyanine Dye for Tumor-Targeted Photothermal Therapy. Cancers 2024, 16, 4155. https://doi.org/10.3390/cancers16244155
Park Y, Yang J, Hyun H. A Phthalimide-Functionalized Heptamethine Cyanine Dye for Tumor-Targeted Photothermal Therapy. Cancers. 2024; 16(24):4155. https://doi.org/10.3390/cancers16244155
Chicago/Turabian StylePark, Yoonbin, Juhui Yang, and Hoon Hyun. 2024. "A Phthalimide-Functionalized Heptamethine Cyanine Dye for Tumor-Targeted Photothermal Therapy" Cancers 16, no. 24: 4155. https://doi.org/10.3390/cancers16244155
APA StylePark, Y., Yang, J., & Hyun, H. (2024). A Phthalimide-Functionalized Heptamethine Cyanine Dye for Tumor-Targeted Photothermal Therapy. Cancers, 16(24), 4155. https://doi.org/10.3390/cancers16244155