Paracrine Activation of STAT3 Drives GM-CSF Expression in Breast Carcinoma Cells, Generating a Symbiotic Signaling Network with Breast Carcinoma-Associated Fibroblasts
<p>Coculture of MCF10.DCIS BCa cells and CAF40TKi CAFs resulted in BCa cell proliferation and increased tumor volume. Cells were grown for a period of 8 days in TAME 3D culture in the absence or presence of CAFs. (<b>A</b>) Image of 16 contiguous DIC fields of MCF10.DCIS cells alone or (<b>C</b>) in coculture with CAFs. Note in the high-magnification panels (<b>B</b>,<b>D</b>) the absence and consequent appearance of protrusions extending from multicellular structures (red arrows). (<b>E</b>) Quantification shows contrast in the volume of MCF10.DCIS BCa structures ± CAFs (<span class="html-italic">p</span>-value = 0.15, <span class="html-italic">n</span> = 3). Graphical data are expressed as mean ± standard deviation using Student’s <span class="html-italic">t</span>-test. Scale bars, (<b>A</b>) 100 microns, (<b>B</b>) 50 microns, (<b>C</b>) 250 microns, and (<b>D</b>) 100 microns.</p> "> Figure 2
<p>Coculture of HCC70 BCa cells and CAF40TKi CAFs resulted in BCa cell proliferation and increased tumor volume. HCC70 cells were grown for a period of 8 days in TAME 3D culture in the absence or presence of CAFs. (<b>A</b>) Image of 16 contiguous DIC fields of HCC70 cells alone or (<b>C</b>) in coculture with CAFs. Note in the high-magnification panels (<b>B</b>,<b>D</b>) the absence and consequent appearance of protrusions extending from multicellular structures (red arrows). (<b>E</b>) Quantitative comparison shows contrast in the volume of HCC70 BCa structures ± CAFs (<span class="html-italic">p</span>-value = 0.13, <span class="html-italic">n</span> = 3). Graphical data are expressed as mean ± standard deviation using Student’s <span class="html-italic">t</span>-test. Scale bars: (<b>A</b>,<b>C</b>) 250 microns; (<b>B</b>,<b>D</b>) 100 microns.</p> "> Figure 3
<p>Coculture of MCF10.DCIS cells with CAFs led to an increase in GM-CSF secretion. Scan of inflammation array membrane shows spot intensities of detected cytokines and growth factors. (<b>A</b>) MCF10.DCIS cells grown alone in 3D. IL-6, GM-CSF, and IL-8 are boxed and labeled. Positive control double-boxed next to negative controls. (<b>B</b>) CAFs grown alone in 3D (IL-6 and GM-CSF boxed). (<b>C</b>) 3D coculture of MCF10.DCIS cells and CAFs (IL-6 and GM-CSF boxed). Note the marked induction of GM-CSF in cocultures (<b>C</b>), as compared to monocultures (<b>A</b>) or (<b>B</b>). Spot densitometry quantification of inflammation arrays for the three culture conditions are shown for IL-8 (<b>D</b>), IL-6 (<b>E</b>) and GM-CSF (<b>F</b>). Graphical data are expressed as mean ± standard deviation (<span class="html-italic">n</span> = 2).</p> "> Figure 4
<p>Incubation of BCa cells with CAF-CM resulted in BCa cell proliferation and increased tumor structure volume. MCF10.DCIS cells were grown for a period of 8 days in TAME 3D culture in the absence or presence of CAF-CM. (<b>A</b>) Image of 16 contiguous DIC fields of MCF10.DCIS cells in control media or (<b>C</b>) in CAF-CM. Note in the high-magnification panels (<b>B</b>,<b>D</b>) the absence and consequent appearance of protrusions extending from multicellular structures (red arrows). (<b>E</b>) Quantification of spheroidal structure area shows a significant increase in BCa treated with CAF-CM. Graphical data are expressed as mean ± standard deviation (<span class="html-italic">n</span> = 10). Scale bars: (<b>A</b>,<b>C</b>) 250 microns; (<b>B</b>,<b>D</b>) 100 microns.</p> "> Figure 5
<p>CAF-CM-driven <span class="html-italic">GM-CSF</span> expression in cancer cells is mediated by STAT3 activation. (<b>A</b>) Immunoblot analysis of lysates from MCF10.DCIS and (<b>B</b>) HCC70 cells grown in 2D culture and treated with CAF-CM ± STAT3 inhibitors (niclosamide or stattic). An 8-day 3D culture of MCF10.DCIS cells (<b>C</b>) or HCC70 cells (<b>D</b>) followed by 24 h exposure to CAF-CM 30 μM static. (<b>E</b>,<b>F</b>) CAF-CM induced the upregulation of <span class="html-italic">GM-CSF</span> in carcinoma cells, which was inhibited by the presence of stattic. The inhibition was statistically significant in the MCF10.DCIS cultures (** <span class="html-italic">p</span>-value = 0.01, <span class="html-italic">n</span> = 3), but not in HCC70 cultures. Data are expressed as mean ± standard deviation of gene expression fold change using Student’s <span class="html-italic">t</span>-test.</p> "> Figure 6
<p>Schematic diagram of pro-tumorigenic paracrine signaling between cancer cells and CAFs. Paracrine cytokines induce STAT3 phosphorylation in cancer cells driving expression of inflammation genes including <span class="html-italic">IL-6</span>, IL-8 and <span class="html-italic">GM-CSF</span>. Cancer cell-secreted GM-CSF in turn supports fibroblast survival and drives the expression of inflammation-associated cytokines by fibroblasts. Expression and secretion of IL-6, IL-6R, IL-8, and CXCL3 from fibroblasts contributes to paracrine signaling between cancer and non-cancer cells.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Breast Cancer
1.2. Cytokines/Growth Factors as Therapeutic Targets
1.3. Carcinoma-Activated Fibroblasts (CAFs) and GM-CSF
2. Materials and Methods
2.1. Cell Lines
2.2. Cell Culture
2.3. Image Acquisition and Quantitative Analysis
2.4. Western Blot
2.5. ELISA and Inflammation Array
2.6. Antibodies
2.7. DNA Extraction and Quantification
2.8. Real-Time PCR
2.9. Statistics
3. Results
3.1. Three-Dimensional Coculture of BCa Cells and CAFs Enhanced Carcinoma Cell Proliferation
3.2. BCa Cells Represent a Significant Source of Secreted GM-CSF in MCF10.DCIS:CAF Cocultures
3.3. CAF-CM Induced GM-CSF Gene Expression via STAT3 in BCa Cells
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International WCRF. Worldwide Cancer Data. Available online: https://www.wcrf.org/cancer-trends/worldwide-cancer-data/ (accessed on 2 May 2024).
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Streuli, C.H.; Schmidhauser, C.; Bailey, N.; Yurchenco, P.; Skubitz, A.P.; Roskelley, C.; Bissell, M.J. Laminin mediates tissue-specific gene expression in mammary epithelia. J. Cell Biol. 1995, 129, 591–603. [Google Scholar] [CrossRef]
- Chang, C.; Goel, H.L.; Gao, H.; Pursell, B.; Shultz, L.D.; Greiner, D.L.; Ingerpuu, S.; Patarroyo, M.; Cao, S.; Lim, E.; et al. A laminin 511 matrix is regulated by TAZ and functions as the ligand for the α6Bβ1 integrin to sustain breast cancer stem cells. Genes Dev. 2015, 29, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Bodelon, C.; Mullooly, M.; Pfeiffer, R.M.; Fan, S.; Abubakar, M.; Lenz, P.; Vacek, P.M.; Weaver, D.L.; Herschorn, S.D.; Johnson, J.M.; et al. Mammary collagen architecture and its association with mammographic density and lesion severity among women undergoing image-guided breast biopsy. Breast Cancer Res. 2021, 23, 105. [Google Scholar] [CrossRef]
- Schwartz, M.A. Integrins and Extracellular Matrix in Mechanotransduction. Cold Spring Harb. Perspect. Biol. 2010, 2, a005066. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, H.; Muller, W.J. β1-integrins signaling and mammary tumor progression in transgenic mouse models: Implications for human breast cancer. Breast Cancer Res. 2011, 13, 229. [Google Scholar] [CrossRef] [PubMed]
- Hynes, R.O. The Extracellular Matrix: Not Just Pretty Fibrils. Science 2009, 326, 1216–1219. [Google Scholar] [CrossRef]
- Boyd, D.F.; Thomas, P.G. Towards integrating extracellular matrix and immunological pathways. Cytokine 2017, 98, 79–86. [Google Scholar] [CrossRef]
- Barcus, C.E.; Holt, E.C.; Keely, P.J.; Eliceiri, K.W.; Schuler, L.A. Dense Collagen-I Matrices Enhance Pro-Tumorigenic Estrogen-Prolactin Crosstalk in MCF-7 and T47D Breast Cancer Cells. PLoS ONE 2015, 10, e0116891. [Google Scholar] [CrossRef]
- Boyd, N.F.; Li, Q.; Melnichouk, O.; Huszti, E.; Martin, L.J.; Gunasekara, A.; Mawdsley, G.; Yaffe, M.J.; Minkin, S. Evidence That Breast Tissue Stiffness Is Associated with Risk of Breast Cancer. PLoS ONE 2014, 9, e100937. [Google Scholar] [CrossRef]
- Farrar, M.C.; Jacobs, T.F. Tamoxifen; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Greenblatt, K.; Khaddour, K. Trastuzumab; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Chung, A.W.; Kozielski, A.J.; Qian, W.; Zhou, J.; Anselme, A.C.; Chan, A.A.; Pan, P.-Y.; Lee, D.J.; Chang, J.C. Tocilizumab overcomes chemotherapy resistance in mesenchymal stem-like breast cancer by negating autocrine IL-1A induction of IL-6. NPJ Breast Cancer 2022, 8, 30. [Google Scholar] [CrossRef] [PubMed]
- Osuala, K.O.; Sameni, M.; Shah, S.; Aggarwal, N.; Simonait, M.L.; Franco, O.E.; Hong, Y.; Hayward, S.W.; Behbod, F.; Mattingly, R.R.; et al. Il-6 signaling between ductal carcinoma in situ cells and carcinoma-associated fibroblasts mediates tumor cell growth and migration. BMC Cancer 2015, 15, 584. [Google Scholar] [CrossRef] [PubMed]
- Geller, M.; Mezitis, S.G.; Nunes, F.P.; Ribeiro, M.G.; Araújo, A.P.d.Q.; Bronstein, M.D.; Siqueira-Batista, R.; Gomes, A.P.; Oliveira, L.; Cunha, K.S.G. Progesterone and Estrogen Receptors in Neurofibromas of Patients with NF1. Clin. Pathol. 2008, 1, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F. Tumor necrosis factor or tumor promoting factor? Cytokine Growth Factor Rev. 2002, 13, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Landskron, G.; De La Fuente, M.; Thuwajit, P.; Thuwajit, C.; Hermoso, M.A. Chronic Inflammation and Cytokines in the Tumor Microenvironment. J. Immunol. Res. 2014, 2014, 149185. [Google Scholar] [CrossRef] [PubMed]
- Popa, C.; Netea, M.G.; van Riel, P.L.C.M.; van der Meer, J.W.M.; Stalenhoef, A.F.H. The role of TNF-α in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J. Lipid Res. 2007, 48, 751–762. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Khani, A.T.; Ortiz, A.S.; Swaminathan, S. GM-CSF: A Double-Edged Sword in Cancer Immunotherapy. Front. Immunol. 2022, 13, 901277. [Google Scholar] [CrossRef] [PubMed]
- Sanofi-aventis, LLC. Leukine (Sargramostim): A Recombinant GM-CSF–Yeast-Expressed; Sanofi-aventis, LLC: Bridgewater, NJ, USA, 2017. [Google Scholar]
- Hamilton, J.A.; Tak, P.P. The dynamics of macrophage lineage populations in inflammatory and autoimmune diseases. Arthritis Rheum. 2009, 60, 1210–1221. [Google Scholar] [CrossRef]
- Shiomi, A.; Usui, T. Pivotal Roles of GM-CSF in Autoimmunity and Inflammation. Mediat. Inflamm. 2015, 2015, 568543. [Google Scholar] [CrossRef]
- Fitzgerald, S.M.; Chi, D.S.; Lee, S.A.; Hall, K.; Krishnaswamy, G. Inhibition of GM-CSF production in fibroblast-monocyte coculture by prednisone and effects of RHGM-CSF on human lung fibroblasts. Front. Biosci. 2004, 9, 342–348. [Google Scholar] [CrossRef]
- Montagnani, S.; Postiglione, L.; Giordano-Lanza, G.; Di Meglio, F.; Castaldo, C.; Sciorio, S.; Montuori, N.; Di Spigna, G.; Ladogana, P.; Oriente, A.; et al. Granulocyte macrophage colony stimulating factor (GM-CSF) biological actions on human dermal fibroblasts. Eur. J. Histochem. 2009, 45, 219–228. [Google Scholar] [CrossRef]
- Aliper, A.M.; Frieden-Korovkina, V.P.; Buzdin, A.; Roumiantsev, S.A.; Zhavoronkov, A. A role for G-CSF and GM-CSF in nonmyeloid cancers. Cancer Med. 2014, 3, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Park, B.K.; Zhang, H.; Zeng, Q.; Dai, J.; Keller, E.T.; Giordano, T.; Gu, K.; Shah, V.; Pei, L.; Zarbo, R.J.; et al. NF-κB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat. Med. 2006, 13, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Eubank, T.D.; Roberts, R.D.; Khan, M.; Curry, J.M.; Nuovo, G.J.; Kuppusamy, P.; Marsh, C.B. Granulocyte Macrophage Colony-Stimulating Factor Inhibits Breast Cancer Growth and Metastasis by Invoking an Anti-Angiogenic Program in Tumor-Educated Macrophages. Cancer Res. 2009, 69, 2133–2140. [Google Scholar] [CrossRef] [PubMed]
- Szomolay, B.; Eubank, T.D.; Roberts, R.D.; Marsh, C.B.; Friedman, A. Modeling the inhibition of breast cancer growth by GM-CSF. J. Theor. Biol. 2012, 303, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Chaubey, N.; Ghosh, S.S. Overexpression of Granulocyte Macrophage Colony Stimulating Factor in Breast Cancer Cells Leads Towards Drug Sensitization. Appl. Biochem. Biotechnol. 2014, 175, 1948–1959. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Liu, Q.; Chen, J.; Chen, J.; Chen, F.; He, C.; Huang, D.; Wu, W.; Lin, L.; Huang, W.; et al. A Positive Feedback Loop between Mesenchymal-like Cancer Cells and Macrophages Is Essential to Breast Cancer Metastasis. Cancer Cell 2014, 25, 605–620. [Google Scholar] [CrossRef]
- Yuan, Z.-Y.; Luo, R.-Z.; Peng, R.-J.; Wang, S.-S.; Xue, C. High infiltration of tumor-associated macrophages in triple-negative breast cancer is associated with a higher risk of distant metastasis. OncoTargets Ther. 2014, 7, 1475–1480. [Google Scholar] [CrossRef] [PubMed]
- Glabman, R.A.; Choyke, P.L.; Sato, N. Cancer-Associated Fibroblasts: Tumorigenicity and Targeting for Cancer Therapy. Cancers 2022, 14, 3906. [Google Scholar] [CrossRef]
- Polanska, U.M.; Orimo, A. Carcinoma-associated fibroblasts: Non-neoplastic tumour-promoting mesenchymal cells. J. Cell. Physiol. 2013, 228, 1651–1657. [Google Scholar] [CrossRef]
- Cho, H.; Seo, Y.; Loke, K.M.; Kim, S.-W.; Oh, S.-M.; Kim, J.-H.; Soh, J.; Kim, H.S.; Lee, H.; Kim, J.; et al. Cancer-Stimulated CAFs Enhance Monocyte Differentiation and Protumoral TAM Activation via IL6 and GM-CSF Secretion. Clin. Cancer Res. 2018, 24, 5407–5421. [Google Scholar] [CrossRef]
- Zhou, J.; Schwenk-Zieger, S.; Kranz, G.; Walz, C.; Klauschen, F.; Dhawan, S.; Canis, M.; Gires, O.; Haubner, F.; Baumeister, P.; et al. Isolation and characterization of head and neck cancer-derived peritumoral and cancer-associated fibroblasts. Front. Oncol. 2022, 12, 984138. [Google Scholar] [CrossRef] [PubMed]
- Bonollo, F.; Thalmann, G.N.; Kruithof-de Julio, M.; Karkampouna, S. The Role of Cancer-Associated Fibroblasts in Prostate Cancer Tumorigenesis. Cancers 2020, 12, 1887. [Google Scholar] [CrossRef] [PubMed]
- Lambrechts, D.; Wauters, E.; Boeckx, B.; Aibar, S.; Nittner, D.; Burton, O.; Bassez, A.; Decaluwé, H.; Pircher, A.; Van den Eynde, K.; et al. Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 2018, 24, 1277–1289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, H.; Cai, J.; Zhang, T.; Guo, J.; Feng, D.; Wang, Z. Ovarian cancer-associated fibroblasts contribute to epithelial ovarian carcinoma metastasis by promoting angiogenesis, lymphangiogenesis and tumor cell invasion. Cancer Lett. 2011, 303, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Zhao, L.; Hou, Y.; Sun, Y.; Wang, L.; Luo, H.; Peng, H.; Liu, M. Biological Characteristics and Genetic Heterogeneity between Carcinoma-Associated Fibroblasts and Their Paired Normal Fibroblasts in Human Breast Cancer. PLoS ONE 2013, 8, e60321. [Google Scholar] [CrossRef]
- Angelucci, C.; Maulucci, G.; Lama, G.; Proietti, G.; Colabianchi, A.; Papi, M.; Maiorana, A.; De Spirito, M.; Micera, A.; Balzamino, O.B.; et al. Epithelial-Stromal Interactions in Human Breast Cancer: Effects on Adhesion, Plasma Membrane Fluidity and Migration Speed and Directness. PLoS ONE 2012, 7, e50804. [Google Scholar] [CrossRef] [PubMed]
- Micke, P.; Tman, A. Tumour-stroma interaction: Cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 2004, 45, S163–S175. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.Z.; Roden, D.L.; Wang, C.; Holliday, H.; Harvey, K.; Cazet, A.S.; Murphy, K.J.; Pereira, B.; Al-Eryani, G.; Bartonicek, N.; et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J. 2020, 39, e104063. [Google Scholar] [CrossRef]
- Tait, L.R.; Pauley, R.J.; Santner, S.J.; Heppner, G.H.; Heng, H.H.; Rak, J.W.; Miller, F.R. Dynamic stromal-epithelial interactions during progression of MCF10DCIS.com xenografts. Int. J. Cancer 2007, 120, 2127–2134. [Google Scholar] [CrossRef] [PubMed]
- Sameni, M.; Anbalagan, A.; Olive, M.B.; Moin, K.; Mattingly, R.R.; Sloane, B.F. MAME Models for 4D Live-cell Imaging of Tumor: Microenvironment Interactions that Impact Malignant Progression. J. Vis. Exp. 2012, 60, e3661. [Google Scholar] [CrossRef]
- Ji, K.; Sameni, M.; Osuala, K.; Moin, K.; Mattingly, R.R.; Sloane, B.F. Spatio-temporal modeling and live-cell imaging of proteolysis in the 4D microenvironment of breast cancer. Cancer Metastasis Rev. 2019, 38, 445–454. [Google Scholar] [CrossRef]
- Yu, Y.; Xiao, C.-H.; Tan, L.-D.; Wang, Q.-S.; Li, X.-Q.; Feng, Y.-M. Cancer-associated fibroblasts induce epithelial–mesenchymal transition of breast cancer cells through paracrine TGF-β signalling. Br. J. Cancer 2014, 110, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Lebret, S.C.; Newgreen, D.F.; Thompson, E.W.; Ackland, M.L. Induction of epithelial to mesenchymal transition in PMC42-LA human breast carcinoma cells by carcinoma-associated fibroblast secreted factors. Breast Cancer Res. 2007, 9, R19. [Google Scholar] [CrossRef]
- Soon, P.S.H.; Kim, E.; Pon, C.K.; Gill, A.J.; Moore, K.; Spillane, A.J.; E Benn, D.; Baxter, R.C. Breast cancer-associated fibroblasts induce epithelial-to-mesenchymal transition in breast cancer cells. Endocr. Relat. Cancer 2012, 20, 1–12. [Google Scholar] [CrossRef]
- Wendt, M.K.; Balanis, N.; Carlin, C.R.; Schiemann, W.P. STAT3 and epithelial–mesenchymal transitions in carcinomas. JAK-STAT 2014, 3, e28975. [Google Scholar] [CrossRef] [PubMed]
- Xiong, A.; Yang, Z.; Shen, Y.; Zhou, J.; Shen, Q. Transcription Factor STAT3 as a Novel Molecular Target for Cancer Prevention. Cancers 2014, 6, 926–957. [Google Scholar] [CrossRef]
- Sullivan, N.J.; Sasser, A.K.; E Axel, A.; Vesuna, F.; Raman, V.; Ramirez, N.; Oberyszyn, T.M.; Hall, B.M. Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. Oncogene 2009, 28, 2940–2947. [Google Scholar] [CrossRef] [PubMed]
- Bromberg, J.F. Activation of STAT proteins and growth control. BioEssays 2001, 23, 161–169. [Google Scholar] [CrossRef]
- Snyder, M.; Huang, X.-Y.; Zhang, J.J. Identification of Novel Direct Stat3 Target Genes for Control of Growth and Differentiation. J. Biol. Chem. 2008, 283, 3791–3798. [Google Scholar] [CrossRef]
- Schust, J.; Sperl, B.; Hollis, A.; Mayer, T.U.; Berg, T. Stattic: A Small-Molecule Inhibitor of STAT3 Activation and Dimerization. Chem. Biol. 2006, 13, 1235–1242. [Google Scholar] [CrossRef]
- Chen, J.; Wei, Y.; Yang, W.; Huang, Q.; Chen, Y.; Zeng, K.; Chen, J. IL-6: The Link Between Inflammation, Immunity and Breast Cancer. Front. Oncol. 2022, 12, 903800. [Google Scholar] [CrossRef]
- Miller, P.; Kidwell, K.M.; Thomas, D.; Sabel, M.; Rae, J.M.; Hayes, D.F.; Hudson, B.I.; El-Ashry, D.; Lippman, M.E. Elevated S100A8 protein expression in breast cancer cells and breast tumor stroma is prognostic of poor disease outcome. Breast Cancer Res. Treat. 2017, 166, 85–94. [Google Scholar] [CrossRef]
- He, X.; Wang, L.; Li, H.; Liu, Y.; Tong, C.; Xie, C.; Yan, X.; Luo, D.; Xiong, X. CSF2 upregulates CXCL3 expression in adipocytes to promote metastasis of breast cancer via the FAK signaling pathway. J. Mol. Cell Biol. 2023, 15, mjad025. [Google Scholar] [CrossRef]
- Fousek, K.; Horn, L.A.; Palena, C. Interleukin-8: A chemokine at the intersection of cancer plasticity, angiogenesis, and immune suppression. Pharmacol. Ther. 2020, 219, 107692. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.M.; Zou, Y.; Sharma, T.; Gatla, H.R.; Vancurova, I. Proteasome inhibition induces IKK-dependent interleukin-8 expression in triple negative breast cancer cells: Opportunity for combination therapy. PLoS ONE 2018, 13, e0201858. [Google Scholar] [CrossRef]
- Luo, H.; Tu, G.; Liu, Z.; Liu, M. Cancer-associated fibroblasts: A multifaceted driver of breast cancer progression. Cancer Lett. 2015, 361, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Xu, Y.; Fox, G.C.; Xiang, J.; Kwakwa, K.A.; Davis, J.L.; Belle, J.; Lee, W.-C.; Wong, W.H.; Fontana, F.; et al. Breast cancer-derived GM-CSF regulates arginase 1 in myeloid cells to promote an immunosuppressive microenvironment. J. Clin. Investig. 2021, 131, e145296. [Google Scholar] [CrossRef]
- Hachiya, M.; Suzuki, G.; Koeffler, H.; Akashi, M. Irradiation Increases Expression of GM-CSF in Human Fibroblasts by Transcriptional and Post-transcriptional Regulation. Exp. Cell Res. 1994, 214, 343–350. [Google Scholar] [CrossRef]
- Miyashita, H.; Katayama, N.; Fujieda, A.; Shibasaki, T.; Yamamura, K.; Sugimoto, Y.; Miyata, E.; Ohishi, K.; Nishii, K.; Masuya, M.; et al. IL-4 and IL-10 synergistically inhibit survival of human blood monocytes supported by GM-CSF. Int. J. Oncol. 2005, 26, 731–735. [Google Scholar] [CrossRef]
- Dang, P.M.-C.; Elbim, C.; Marie, J.-C.; Chiandotto, M.; Gougerot-Pocidalo, M.-A.; El-Benna, J. Anti-inflammatory effect of interleukin-10 on human neutrophil respiratory burst involves inhibition of GM-CSF-induced p47PHOXphosphorylation through a decrease in ERK1/2 activity. FASEB J. 2006, 20, 1504–1506. [Google Scholar] [CrossRef]
- Kasper, S.; Kindler, T.; Sonnenschein, S.; Breitenbuecher, F.; Böhmer, F.D.; Huber, C.; Fischer, T. Cross-Inhibition of Interferon-Induced Signals by GM-CSF Through a Block in Stat1 Activation. J. Interf. Cytokine Res. 2007, 27, 947–960. [Google Scholar] [CrossRef] [PubMed]
- Zgheib, A.; Pelletier-Bonnier, E.; Levros, L.-C.; Annabi, B. Selective JAK/STAT3 signalling regulates transcription of colony stimulating factor-2 and -3 in Concanavalin-A-activated mesenchymal stromal cells. Cytokine 2013, 63, 187–193. [Google Scholar] [CrossRef]
- Carpenter, R.L.; Lo, H.-W. STAT3 Target Genes Relevant to Human Cancers. Cancers 2014, 6, 897–925. [Google Scholar] [CrossRef] [PubMed]
- Jesser, E.A.; Brady, N.J.; Huggins, D.N.; Witschen, P.M.; O’connor, C.H.; Schwertfeger, K.L. STAT5 is activated in macrophages by breast cancer cell-derived factors and regulates macrophage function in the tumor microenvironment. Breast Cancer Res. 2021, 23, 104. [Google Scholar] [CrossRef]
- Fertig, E.J.; Lee, E.; Pandey, N.B.; Popel, A.S. Analysis of gene expression of secreted factors associated with breast cancer metastases in breast cancer subtypes. Sci. Rep. 2015, 5, 12133. [Google Scholar] [CrossRef] [PubMed]
- Ghirelli, C.; Reyal, F.; Jeanmougin, M.; Zollinger, R.; Sirven, P.; Michea, P.; Caux, C.; Bendriss-Vermare, N.; Donnadieu, M.-H.; Caly, M.; et al. Breast Cancer Cell–Derived GM-CSF Licenses Regulatory Th2 Induction by Plasmacytoid Predendritic Cells in Aggressive Disease Subtypes. Cancer Res. 2015, 75, 2775–2787. [Google Scholar] [CrossRef]
- Urdinguio, R.G.; Fernandez, A.F.; Moncada-Pazos, A.; Huidobro, C.; Rodriguez, R.M.; Ferrero, C.; Martinez-Camblor, P.; Obaya, A.J.; Bernal, T.; Parra-Blanco, A.; et al. Immune-Dependent and Independent Antitumor Activity of GM-CSF Aberrantly Expressed by Mouse and Human Colorectal Tumors. Cancer Res. 2013, 73, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Bretscher, V.; Andreutti, D.; Neuville, P.; Martin, M.; Martin, F.; Lefebvre, O.; Gilles, C.; Benzonana, G.; Gabbiani, G. GM-CSF expression by tumor cells correlates with aggressivity and with stroma reaction formation. J. Submicrosc. Cytol. Pathol. 2000, 32, 525–533. [Google Scholar] [PubMed]
- Hong, I.-S. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp. Mol. Med. 2016, 48, e242. [Google Scholar] [CrossRef] [PubMed]
- Moeini, P.; Niedźwiedzka-Rystwej, P. Tumor-Associated Macrophages: Combination of Therapies, the Approach to Improve Cancer Treatment. Int. J. Mol. Sci. 2021, 22, 7239. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Zhang, J.; Zhang, B.; Liang, G.; Chen, X.; Yao, F.; Xu, X.; Wu, H.; He, Q.; Ding, L.; et al. Imatinib prevents lung cancer metastasis by inhibiting M2-like polarization of macrophages. Pharmacol. Res. 2018, 133, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Schick, J.; Ritchie, R.P.; Restini, C. Breast Cancer Therapeutics and Biomarkers: Past, Present, and Future Approaches. Breast Cancer Basic Clin. Res. 2021, 15, 117822342199585. [Google Scholar] [CrossRef]
- Kaur, J.; Chandrashekar, D.S.; Varga, Z.; Sobottka, B.; Janssen, E.; Kowalski, J.; Kiraz, U.; Varambally, S.; Aneja, R. Distinct Gene Expression Profiles of Matched Primary and Metastatic Triple-Negative Breast Cancers. Cancers 2022, 14, 2447. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osuala, K.O.; Chalasani, A.; Aggarwal, N.; Ji, K.; Moin, K. Paracrine Activation of STAT3 Drives GM-CSF Expression in Breast Carcinoma Cells, Generating a Symbiotic Signaling Network with Breast Carcinoma-Associated Fibroblasts. Cancers 2024, 16, 2910. https://doi.org/10.3390/cancers16162910
Osuala KO, Chalasani A, Aggarwal N, Ji K, Moin K. Paracrine Activation of STAT3 Drives GM-CSF Expression in Breast Carcinoma Cells, Generating a Symbiotic Signaling Network with Breast Carcinoma-Associated Fibroblasts. Cancers. 2024; 16(16):2910. https://doi.org/10.3390/cancers16162910
Chicago/Turabian StyleOsuala, Kingsley O., Anita Chalasani, Neha Aggarwal, Kyungmin Ji, and Kamiar Moin. 2024. "Paracrine Activation of STAT3 Drives GM-CSF Expression in Breast Carcinoma Cells, Generating a Symbiotic Signaling Network with Breast Carcinoma-Associated Fibroblasts" Cancers 16, no. 16: 2910. https://doi.org/10.3390/cancers16162910
APA StyleOsuala, K. O., Chalasani, A., Aggarwal, N., Ji, K., & Moin, K. (2024). Paracrine Activation of STAT3 Drives GM-CSF Expression in Breast Carcinoma Cells, Generating a Symbiotic Signaling Network with Breast Carcinoma-Associated Fibroblasts. Cancers, 16(16), 2910. https://doi.org/10.3390/cancers16162910