The Mutational and Microenvironmental Landscape of Cutaneous Squamous Cell Carcinoma: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Genetic Landscape
2.1. UV-Signature Mutations
2.2. Mutations in Normal Skin
2.3. Hereditary Mutations
2.4. Mutations in Pre-Cancer
2.5. Major Driver Pathways of cSCC
2.5.1. TP53
2.5.2. NOTCH Family
2.5.3. CDKN2A
2.5.4. PIK3CA Pathway—AKT, mTOR, MAPK, PTEN
2.5.5. MAPK(ERK)—RAS/RAF/MEK/ERK Pathway
2.5.6. RAS Genes: HRAS, NRAS, and KRAS
2.5.7. EGFR
2.5.8. FAT1
2.6. Non-Coding Portion of Genome
2.7. Novel cSCC Driver Genes
3. Tumor Microenvironment
3.1. The Extracellular Matrix and MMPs
3.1.1. MMPs
3.1.2. Collagen
3.1.3. Stromal Cells
3.2. Immune Cell Populations
3.2.1. Macrophages
3.2.2. T-Cells
3.2.3. Natural Killer Cells
3.2.4. Neutrophils
4. Novel Therapeutics
4.1. Immunotherapy
4.2. EGFR Inhibitors
4.2.1. EGFR Monotherapy
4.2.2. EGFR Inhibitors with Radiation
4.2.3. EGFR Inhibitors with Immunotherapy
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pickering, C.R.; Zhou, J.H.; Lee, J.J.; Drummond, J.A.; Peng, S.A.; Saade, R.E.; Tsai, K.Y.; Curry, J.L.; Tetzlaff, M.T.; Lai, S.Y.; et al. Mutational Landscape of Aggressive Cutaneous Squamous Cell Carcinoma. Clin. Cancer Res. 2014, 20, 6582–6592. [Google Scholar] [CrossRef] [PubMed]
- Que, S.K.T.; Zwald, F.O.; Schmults, C.D. Cutaneous Squamous Cell Carcinoma: Incidence, Risk Factors, Diagnosis, and Staging. J. Am. Acad. Dermatol. 2018, 78, 237–247. [Google Scholar] [CrossRef]
- Bradford, P.T.; Goldstein, A.M.; Tamura, D.; Khan, S.G.; Ueda, T.; Boyle, J.; Oh, K.-S.; Imoto, K.; Inui, H.; Moriwaki, S.-I.; et al. Cancer and neurologic degeneration in xeroderma pigmentosum: Long term follow-up characterizes the role of dna repair. J. Med. Genet. 2011, 48, 168–176. [Google Scholar] [CrossRef]
- Burton, K.A.; Ashack, K.A.; Khachemoune, A. Cutaneous Squamous Cell Carcinoma: A Review of High-Risk and Metastatic Disease. Am. J. Clin. Dermatol. 2016, 17, 491–508. [Google Scholar] [CrossRef]
- Chang, D.; Shain, A.H. The Landscape of Driver Mutations in Cutaneous Squamous Cell Carcinoma. NPJ Genom. Med. 2021, 6, 61. [Google Scholar] [CrossRef]
- Combalia, A.; Carrera, C. Squamous Cell Carcinoma: An Update on Diagnosis and Treatment. Dermatol. Pract. Concept. 2020, 10, e2020066. [Google Scholar] [CrossRef]
- Di Nardo, L.; Pellegrini, C.; Di Stefani, A.; Del Regno, L.; Sollena, P.; Piccerillo, A.; Longo, C.; Garbe, C.; Fargnoli, M.C.; Peris, K. Molecular Genetics of Cutaneous Squamous Cell Carcinoma: Perspective for Treatment Strategies. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Griewank, K.G.; Murali, R.; Schilling, B.; Schimming, T.; Möller, I.; Moll, I.; Schwamborn, M.; Sucker, A.; Zimmer, L.; Schadendorf, D.; et al. TERT Promoter Mutations Are Frequent in Cutaneous Basal Cell Carcinoma and Squamous Cell Carcinoma. PLoS ONE 2013, 8, e80354. [Google Scholar] [CrossRef]
- Fania, L.; Didona, D.; Di Pietro, F.R.; Verkhovskaia, S.; Morese, R.; Paolino, G.; Donati, M.; Ricci, F.; Coco, V.; Ricci, F.; et al. Cutaneous Squamous Cell Carcinoma: From Pathophysiology to Novel Therapeutic Approaches. Biomedicines 2021, 9, 171. [Google Scholar] [CrossRef]
- Wikonkal, N.M.; Brash, D.E. Ultraviolet Radiation Induced Signature Mutations in Photocarcinogenesis. J. Investig. Dermatol. Symp. Proc. 1999, 4, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Migden, M.R.; Rischin, D.; Schmults, C.D.; Guminski, A.; Hauschild, A.; Lewis, K.D.; Chung, C.H.; Hernandez-Aya, L.; Lim, A.M.; Chang, A.L.S.; et al. PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef]
- Gross, N.D.; Miller, D.M.; Khushalani, N.I.; Divi, V.; Ruiz, E.S.; Lipson, E.J.; Meier, F.; Su, Y.B.; Swiecicki, P.L.; Atlas, J.; et al. Neoadjuvant Cemiplimab for Stage II to IV Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 387, 1557–1568. [Google Scholar] [CrossRef]
- Pfeifer, G.P. Mechanisms of UV-Induced Mutations and Skin Cancer. Genome Instab. Dis. 2020, 1, 99–113. [Google Scholar] [CrossRef] [PubMed]
- Brash, D.E. UV Signature Mutations. Photochem. Photobiol. 2015, 91, 15–26. [Google Scholar] [CrossRef]
- Martincorena, I.; Roshan, A.; Gerstung, M.; Ellis, P.; Van Loo, P.; McLaren, S.; Wedge, D.C.; Fullam, A.; Alexandrov, L.B.; Tubio, J.M.; et al. High Burden and Pervasive Positive Selection of Somatic Mutations in Normal Human Skin. Science 2015, 348, 880–886. [Google Scholar] [CrossRef]
- Shen, Y.; Ha, W.; Zeng, W.; Queen, D.; Liu, L. Exome Sequencing Identifies Novel Mutation Signatures of UV Radiation and Trichostatin A in Primary Human Keratinocytes. Sci. Rep. 2020, 10, 4943. [Google Scholar] [CrossRef]
- Brambullo, T.; Colonna, M.R.; Vindigni, V.; Piaserico, S.; Masciopinto, G.; Galeano, M.; Costa, A.L.; Bassetto, F. Xeroderma Pigmentosum: A Genetic Condition Skin Cancer Correlated—A Systematic Review. BioMed Res. Int. 2022, 2022, 8549532. [Google Scholar] [CrossRef]
- DiGiovanna, J.J.; Kraemer, K.H. Shining a Light on Xeroderma Pigmentosum. J. Investig. Dermatol. 2012, 132, 785–796. [Google Scholar] [CrossRef]
- Neto, P.D.; Alchorne, M.; Michalany, N.; Abreu, M.; Borra, R. Reduced P53 Staining in Actinic Keratosis Is Associated with Squamous Cell Carcinoma: A Preliminary Study. Indian J. Dermatol. 2013, 58, 325. [Google Scholar] [CrossRef]
- Reinehr, C.P.H.; Bakos, R.M. Actinic Keratoses: Review of Clinical, Dermoscopic, and Therapeutic Aspects. Bras. Dermatol. 2019, 94, 637–657. [Google Scholar] [CrossRef]
- Thomson, J.; Bewicke-Copley, F.; Anene, C.A.; Gulati, A.; Nagano, A.; Purdie, K.; Inman, G.J.; Proby, C.M.; Leigh, I.M.; Harwood, C.A.; et al. The Genomic Landscape of Actinic Keratosis. J. Investig. Dermatol. 2021, 141, 1664–1674.e7. [Google Scholar] [CrossRef]
- Campbell, C.; Quinn, A.G.; Ro, Y.-S.; Angus, B.; Rees, J.L. P53 Mutations Are Common and Early Events That Precede Tumor Invasion in Squamous Cell Neoplasia of the Skin. J. Investig. Dermatol. 1993, 100, 746–748. [Google Scholar] [CrossRef]
- Nissinen, L.; Farshchian, M.; Riihilä, P.; Kähäri, V.-M. New Perspectives on Role of Tumor Microenvironment in Progression of Cutaneous Squamous Cell Carcinoma. Cell Tissue Res. 2016, 365, 691–702. [Google Scholar] [CrossRef]
- Wei, L.; Christensen, S.R.; Fitzgerald, M.E.; Graham, J.; Hutson, N.D.; Zhang, C.; Huang, Z.; Hu, Q.; Zhan, F.; Xie, J.; et al. Ultradeep Sequencing Differentiates Patterns of Skin Clonal Mutations Associated with Sun-Exposure Status and Skin Cancer Burden. Sci. Adv. 2021, 7, eabd7703. [Google Scholar] [CrossRef]
- Criscione, V.D.; Weinstock, M.A.; Naylor, M.F.; Luque, C.; Eide, M.J.; Bingham, S.F.; Department of Veteran Affairs Topical Tretinoin Chemoprevention Trial Group. Actinic Keratoses: Natural History and Risk of Malignant Transformation in the Veterans Affairs Topical Tretinoin Chemoprevention Trial. Cancer 2009, 115, 2523–2530. [Google Scholar] [CrossRef]
- Siegel, J.A.; Korgavkar, K.; Weinstock, M.A. Current Perspective on Actinic Keratosis: A Review. Br. J. Dermatol. 2017, 177, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Inman, G.J.; Wang, J.; Nagano, A.; Alexandrov, L.B.; Purdie, K.J.; Taylor, R.G.; Sherwood, V.; Thomson, J.; Hogan, S.; Spender, L.C.; et al. The Genomic Landscape of Cutaneous SCC Reveals Drivers and a Novel Azathioprine Associated Mutational Signature. Nat. Commun. 2018, 9, 3667. [Google Scholar] [CrossRef] [PubMed]
- Einspahr, J.G.; Calvert, V.; Alberts, D.S.; Curiel-Lewandrowski, C.; Warneke, J.; Krouse, R.; Stratton, S.P.; Liotta, L.; Longo, C.; Pellicani, G.; et al. Functional Protein Pathway Activation Mapping of the Progression of Normal Skin to Squamous Cell Carcinoma. Cancer Prev. Res. 2012, 5, 403–413. [Google Scholar] [CrossRef]
- Janus, J.M.; O’Shaughnessy, R.F.L.; Harwood, C.A.; Maffucci, T. Phosphoinositide 3-Kinase-Dependent Signalling Pathways in Cutaneous Squamous Cell Carcinomas. Cancers 2017, 9, 86. [Google Scholar] [CrossRef]
- Lambert, S.R.; Mladkova, N.; Gulati, A.; Hamoudi, R.; Purdie, K.; Cerio, R.; Leigh, I.; Proby, C.; Harwood, C.A. Key Differences Identified between Actinic Keratosis and Cutaneous Squamous Cell Carcinoma by Transcriptome Profiling. Br. J. Cancer 2014, 110, 520–529. [Google Scholar] [CrossRef]
- Li, Y.Y.; Hanna, G.J.; Laga, A.C.; Haddad, R.I.; Lorch, J.H.; Hammerman, P.S. Genomic Analysis of Metastatic Cutaneous Squamous Cell Carcinoma. Clin. Cancer Res. 2015, 21, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Dong, J.; Liao, Y.; Wang, H.; Zhou, D.; Kang, J.; Chen, X. Identification and Validation of Four Photodynamic Therapy Related Genes Inhibiting MAPK and Inducing Cell Cycle Alteration in Squamous Cell Carcinoma. Front. Oncol. 2022, 12, 946493. [Google Scholar] [CrossRef]
- Martincorena, I.; Fowler, J.C.; Wabik, A.; Lawson, A.R.J.; Abascal, F.; Hall, M.W.J.; Cagan, A.; Murai, K.; Mahbubani, K.; Stratton, M.R.; et al. Somatic Mutant Clones Colonize the Human Esophagus with Age. Science 2018, 362, 911–917. [Google Scholar] [CrossRef]
- Zheng, Y.; Chi, S.; Li, C. Identification of Potential Gene Drivers of Cutaneous Squamous Cell Carcinoma. Medicine 2020, 99, e22257. [Google Scholar] [CrossRef]
- de Lima, P.O.; Joseph, S.; Panizza, B.; Simpson, F. Epidermal Growth Factor Receptor’s Function in Cutaneous Squamous Cell Carcinoma and Its Role as a Therapeutic Target in the Age of Immunotherapies. Curr. Treat. Options Oncol. 2020, 21, 9. [Google Scholar] [CrossRef]
- Bailey, P.; Ridgway, R.A.; Cammareri, P.; Treanor-Taylor, M.; Bailey, U.-M.; Schoenherr, C.; Bone, M.; Schreyer, D.; Purdie, K.; Thomson, J.; et al. Driver Gene Combinations Dictate Cutaneous Squamous Cell Carcinoma Disease Continuum Progression. Nat. Commun. 2023, 14, 5211. [Google Scholar] [CrossRef]
- Al-Rohil, R.N.; Tarasen, A.J.; Carlson, J.A.; Wang, K.; Johnson, A.; Yelensky, R.; Lipson, D.; Elvin, J.A.; Vergilio, J.-A.; Ali, S.M.; et al. Evaluation of 122 Advanced-Stage Cutaneous Squamous Cell Carcinomas by Comprehensive Genomic Profiling Opens the Door for New Routes to Targeted Therapies. Cancer 2016, 122, 249–257. [Google Scholar] [CrossRef]
- Cammareri, P.; Rose, A.M.; Vincent, D.F.; Wang, J.; Nagano, A.; Libertini, S.; Ridgway, R.A.; Athineos, D.; Coates, P.J.; McHugh, A.; et al. Inactivation of TGFβ Receptors in Stem Cells Drives Cutaneous Squamous Cell Carcinoma. Nat. Commun. 2016, 7, 12493. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.; Wetzel, M.; Brown, T.; Jung, J. Molecular Profile of Advanced Cutaneous Squamous Cell Carcinoma. J. Clin. Aesthet. Dermatol. 2021, 14, 32–38. [Google Scholar]
- Oberholzer, P.A.; Kee, D.; Dziunycz, P.; Sucker, A.; Kamsukom, N.; Jones, R.; Roden, C.; Chalk, C.J.; Ardlie, K.; Palescandolo, E.; et al. RAS Mutations Are Associated with the Development of Cutaneous Squamous Cell Tumors in Patients Treated with RAF Inhibitors. J. Clin. Oncol. 2012, 30, 316–321. [Google Scholar] [CrossRef]
- Ridd, K.; Bastian, B.C. Somatic Mutation of Epidermal Growth Factor Receptor in a Small Subset of Cutaneous Squamous Cell Carcinoma. J. Investig. Dermatol. 2010, 130, 901–903. [Google Scholar] [CrossRef]
- Yilmaz, A.S.; Ozer, H.G.; Gillespie, J.; Allain, D.C.; Bernhardt, M.N.; Furlan, K.C.; Castro, L.T.; Peters, S.B.; Nagarajan, P.; Kang, S.; et al. Differential Mutation Frequencies in Metastatic Cutaneous Squamous Cell Carcinomas versus Primary Tumors. Cancer 2017, 123, 1184–1193. [Google Scholar] [CrossRef]
- Watt, S.A.; Purdie, K.J.; den Breems, N.Y.; Dimon, M.; Arron, S.T.; McHugh, A.T.; Xue, D.J.; Dayal, J.H.S.; Proby, C.M.; Harwood, C.A.; et al. Novel CARD11 Mutations in Human Cutaneous Squamous Cell Carcinoma Lead to Aberrant NF-κB Regulation. Am. J. Pathol. 2015, 185, 2354–2363. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.A.; Macedo, S.; Fernandes, M.; Pestana, A.; Pardal, J.; Batista, R.; Vinagre, J.; Sanches, A.; Baptista, A.; Lopes, J.M.; et al. TERT Promoter Mutations Are Associated with Poor Prognosis in Cutaneous Squamous Cell Carcinoma. J. Am. Acad. Dermatol. 2019, 80, 660–669.e6. [Google Scholar] [CrossRef]
- Mizukami, T.; Izawa, N.; Nakajima, T.E.; Sunakawa, Y. Targeting EGFR and RAS/RAF Signaling in the Treatment of Metastatic Colorectal Cancer: From Current Treatment Strategies to Future Perspectives. Drugs 2019, 79, 633–645. [Google Scholar] [CrossRef]
- Hertzler-Schaefer, K.; Mathew, G.; Somani, A.-K.; Tholpady, S.; Kadakia, M.P.; Chen, Y.; Spandau, D.F.; Zhang, X. Pten Loss Induces Autocrine FGF Signaling to Promote Skin Tumorigenesis. Cell Rep. 2014, 6, 818–826. [Google Scholar] [CrossRef]
- Arnault, J.P.; Mateus, C.; Escudier, B.; Tomasic, G.; Wechsler, J.; Hollville, E.; Soria, J.-C.; Malka, D.; Sarasin, A.; Larcher, M.; et al. Skin Tumors Induced by Sorafenib; Paradoxic RAS–RAF Pathway Activation and Oncogenic Mutations of HRAS, TP53, and TGFBR1. Clin. Cancer Res. 2012, 18, 263–272. [Google Scholar] [CrossRef]
- Pacifico, A.; Goldberg, L.H.; Peris, K.; Chimenti, S.; Leone, G.; Ananthaswamy, H.N. Loss of CDKN2A and p14ARF Expression Occurs Frequently in Human Nonmelanoma Skin Cancers. Br. J. Dermatol. 2008, 158, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.A.; Macedo, S.; Fernandes, M.S.; Pestana, A.; Pardal, J.; Batista, R.; Vinagre, J.; Sanches, A.; Baptista, A.; Lopes, J.M.; et al. Prognostic Significance of RAS Mutations and P53 Expression in Cutaneous Squamous Cell Carcinomas. Genes 2020, 11, 751. [Google Scholar] [CrossRef] [PubMed]
- Rose, A.M.; Sansom, O.J.; Inman, G.J. Loss of TGF-β Signaling Drives cSCC from Skin Stem Cells—More Evidence. Cell Cycle 2016, 16, 386–387. [Google Scholar] [CrossRef]
- Olivier, M.; Hollstein, M.; Hainaut, P. TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use. Cold Spring Harb. Perspect. Biol. 2010, 2, a001008. [Google Scholar] [CrossRef]
- Aubrey, B.J.; Strasser, A.; Kelly, G.L. Tumor-Suppressor Functions of the TP53 Pathway. Cold Spring Harb. Perspect. Med. 2016, 6, a026062. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, T.; Nakagawara, A. Role of P53 in Cell Death and Human Cancers. Cancers 2011, 3, 994–1013. [Google Scholar] [CrossRef]
- Piipponen, M.; Riihilä, P.; Nissinen, L.; Kähäri, V.-M. The Role of P53 in Progression of Cutaneous Squamous Cell Carcinoma. Cancers 2021, 13, 4507. [Google Scholar] [CrossRef]
- Baugh, E.H.; Ke, H.; Levine, A.J.; Bonneau, R.A.; Chan, C.S. Why Are There Hotspot Mutations in the TP53 Gene in Human Cancers? Cell Death Differ. 2018, 25, 154–160. [Google Scholar] [CrossRef]
- Levine, A.J. P53, the Cellular Gatekeeper for Growth and Division. Cell 1997, 88, 323–331. [Google Scholar] [CrossRef]
- Pacifico, A.; Leone, G. Role of P53 and CDKN2A Inactivation in Human Squamous Cell Carcinomas. J. Biomed. Biotechnol. 2007, 2007, 43418. [Google Scholar] [CrossRef]
- Rivlin, N.; Brosh, R.; Oren, M.; Rotter, V. Mutations in the P53 Tumor Suppressor Gene. Genes. Cancer 2011, 2, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Roewert-Huber, J.; Stockfleth, E.; Kerl, H. Pathology and Pathobiology of Actinic (Solar) Keratosis—An Update. Br. J. Dermatol. 2007, 157, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Hedberg, M.L.; Berry, C.T.; Moshiri, A.S.; Xiang, Y.; Yeh, C.J.; Attilasoy, C.; Capell, B.C.; Seykora, J.T. Molecular Mechanisms of Cutaneous Squamous Cell Carcinoma. Int. J. Mol. Sci. 2022, 23, 3478. [Google Scholar] [CrossRef]
- Lefort, K.; Mandinova, A.; Ostano, P.; Kolev, V.; Calpini, V.; Kolfschoten, I.; Devgan, V.; Lieb, J.; Raffoul, W.; Hohl, D.; et al. Notch1 Is a P53 Target Gene Involved in Human Keratinocyte Tumor Suppression through Negative Regulation of ROCK1/2 and MRCKalpha Kinases. Genes Dev. 2007, 21, 562–577. [Google Scholar] [CrossRef]
- South, A.P.; Purdie, K.J.; Watt, S.A.; Haldenby, S.; den Breems, N.; Dimon, M.; Arron, S.T.; Kluk, M.J.; Aster, J.C.; McHugh, A.; et al. NOTCH1 Mutations Occur Early during Cutaneous Squamous Cell Carcinogenesis. J. Investig. Dermatol. 2014, 134, 2630–2638. [Google Scholar] [CrossRef]
- Boulay, J.-L.; Miserez, A.R.; Zweifel, C.; Sivasankaran, B.; Kana, V.; Ghaffari, A.; Luyken, C.; Sabel, M.; Zerrouqi, A.; Wasner, M.; et al. Loss of NOTCH2 Positively Predicts Survival in Subgroups of Human Glial Brain Tumors. PLoS ONE 2007, 2, e576. [Google Scholar] [CrossRef]
- Chu, D.; Zhang, Z.; Zhou, Y.; Wang, W.; Li, Y.; Zhang, H.; Dong, G.; Zhao, Q.; Ji, G. Notch1 and Notch2 Have Opposite Prognostic Effects on Patients with Colorectal Cancer. Ann. Oncol. 2011, 22, 2440–2447. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Mikolaenko, I.; Elhassan, I.; Ni, X.; Wang, Y.; Ball, D.; Brat, D.J.; Perry, A.; Eberhart, C.G. Notch1 and Notch2 Have Opposite Effects on Embryonal Brain Tumor Growth. Cancer Res. 2004, 64, 7787–7793. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Brunskill, E.; Varnum-Finney, B.; Zhang, C.; Zhang, A.; Jay, P.Y.; Bernstein, I.; Morimoto, M.; Kopan, R. The Intracellular Domains of Notch1 and Notch2 Are Functionally Equivalent during Development and Carcinogenesis. Development 2015, 142, 2452–2463. [Google Scholar] [CrossRef]
- Danishevich, A.; Bilyalov, A.; Nikolaev, S.; Khalikov, N.; Isaeva, D.; Levina, Y.; Makarova, M.; Nemtsova, M.; Chernevskiy, D.; Sagaydak, O.; et al. CDKN2A Gene Mutations: Implications for Hereditary Cancer Syndromes. Biomedicines 2023, 11, 3343. [Google Scholar] [CrossRef] [PubMed]
- Küsters-Vandevelde, H.V.N.; Van Leeuwen, A.; Verdijk, M.A.J.; de Koning, M.N.C.; Quint, W.G.V.; Melchers, W.J.G.; Ligtenberg, M.J.L.; Blokx, W.A.M. CDKN2A but Not TP53 Mutations nor HPV Presence Predict Poor Outcome in Metastatic Squamous Cell Carcinoma of the Skin. Int. J. Cancer 2010, 126, 2123–2132. [Google Scholar] [CrossRef]
- PubChem CDKN2A—Cyclin Dependent Kinase Inhibitor 2A (Human). Available online: https://pubchem.ncbi.nlm.nih.gov/gene/CDKN2A/human (accessed on 30 January 2024).
- Li, Z.; Gonzalez, C.L.; Wang, B.; Zhang, Y.; Mejia, O.; Katsonis, P.; Lichtarge, O.; Myers, J.N.; El-Naggar, A.K.; Caulin, C. Cdkn2a Suppresses Metastasis in Squamous Cell Carcinomas Induced by the Gain-of-Function Mutant p53R172H. J. Pathol. 2016, 240, 224–234. [Google Scholar] [CrossRef]
- Courtney, K.D.; Corcoran, R.B.; Engelman, J.A. The PI3K Pathway As Drug Target in Human Cancer. J. Clin. Oncol. 2010, 28, 1075–1083. [Google Scholar] [CrossRef]
- O’Shaughnessy, R.F.L.; Welti, J.C.; Cooke, J.C.; Avilion, A.A.; Monks, B.; Birnbaum, M.J.; Byrne, C. AKT-Dependent HspB1 (Hsp27) Activity in Epidermal Differentiation. J. Biol. Chem. 2007, 282, 17297–17305. [Google Scholar] [CrossRef]
- Pankow, S.; Bamberger, C.; Klippel, A.; Werner, S. Regulation of Epidermal Homeostasis and Repair by Phosphoinositide 3-Kinase. J. Cell Sci. 2006, 119, 4033–4046. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR Signaling Pathway and mTOR Inhibitors in Cancer: Progress and Challenges. Cell Biosci. 2020, 10, 31. [Google Scholar] [CrossRef]
- Assad, D.X.; Elias, S.T.; Melo, A.C.; Ferreira, C.G.; De Luca Canto, G.; Guerra, E.N.S. Potential Impact of mTOR Inhibitors on Cervical Squamous Cell Carcinoma: A Systematic Review. Oncol. Lett. 2016, 12, 4107–4116. [Google Scholar] [CrossRef]
- Degirmenci, U.; Wang, M.; Hu, J. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Cells 2020, 9, 198. [Google Scholar] [CrossRef]
- McFall, T.; Stites, E.C. Identification of RAS Mutant Biomarkers for EGFR Inhibitor Sensitivity Using a Systems Biochemical Approach. Cell Rep. 2021, 37, 110096. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, M.; Xu, S.; Bu, W.; Zhang, M.; Gu, H.; Chen, X. Is Ras a Potential Target in Treatment against Cutaneous Squamous Cell Carcinoma? J. Cancer 2018, 9, 3373–3381. [Google Scholar] [CrossRef]
- El-Abaseri, T.B.; Putta, S.; Hansen, L.A. Ultraviolet Irradiation Induces Keratinocyte Proliferation and Epidermal Hyperplasia through the Activation of the Epidermal Growth Factor Receptor. Carcinogenesis 2006, 27, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Cañueto, J.; Cardeñoso, E.; García, J.L.; Santos-Briz, Á.; Castellanos-Martín, A.; Fernández-López, E.; Blanco Gómez, A.; Pérez-Losada, J.; Román-Curto, C. Epidermal Growth Factor Receptor Expression Is Associated with Poor Outcome in Cutaneous Squamous Cell Carcinoma. Br. J. Dermatol. 2017, 176, 1279–1287. [Google Scholar] [CrossRef]
- Shimizu, T.; Izumi, H.; Oga, A.; Furumoto, H.; Murakami, T.; Ofuji, R.; Muto, M.; Sasaki, K. Epidermal Growth Factor Receptor Overexpression and Genetic Aberrations in Metastatic Squamous-Cell Carcinoma of the Skin. Dermatology 2001, 202, 203–206. [Google Scholar] [CrossRef]
- Alter, M.; Satzger, I.; Mattern, A.; Kapp, A.; Gutzmer, R. Treatment of Advanced Cutaneous Squamous Cell Carcinomas with Epidermal Growth Factor Receptor Inhibitors. Dermatology 2013, 227, 289–294. [Google Scholar] [CrossRef]
- Maubec, E.; Boubaya, M.; Petrow, P.; Beylot-Barry, M.; Basset-Seguin, N.; Deschamps, L.; Grob, J.-J.; Dréno, B.; Scheer-Senyarich, I.; Bloch-Queyrat, C.; et al. Phase II Study of Pembrolizumab as First-Line, Single-Drug Therapy for Patients with Unresectable Cutaneous Squamous Cell Carcinomas. J. Clin. Oncol. 2020, 38, 3051–3061. [Google Scholar] [CrossRef]
- Chen, Z.G.; Saba, N.F.; Teng, Y. The Diverse Functions of FAT1 in Cancer Progression: Good, Bad, or Ugly? J. Exp. Clin. Cancer Res. 2022, 41, 248. [Google Scholar] [CrossRef]
- Alonso-Juarranz, M.; Mascaraque, M.; Carrasco, E.; Gracia-Cazaña, T.; De La Sen, O.; Gilaberte, Y.; Gonzalez, S.; Juarranz, Á.; Falahat, F. The Distinctive Features behind the Aggressiveness of Oral and Cutaneous Squamous Cell Carcinomas. Cancers 2023, 15, 3227. [Google Scholar] [CrossRef]
- Pastushenko, I.; Mauri, F.; Song, Y.; de Cock, F.; Meeusen, B.; Swedlund, B.; Impens, F.; Van Haver, D.; Opitz, M.; Thery, M.; et al. Fat1 Deletion Promotes Hybrid EMT State, Tumour Stemness and Metastasis. Nature 2021, 589, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhai, Y.; Kong, P.; Cui, H.; Yan, T.; Yang, J.; Qian, Y.; Ma, Y.; Wang, F.; Li, H.; et al. FAT1 Prevents Epithelial Mesenchymal Transition (EMT) via MAPK/ERK Signaling Pathway in Esophageal Squamous Cell Cancer. Cancer Lett. 2017, 397, 83–93. [Google Scholar] [CrossRef]
- Huang, Z.-L.; Zhang, P.-B.; Zhang, J.-T.; Li, F.; Li, T.-T.; Huang, X.-Y. Comprehensive Genomic Profiling Identifies FAT1 as a Negative Regulator of EMT, CTCs, and Metastasis of Hepatocellular Carcinoma. J. Hepatocell. Carcinoma 2023, 10, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Lazar, A.D.; Dinescu, S.; Costache, M. Deciphering the Molecular Landscape of Cutaneous Squamous Cell Carcinoma for Better Diagnosis and Treatment. J. Clin. Med. 2020, 9, 2228. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Q.; Ge, Y.; Zhao, Q.; Zheng, X.; Zhao, Y. hTERT Promotes Cell Adhesion and Migration Independent of Telomerase Activity. Sci. Rep. 2016, 6, 22886. [Google Scholar] [CrossRef]
- Scott, G.A.; Laughlin, T.S.; Rothberg, P.G. Mutations of the TERT Promoter Are Common in Basal Cell Carcinoma and Squamous Cell Carcinoma. Mod. Pathol. 2014, 27, 516–523. [Google Scholar] [CrossRef]
- Yamada-Hishida, H.; Nobeyama, Y.; Nakagawa, H. Correlation of Telomere Length to Malignancy Potential in Non-Melanoma Skin Cancers. Oncol. Lett. 2018, 15, 393–399. [Google Scholar] [CrossRef]
- Cheng, K.A.; Kurtis, B.; Babayeva, S.; Zhuge, J.; Tantchou, I.; Cai, D.; Lafaro, R.J.; Fallon, J.T.; Zhong, M. Heterogeneity of TERT Promoter Mutations Status in Squamous Cell Carcinomas of Different Anatomical Sites. Ann. Diagn. Pathol. 2015, 19, 146–148. [Google Scholar] [CrossRef]
- Das Mahapatra, K.; Pasquali, L.; Søndergaard, J.N.; Lapins, J.; Nemeth, I.B.; Baltás, E.; Kemény, L.; Homey, B.; Moldovan, L.-I.; Kjems, J.; et al. A Comprehensive Analysis of Coding and Non-Coding Transcriptomic Changes in Cutaneous Squamous Cell Carcinoma. Sci. Rep. 2020, 10, 3637. [Google Scholar] [CrossRef]
- Gong, Z.-H.; Zhou, F.; Shi, C.; Xiang, T.; Zhou, C.-K.; Wang, Q.-Q.; Jiang, Y.-S.; Gao, S.-F. miRNA-221 Promotes Cutaneous Squamous Cell Carcinoma Progression by Targeting PTEN. Cell. Mol. Biol. Lett. 2019, 24, 9. [Google Scholar] [CrossRef]
- Konicke, K.; López-Luna, A.; Muñoz-Carrillo, J.L.; Servín-González, L.S.; Flores-de la Torre, A.; Olasz, E.; Lazarova, Z. The microRNA Landscape of Cutaneous Squamous Cell Carcinoma. Drug Discov. Today 2018, 23, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Huang, K.; Yu, J. Inhibition of microRNA-21 Upregulates the Expression of Programmed Cell Death 4 and Phosphatase Tensin Homologue in the A431 Squamous Cell Carcinoma Cell Line. Oncol. Lett. 2014, 8, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Yamane, K.; Jinnin, M.; Etoh, T.; Kobayashi, Y.; Shimozono, N.; Fukushima, S.; Masuguchi, S.; Maruo, K.; Inoue, Y.; Ishihara, T.; et al. Down-Regulation of miR-124/-214 in Cutaneous Squamous Cell Carcinoma Mediates Abnormal Cell Proliferation via the Induction of ERK. J. Mol. Med. 2013, 91, 69–81. [Google Scholar] [CrossRef]
- Roskoski, R. Targeting ERK1/2 Protein-Serine/Threonine Kinases in Human Cancers. Pharmacol. Res. 2019, 142, 151–168. [Google Scholar] [CrossRef]
- Neu, J.; Dziunycz, P.J.; Dzung, A.; Lefort, K.; Falke, M.; Denzler, R.; Freiberger, S.N.; Iotzova-Weiss, G.; Kuzmanov, A.; Levesque, M.P.; et al. miR-181a Decelerates Proliferation in Cutaneous Squamous Cell Carcinoma by Targeting the Proto-Oncogene KRAS. PLoS ONE 2017, 12, e0185028. [Google Scholar] [CrossRef]
- García-Sancha, N.; Corchado-Cobos, R.; Pérez-Losada, J.; Cañueto, J. MicroRNA Dysregulation in Cutaneous Squamous Cell Carcinoma. Int. J. Mol. Sci. 2019, 20, 2181. [Google Scholar] [CrossRef]
- Bai, X.; Zhou, Y.; Chen, P.; Yang, M.; Xu, J. MicroRNA-142-5p Induces Cancer Stem Cell-like Properties of Cutaneous Squamous Cell Carcinoma via Inhibiting PTEN. J. Cell Biochem. 2018, 119, 2179–2188. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.; Bhaduri, A.; Mah, A.; Johnson, W.L.; Ungewickell, A.; Aros, C.J.; Nguyen, C.B.; Rios, E.J.; Siprashvili, Z.; Straight, A.; et al. Recurrent Point Mutations in the Kinetochore Gene KNSTRN in Cutaneous Squamous Cell Carcinoma. Nat. Genet. 2014, 46, 1060–1062. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, L.; Grinblat, B.; Novak, B.; Hoeh, A.-K.; Händschke, K.; von Dobbeler, C.; Bierhoff, E.; Szeimies, R.-M.; Gambichler, T.; Torezan, L.; et al. Somatic Mutations in Kinetochore Gene KNSTRN Are Associated with Basal Proliferating Actinic Keratoses and Cutaneous Squamous Cell Carcinoma. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 1535–1540. [Google Scholar] [CrossRef] [PubMed]
- Cremolini, C.; Di Bartolomeo, M.; Amatu, A.; Antoniotti, C.; Moretto, R.; Berenato, R.; Perrone, F.; Tamborini, E.; Aprile, G.; Lonardi, S.; et al. BRAF Codons 594 and 596 Mutations Identify a New Molecular Subtype of Metastatic Colorectal Cancer at Favorable Prognosis. Ann. Oncol. 2015, 26, 2092–2097. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Yan, J.; Dai, J.; Ma, M.; Tang, H.; Yu, J.; Xu, T.; Yu, H.; Si, L.; Chi, Z.; et al. Mutations in BRAF Codons 594 and 596 Predict Good Prognosis in Melanoma. Oncol. Lett. 2017, 14, 3601–3605. [Google Scholar] [CrossRef] [PubMed]
- Schleicher, K.; Schramek, D. AJUBA: A Regulator of Epidermal Homeostasis and Cancer. Exp. Dermatol. 2021, 30, 546–559. [Google Scholar] [CrossRef] [PubMed]
- ARID2 AT-Rich Interaction Domain 2 [Homo Sapiens (Human)]-Gene-NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/196528 (accessed on 5 April 2024).
- Stucci, L.S.; Internò, V.; Tucci, M.; Perrone, M.; Mannavola, F.; Palmirotta, R.; Porta, C. The ATM Gene in Breast Cancer: Its Relevance in Clinical Practice. Genes 2021, 12, 727. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.R.M.; Baig, M.; Mohamoud, H.S.A.; Ulhaq, Z.; Hoessli, D.C.; Khogeer, G.S.; Al-Sayed, R.R.; Al-Aama, J.Y. BRAF Gene: From Human Cancers to Developmental Syndromes. Saudi J. Biol. Sci. 2015, 22, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, P.R.; Seo, J.; Wiek, C.; Hanenberg, H. Understanding BRCA2 Function as a Tumor Suppressor Based on Domain-Specific Activities in DNA Damage Responses. Genes 2021, 12, 1034. [Google Scholar] [CrossRef] [PubMed]
- Salvesen, G.S.; Walsh, C.M. Functions of Caspase 8: The Identified and the Mysterious. Semin. Immunol. 2014, 26, 246–252. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Z.; Li, Y.; Peng, H.; Liu, J.; Zhang, J.; Xiao, X. The Role of CREBBP/EP300 and Its Therapeutic Implications in Hematological Malignancies. Cancers 2023, 15, 1219. [Google Scholar] [CrossRef]
- Erbb4 Erb-B2 Receptor Tyrosine Kinase 4 [Mus Musculus (House Mouse)]-Gene-NCBI. Available online: https://www.ncbi.nlm.nih.gov/gene/13869 (accessed on 5 April 2024).
- Huang, J.; Gou, H.; Yao, J.; Yi, K.; Jin, Z.; Matsuoka, M.; Zhao, T. The Noncanonical Role of EZH2 in Cancer. Cancer Sci. 2021, 112, 1376. [Google Scholar] [CrossRef] [PubMed]
- Ascione, C.M.; Napolitano, F.; Esposito, D.; Servetto, A.; Belli, S.; Santaniello, A.; Scagliarini, S.; Crocetto, F.; Bianco, R.; Formisano, L. Role of FGFR3 in Bladder Cancer: Treatment Landscape and Future Challenges. Cancer Treat. Rev. 2023, 115, 102530. [Google Scholar] [CrossRef]
- Hu, X.; Biswas, A.; De, S. KMT2C-Deficient Tumors Have Elevated APOBEC Mutagenesis and Genomic Instability in Multiple Cancers. NAR Cancer 2022, 4, zcac023. [Google Scholar] [CrossRef]
- Li, T.; Wang, H.; Xu, J.; Li, C.; Zhang, Y.; Wang, G.; Liu, Y.; Cai, S.; Fang, W.; Li, J.; et al. TGFBR2 Mutation Predicts Resistance to Immune Checkpoint Inhibitors in Patients with Non-Small Cell Lung Cancer. Ther. Adv. Med. Oncol. 2021, 13, 17588359211038477. [Google Scholar] [CrossRef]
- Massagué, J. TGFβ Signalling in Context. Nat. Rev. Mol. Cell Biol. 2012, 13, 616–630. [Google Scholar] [CrossRef] [PubMed]
- Loesch, R.; Chenane, L.; Colnot, S. ARID2 Chromatin Remodeler in Hepatocellular Carcinoma. Cells 2020, 9, 2152. [Google Scholar] [CrossRef]
- Zhang, W.; Liao, Y.; Liu, C.; Liu, L.; Zhou, X. KNSTRN, a Poor Prognostic Biomarker, Affects the Tumor Immune Microenvironment and Immunotherapy Outcomes in Pan-Cancer. Dis. Markers 2023, 2023, 6729717. [Google Scholar] [CrossRef]
- Frazzette, N.; Khodadadi-Jamayran, A.; Doudican, N.; Santana, A.; Felsen, D.; Pavlick, A.C.; Tsirigos, A.; Carucci, J.A. Decreased Cytotoxic T Cells and TCR Clonality in Organ Transplant Recipients with Squamous Cell Carcinoma. NPJ Precis. Oncol. 2020, 4, 13. [Google Scholar] [CrossRef]
- Kosmidis, M.; Dziunycz, P.; Suárez-Fariñas, M.; Mühleisen, B.; Schärer, L.; Läuchli, S.; Hafner, J.; French, L.E.; Schmidt-Weber, C.; Carucci, J.A.; et al. Immunosuppression Affects CD4+ mRNA Expression and Induces Th2 Dominance in the Microenvironment of Cutaneous Squamous Cell Carcinoma in Organ Transplant Recipients. J. Immunother. 2010, 33, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Strobel, S.B.; Safferling, K.; Lahrmann, B.; Hoffmann, J.H.; Enk, A.H.; Hadaschik, E.N.; Grabe, N.; Lonsdorf, A.S. Altered Density, Composition and Microanatomical Distribution of Infiltrating Immune Cells in Cutaneous Squamous Cell Carcinoma of Organ Transplant Recipients. Br. J. Dermatol. 2018, 179, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Zilberg, C.; Lyons, J.G.; Gupta, R.; Ferguson, A.; Damian, D.L. The Tumor Immune Microenvironment in Cutaneous Squamous Cell Carcinoma Arising in Organ Transplant Recipients. Ann. Dermatol. 2023, 35, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Rashtak, S.; Dierkhising, R.A.; Kremers, W.K.; Peters, S.G.; Cassivi, S.D.; Otley, C.C. Incidence and Risk Factors for Skin Cancer Following Lung Transplantation. J. Am. Acad. Dermatol. 2015, 72, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Friman, T.K.; Jäämaa-Holmberg, S.; Åberg, F.; Helanterä, I.; Halme, M.; Pentikäinen, M.O.; Nordin, A.; Lemström, K.B.; Jahnukainen, T.; Räty, R.; et al. Cancer Risk and Mortality after Solid Organ Transplantation: A Population-Based 30-Year Cohort Study in Finland. Int. J. Cancer 2022, 150, 1779–1791. [Google Scholar] [CrossRef] [PubMed]
- Anderson, N.M.; Simon, M.C. The Tumor Microenvironment. Curr. Biol. 2020, 30, R921–R925. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Nieto, G.A.; Teppo, H.-R.; Petrelius, N.; Izzi, V.; Devarajan, R.; Petäistö, T.; Liu, H.; Kim, K.S.; Karppinen, S.-M.; Ruotsalainen, H.; et al. Upregulated Integrin A11 in the Stroma of Cutaneous Squamous Cell Carcinoma Promotes Skin Carcinogenesis. Front. Oncol. 2022, 12, 981009. [Google Scholar] [CrossRef]
- Frantz, C.; Stewart, K.M.; Weaver, V.M. The Extracellular Matrix at a Glance. J. Cell Sci. 2010, 123, 4195–4200. [Google Scholar] [CrossRef] [PubMed]
- Kular, J.K.; Basu, S.; Sharma, R.I. The Extracellular Matrix: Structure, Composition, Age-Related Differences, Tools for Analysis and Applications for Tissue Engineering. J. Tissue Eng. 2014, 5, 2041731414557112. [Google Scholar] [CrossRef]
- Peake, N.J.; Khawaja, K.; Myers, A.; Jones, D.; Cawston, T.E.; Rowan, A.D.; Foster, H.E. Levels of Matrix Metalloproteinase (MMP)-1 in Paired Sera and Synovial Fluids of Juvenile Idiopathic Arthritis Patients: Relationship to Inflammatory Activity, MMP-3 and Tissue Inhibitor of Metalloproteinases-1 in a Longitudinal Study. Rheumatology 2005, 44, 1383–1389. [Google Scholar] [CrossRef]
- Wang, H.; Li, H.; Yan, Q.; Gao, S.; Gao, J.; Wang, Z.; Sun, Y. Serum Matrix Metalloproteinase-13 as a Diagnostic Biomarker for Cutaneous Squamous Cell Carcinoma. BMC Cancer 2021, 21, 816. [Google Scholar] [CrossRef]
- Fromme, J.E.; Zigrino, P. The Role of Extracellular Matrix Remodeling in Skin Tumor Progression and Therapeutic Resistance. Front. Mol. Biosci. 2022, 9, 864302. [Google Scholar] [CrossRef]
- Lu, P.; Takai, K.; Weaver, V.M.; Werb, Z. Extracellular Matrix Degradation and Remodeling in Development and Disease. Cold Spring Harb. Perspect. Biol. 2011, 3, a005058. [Google Scholar] [CrossRef]
- Georgescu, S.R.; Tampa, M.; Mitran, C.I.; Mitran, M.I.; Caruntu, C.; Caruntu, A.; Lupu, M.; Matei, C.; Constantin, C.; Neagu, M. Tumour Microenvironment in Skin Carcinogenesis. In Tumor Microenvironments in Organs: From the Brain to the Skin—Part A; Birbrair, A., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 123–142. ISBN 978-3-030-36214-0. [Google Scholar]
- Kambayashi, Y.; Fujimura, T.; Aiba, S. Comparison of Immunosuppressive and Immunomodulatory Cells in Keratoacanthoma and Cutaneous Squamous Cell Carcinoma. Acta Derm.-Venereol. 2013, 93, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, J.S.; Fuentes-Duculan, J.; Suárez-Fariñas, M.; Pierson, K.C.; Pitts-Kiefer, A.; Fan, L.; Belkin, D.A.; Wang, C.Q.F.; Bhuvanendran, S.; Johnson-Huang, L.M.; et al. Tumor-Associated Macrophages in the Cutaneous SCC Microenvironment Are Heterogeneously Activated. J. Investig. Dermatol. 2011, 131, 1322–1330. [Google Scholar] [CrossRef]
- Ahmed Haji Omar, A.; Haglund, C.; Virolainen, S.; Häyry, V.; Atula, T.; Kontio, R.; Salo, T.; Sorsa, T.; Hagström, J. MMP-7, MMP-8, and MMP-9 in Oral and Cutaneous Squamous Cell Carcinomas. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 119, 459–467. [Google Scholar] [CrossRef]
- Ricard-Blum, S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef]
- Karppinen, S.-M.; Honkanen, H.-K.; Heljasvaara, R.; Riihilä, P.; Autio-Harmainen, H.; Sormunen, R.; Harjunen, V.; Väisänen, M.-R.; Väisänen, T.; Hurskainen, T.; et al. Collagens XV and XVIII Show Different Expression and Localisation in Cutaneous Squamous Cell Carcinoma: Type XV Appears in Tumor Stroma, While XVIII Becomes Upregulated in Tumor Cells and Lost from Microvessels. Exp. Dermatol. 2016, 25, 348–354. [Google Scholar] [CrossRef]
- Martins, V.L.; Caley, M.P.; Moore, K.; Szentpetery, Z.; Marsh, S.T.; Murrell, D.F.; Kim, M.H.; Avari, M.; McGrath, J.A.; Cerio, R.; et al. Suppression of TGFβ and Angiogenesis by Type VII Collagen in Cutaneous SCC. J. Natl. Cancer Inst. 2016, 108, djv293. [Google Scholar] [CrossRef]
- Bhowmick, N.A.; Neilson, E.G.; Moses, H.L. Stromal Fibroblasts in Cancer Initiation and Progression. Nature 2004, 432, 332–337. [Google Scholar] [CrossRef]
- Gallego-Rentero, M.; Gutiérrez-Pérez, M.; Fernández-Guarino, M.; Mascaraque, M.; Portillo-Esnaola, M.; Gilaberte, Y.; Carrasco, E.; Juarranz, Á. TGFβ1 Secreted by Cancer-Associated Fibroblasts as an Inductor of Resistance to Photodynamic Therapy in Squamous Cell Carcinoma Cells. Cancers 2021, 13, 5613. [Google Scholar] [CrossRef]
- Turley, S.J.; Cremasco, V.; Astarita, J.L. Immunological Hallmarks of Stromal Cells in the Tumour Microenvironment. Nat. Rev. Immunol. 2015, 15, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Hirayama, D.; Iida, T.; Nakase, H. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. Int. J. Mol. Sci. 2017, 19, 92. [Google Scholar] [CrossRef]
- Wang, Y.-C.; He, F.; Feng, F.; Liu, X.-W.; Dong, G.-Y.; Qin, H.-Y.; Hu, X.-B.; Zheng, M.-H.; Liang, L.; Feng, L.; et al. Notch Signaling Determines the M1 versus M2 Polarization of Macrophages in Antitumor Immune Responses. Cancer Res. 2010, 70, 4840–4849. [Google Scholar] [CrossRef] [PubMed]
- Linde, N.; Lederle, W.; Depner, S.; van Rooijen, N.; Gutschalk, C.M.; Mueller, M.M. Vascular Endothelial Growth Factor-Induced Skin Carcinogenesis Depends on Recruitment and Alternative Activation of Macrophages. J. Pathol. 2012, 227, 17–28. [Google Scholar] [CrossRef]
- Moussai, D.; Mitsui, H.; Pettersen, J.S.; Pierson, K.C.; Shah, K.R.; Suárez-Fariñas, M.; Cardinale, I.R.; Bluth, M.J.; Krueger, J.G.; Carucci, J.A. The Human Cutaneous Squamous Cell Carcinoma Microenvironment Is Characterized by Increased Lymphatic Density and Enhanced Expression of Macrophage-Derived VEGF-C. J. Investig. Dermatol. 2011, 131, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage Polarization: Tumor-Associated Macrophages as a Paradigm for Polarized M2 Mononuclear Phagocytes. Trends Immunol. 2002, 23, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Cyrus, N.; Mai-Anh Bui, C.; Yao, X.; Kohn, L.L.; Galan, A.; Rhebergen, A.M.; Colegio, O.R. Density and Polarization States of Tumor-Associated Macrophages in Human Cutaneous Squamous Cell Carcinomas Arising in Solid Organ Transplant Recipients. Dermatol. Surg. 2016, 42 (Suppl. S1), S18–S23. [Google Scholar] [CrossRef]
- Boutilier, A.J.; Elsawa, S.F. Macrophage Polarization States in the Tumor Microenvironment. Int. J. Mol. Sci. 2021, 22, 6995. [Google Scholar] [CrossRef]
- El-Rouby, D.H. Association of Macrophages with Angiogenesis in Oral Verrucous and Squamous Cell Carcinomas. J. Oral Pathol. Med. 2010, 39, 559–564. [Google Scholar] [CrossRef]
- Leek, R.D.; Lewis, C.E.; Whitehouse, R.; Greenall, M.; Clarke, J.; Harris, A.L. Association of Macrophage Infiltration with Angiogenesis and Prognosis in Invasive Breast Carcinoma. Cancer Res. 1996, 56, 4625–4629. [Google Scholar] [PubMed]
- Lissbrant, I.F.; Stattin, P.; Wikstrom, P.; Damber, J.E.; Egevad, L.; Bergh, A. Tumor Associated Macrophages in Human Prostate Cancer: Relation to Clinicopathological Variables and Survival. Int. J. Oncol. 2000, 17, 445–451. [Google Scholar] [CrossRef]
- Saeidi, V.; Doudican, N.; Carucci, J.A. Understanding the Squamous Cell Carcinoma Immune Microenvironment. Front. Immunol. 2023, 14, 1084873. [Google Scholar] [CrossRef]
- Costa, N.L.; Valadares, M.C.; Souza, P.P.C.; Mendonça, E.F.; Oliveira, J.C.; Silva, T.A.; Batista, A.C. Tumor-Associated Macrophages and the Profile of Inflammatory Cytokines in Oral Squamous Cell Carcinoma. Oral Oncol. 2013, 49, 216–223. [Google Scholar] [CrossRef]
- Kumar, A.T.; Knops, A.; Swendseid, B.; Martinez-Outschoom, U.; Harshyne, L.; Philp, N.; Rodeck, U.; Luginbuhl, A.; Cognetti, D.; Johnson, J.; et al. Prognostic Significance of Tumor-Associated Macrophage Content in Head and Neck Squamous Cell Carcinoma: A Meta-Analysis. Front. Oncol. 2019, 9, 656. [Google Scholar] [CrossRef]
- Fujimura, T.; Kambayashi, Y.; Fujisawa, Y.; Hidaka, T.; Aiba, S. Tumor-Associated Macrophages: Therapeutic Targets for Skin Cancer. Front. Oncol. 2018, 8, 3. [Google Scholar] [CrossRef]
- Zhang, S.; Fujita, H.; Mitsui, H.; Yanofsky, V.R.; Fuentes-Duculan, J.; Pettersen, J.S.; Suárez-Fariñas, M.; Gonzalez, J.; Wang, C.Q.F.; Krueger, J.G.; et al. Increased Tc22 and Treg/CD8 Ratio Contribute to Aggressive Growth of Transplant Associated Squamous Cell Carcinoma. PLoS ONE 2013, 8, e62154. [Google Scholar] [CrossRef]
- Curiel, T.J.; Coukos, G.; Zou, L.; Alvarez, X.; Cheng, P.; Mottram, P.; Evdemon-Hogan, M.; Conejo-Garcia, J.R.; Zhang, L.; Burow, M.; et al. Specific Recruitment of Regulatory T Cells in Ovarian Carcinoma Fosters Immune Privilege and Predicts Reduced Survival. Nat. Med. 2004, 10, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Bates, G.J.; Fox, S.B.; Han, C.; Leek, R.D.; Garcia, J.F.; Harris, A.L.; Banham, A.H. Quantification of Regulatory T Cells Enables the Identification of High-Risk Breast Cancer Patients and Those at Risk of Late Relapse. J. Clin. Oncol. 2006, 24, 5373–5380. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Xu, D.; Liu, Z.; Shi, M.; Zhao, P.; Fu, B.; Zhang, Z.; Yang, H.; Zhang, H.; Zhou, C.; et al. Increased Regulatory T Cells Correlate with CD8 T-Cell Impairment and Poor Survival in Hepatocellular Carcinoma Patients. Gastroenterology 2007, 132, 2328–2339. [Google Scholar] [CrossRef]
- Gobert, M.; Treilleux, I.; Bendriss-Vermare, N.; Bachelot, T.; Goddard-Leon, S.; Arfi, V.; Biota, C.; Doffin, A.C.; Durand, I.; Olive, D.; et al. Regulatory T Cells Recruited through CCL22/CCR4 Are Selectively Activated in Lymphoid Infiltrates Surrounding Primary Breast Tumors and Lead to an Adverse Clinical Outcome. Cancer Res. 2009, 69, 2000–2009. [Google Scholar] [CrossRef]
- Lai, C.; August, S.; Albibas, A.; Behar, R.; Cho, S.-Y.; Polak, M.E.; Theaker, J.; MacLeod, A.S.; French, R.R.; Glennie, M.J.; et al. OX40+ Regulatory T Cells in Cutaneous Squamous Cell Carcinoma Suppress Effector T Cell Responses and Associate with Metastatic Potential. Clin. Cancer Res. 2016, 22, 4236–4248. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, M.; Wang, F. Immune Regulation by CD8+ Treg Cells: Novel Possibilities for Anticancer Immunotherapy. Cell Mol. Immunol. 2018, 15, 805–807. [Google Scholar] [CrossRef]
- Ji, A.L.; Rubin, A.J.; Thrane, K.; Jiang, S.; Reynolds, D.L.; Meyers, R.M.; Guo, M.G.; George, B.M.; Mollbrink, A.; Bergenstråhle, J.; et al. Multimodal Analysis of Composition and Spatial Architecture in Human Squamous Cell Carcinoma. Cell 2020, 182, 497–514.e22. [Google Scholar] [CrossRef] [PubMed]
- Adhikary, G.; Heipertz, E.L.; Preradovic, M.; Chen, X.; Xu, W.; Newland, J.J.; Kaur, N.; Vemuri, M.C.; Eckert, R.L. Natural Killer Cells Suppress Human Cutaneous Squamous Cell Carcinoma Cancer Cell Survival and Tumor Growth. Mol. Carcinog. 2023, 62, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Luci, C.; Bihl, F.; Bourdely, P.; Khou, S.; Popa, A.; Meghraoui-Kheddar, A.; Vermeulen, O.; Elaldi, R.; Poissonnet, G.; Sudaka, A.; et al. Cutaneous Squamous Cell Carcinoma Development Is Associated with a Temporal Infiltration of ILC1 and NK Cells with Immune Dysfunctions. J. Investig. Dermatol. 2021, 141, 2369–2379. [Google Scholar] [CrossRef]
- de Souza Fernandez Pereira, M.; Carr, D.R.; Gatti-Mays, M.E.; Olsen, M.R.; Setty, B.A.; Shahwan, K.T.; Lee, D.A. Natural Killer Cell Recognition and Control of Epithelial Cancers. Cancer J. 2022, 28, 263–269. [Google Scholar] [CrossRef]
- Ilyas, M.; Costello, C.M.; Sharma, A. Exploring the Relationship between Natural Killer Cells and Cutaneous Squamous Cell Carcinoma Development. JAAD Case Rep. 2017, 3, 364–366. [Google Scholar] [CrossRef] [PubMed]
- Khou, S.; Popa, A.; Luci, C.; Bihl, F.; Meghraoui-Kheddar, A.; Bourdely, P.; Salavagione, E.; Cosson, E.; Rubod, A.; Cazareth, J.; et al. Tumor-Associated Neutrophils Dampen Adaptive Immunity and Promote Cutaneous Squamous Cell Carcinoma Development. Cancers 2020, 12, 1860. [Google Scholar] [CrossRef]
- Seddon, A.; Hock, B.; Miller, A.; Frei, L.; Pearson, J.; McKenzie, J.; Simcock, J.; Currie, M. Cutaneous Squamous Cell Carcinomas with Markers of Increased Metastatic Risk Are Associated with Elevated Numbers of Neutrophils and/or Granulocytic Myeloid Derived Suppressor Cells. J. Dermatol. Sci. 2016, 83, 124–130. [Google Scholar] [CrossRef]
- Grob, J.-J.; Gonzalez, R.; Basset-Seguin, N.; Vornicova, O.; Schachter, J.; Joshi, A.; Meyer, N.; Grange, F.; Piulats, J.M.; Bauman, J.R.; et al. Pembrolizumab Monotherapy for Recurrent or Metastatic Cutaneous Squamous Cell Carcinoma: A Single-Arm Phase II Trial (KEYNOTE-629). J. Clin. Oncol. 2020, 38, 2916. [Google Scholar] [CrossRef]
- Maubec, E.; Petrow, P.; Scheer-Senyarich, I.; Duvillard, P.; Lacroix, L.; Gelly, J.; Certain, A.; Duval, X.; Crickx, B.; Buffard, V.; et al. Phase II Study of Cetuximab as First-Line Single-Drug Therapy in Patients with Unresectable Squamous Cell Carcinoma of the Skin. J. Clin. Oncol. 2011, 29, 3419–3426. [Google Scholar] [CrossRef]
- Foote, M.C.; McGrath, M.; Guminski, A.; Hughes, B.G.M.; Meakin, J.; Thomson, D.; Zarate, D.; Simpson, F.; Porceddu, S.V. Phase II Study of Single-Agent Panitumumab in Patients with Incurable Cutaneous Squamous Cell Carcinoma. Ann. Oncol. 2014, 25, 2047–2052. [Google Scholar] [CrossRef]
- Gold, K.A.; Kies, M.S.; William, N.; William, J.; Johnson, F.M.; Lee, J.J.; Glisson, B.S. Erlotinib in the Treatment of Recurrent or Metastatic Cutaneous Squamous Cell Carcinoma: A Single Arm Phase II Clinical Trial. Cancer 2018, 124, 2169. [Google Scholar] [CrossRef] [PubMed]
- William, W.N.; Feng, L.; Ferrarotto, R.; Ginsberg, L.; Kies, M.; Lippman, S.; Glisson, B.; Kim, E.S. Gefitinib for Patients with Incurable Cutaneous Squamous Cell Carcinoma: A Single-Arm Phase II Clinical Trial. J. Am. Acad. Dermatol. 2017, 77, 1110–1113.e2. [Google Scholar] [CrossRef] [PubMed]
- Acevedo-Henao, C.M.; Valette, G.; Miglierini, P.; Lefur, E.; Pradier, O. Radiotherapy Combined with Cetuximab for Locally Advanced Head and Neck Cancer: Results and Toxicity. Cancer Radiother. 2012, 16, 601–603. [Google Scholar] [CrossRef]
- Sacco, A.G.; Chen, R.; Worden, F.P.; Wong, D.J.L.; Adkins, D.; Swiecicki, P.; Chai-Ho, W.; Oppelt, P.; Ghosh, D.; Bykowski, J.; et al. Pembrolizumab plus Cetuximab in Patients with Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma: An Open-Label, Multi-Arm, Non-Randomised, Multicentre, Phase 2 Trial. Lancet Oncol. 2021, 22, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.H.; Li, J.; Steuer, C.E.; Bhateja, P.; Johnson, M.; Masannat, J.; Poole, M.I.; Song, F.; Hernandez-Prera, J.C.; Molina, H.; et al. Phase II Multi-Institutional Clinical Trial Result of Concurrent Cetuximab and Nivolumab in Recurrent and/or Metastatic Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2022, 28, 2329–2338. [Google Scholar] [CrossRef]
- Esfahani, K.; Roudaia, L.; Buhlaiga, N.; Del Rincon, S.V.; Papneja, N.; Miller, W.H. A Review of Cancer Immunotherapy: From the Past, to the Present, to the Future. Curr. Oncol. 2020, 27, S87–S97. [Google Scholar] [CrossRef] [PubMed]
- Aboul-Fettouh, N.; Morse, D.; Patel, J.; Migden, M.R. Immunotherapy and Systemic Treatment of Cutaneous Squamous Cell Carcinoma. Dermatol. Pract. Concept. 2021, 11, e2021169S. [Google Scholar] [CrossRef]
- Patel, R.; Chang, A.L.S. Immune Checkpoint Inhibitors for Treating Advanced Cutaneous Squamous Cell Carcinoma. Am. J. Clin. Dermatol. 2019, 20, 477–482. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research. FDA Approves Cemiplimab-Rwlc for Metastatic or Locally Advanced Cutaneous Squamous Cell Carcinoma; FDA: Silver Spring, MD, USA, 2019. [Google Scholar]
- Patel, S.P.; Othus, M.; Chen, Y.; Wright, G.P.; Yost, K.J.; Hyngstrom, J.R.; Hu-Lieskovan, S.; Lao, C.D.; Fecher, L.A.; Truong, T.-G.; et al. Neoadjuvant–Adjuvant or Adjuvant-Only Pembrolizumab in Advanced Melanoma. N. Engl. J. Med. 2023, 388, 813–823. [Google Scholar] [CrossRef] [PubMed]
- Marin-Acevedo, J.A.; Withycombe, B.M.; Kim, Y.; Brohl, A.S.; Eroglu, Z.; Markowitz, J.; Tarhini, A.A.; Tsai, K.Y.; Khushalani, N.I. Cetuximab for Immunotherapy-Refractory/Ineligible Cutaneous Squamous Cell Carcinoma. Cancers 2023, 15, 3180. [Google Scholar] [CrossRef] [PubMed]
- Wollina, U. Update of Cetuximab for Non-Melanoma Skin Cancer. Expert Opin. Biol. Ther. 2014, 14, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.; Samlowski, W.; Meoz, R. Effectiveness and Toxicity of Cetuximab with Concurrent RT in Locally Advanced Cutaneous Squamous Cell Skin Cancer: A Case Series. Oncotarget 2023, 14, 709–718. [Google Scholar] [CrossRef]
- Bonner, J.A.; Harari, P.M.; Giralt, J.; Azarnia, N.; Shin, D.M.; Cohen, R.B.; Jones, C.U.; Sur, R.; Raben, D.; Jassem, J.; et al. Radiotherapy plus Cetuximab for Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2006, 354, 567–578. [Google Scholar] [CrossRef]
- Hsu, E.; Eton, O.; Patel, A.V.; Cartun, R.; Earle, J.S.; Mnayer, L.O.; Kotowitz, J.; Yu, P.P. Combining Panitumumab with Anti-PD-1 Antibody in Cutaneous Squamous Cell Carcinoma of the Head and Neck after Inadequate Response to Anti-PD-1 Antibody Alone. J. Drugs Dermatol. 2021, 20, 901–904. [Google Scholar] [CrossRef] [PubMed]
Gene(s) | General Description | References |
---|---|---|
TP53 | Tumor protein p53; regulates genome stability, cell proliferation, and apoptosis | [1,5,27,31,36,37,40,45] |
NOTCH 1,2,3 | Notch receptor; regulates cell signaling, differentiation, cell cycle arrest, and apoptosis | [1,5,27,31,36,37,45] |
CDKN2A | Cyclin-dependent kinase inhibitor 2A; regulates genomic stability, Cell cycle control, and cell proliferation | [1,5,27,31,40,48] |
RAS/RAF/MEK/MAPK(ERK) Pathway | Regulates cell growth, migration, angiogenesis, proliferation, differentiation, apoptosis, and metabolism | [5,28,31,34,48] |
PI3K/AKT/mTOR Pathway | Regulates cell proliferation, growth differentiation, and cell apoptosis inhibition | [5,28,31,34,37,48] |
HRAS; KRAS | Proto-oncogenes, GTPase; regulates cell proliferation, migration, growth, survival, and differentiation | [1,5,31,36,37,40,49]; [1,5,28,31,36,37,40,49] |
EGFR | Epidermal growth factor receptor; activates signaling pathways, regulates tissue regeneration, construction, homeostasis, cellular proliferation, apoptosis, and differentiation | [31,35,37,50] |
FAT1 | FAT atypical Cadherin 1; regulates mitochondrial respiration, cellular migration, and proliferation | [1,5,27,42] |
PTEN | Phosphatase and tensin homolog; activates PI3K/AKT/mTOR pathway and facilitates cellular migration, growth, proliferation, signaling, protein synthesis, and DNA repair | [5,27,31,46] |
Gene(s) | Description | References |
---|---|---|
CCND1 | Cyclin D1, a regulator of CDK kinases; regulates cell cycle and metastasis | [5,31,37] |
CREBBP | CREB-binding protein; regulates tumor response, cell growth, and division | [5,31,42] |
EP300 | E1A-binding protein P300; cell growth, proliferation, maturation, differentiation | [5,31,42] |
ERBB4 | Erb-b2 receptor tyrosine kinase 4; tumor suppressor, cellular response to EGFR | [31,37,42] |
EZH2 | Enhancer of zeste 2 polycomb repressive complex 2; silences tumor suppressor genes and regulates apoptosis, cell proliferation, and cycle regulation | [5,31,42] |
FGFR3 | Fibroblast growth factor receptor 3; regulates cell proliferation, survival, migration, and angiogenesis | [31,40,50] |
KMT2C/KMT2D (MLL3) | Histone lysine methyltransferase 2C/2D; regulates transcriptional coactivation, genome maintenance, and histone methylation | [1,37,42] |
TGFBR2 | Transforming growth factor beta receptor 2; regulates cell differentiation, proliferation, maturation, and tissue homeostasis | [36,38,47] |
AJUBA | Ajuba LIM protein; regulates epidermal cell differentiation and homeostasis | [1,5] |
ARID2 | AT-rich interaction domain 2; chromatin remodeling | [5,31] |
ATM | Ataxia telangiectasia mutated; regulates stress response and DNA repair | [37,42] |
BRAF | Serine/threonine protein kinase; regulates MAP/ERK pathway, cell division, differentiation, and secretion | [31,42] |
BRCA2 | Breast cancer gene 2; regulates genomic stability, DNA repair, and damage response | [37,39] |
CASP8 | Cysteine-aspartic acid protease; regulates cell survival and apoptosis | [1,5] |
KNSTRN | Kinetochore-localized astrin/SPAG5-binding protein; regulates chromosomal stability and division | [103,121] |
LRP1B | Low-density lipoprotein receptor-related protein 1B; regulates cell signaling and migration | [37,39] |
NFE2L2 | Nuclear factor erythroid 2-related transcription factor 2; regulates oxidative stress and inflammatory response | [1,5] |
CARD11 | Caspase recruitment domain family, member protein 11; regulates immune response through lymphocyte activation | [31,43] |
MYC | Myelocytomatosis oncogene; regulates mRNA translation, stress response, immune response, cell cycle, proliferation, differentiation, apoptosis | [31,40] |
RIPK4 | Receptor-interacting serine/threonine kinase protein 4; regulates keratinocyte differentiation, cutaneous inflammation, and wound repair | [1,31] |
Treatment(s) | Patient Population | ORR | References |
---|---|---|---|
Immunotherapy Monotherapy: cemiplimab | advanced metastatic cSCC | 47% (n = 59) | [11] |
Immunotherapy Monotherapy: pembrolizumab | recurrent or metastatic cSCC | 34% (n = 105) | [174] |
Immunotherapy Monotherapy: pembrolizumab | primary unresectable cSCC | 42% (n = 57) | [83] |
Neoadjuvant Immunotherapy: cemiplimab | advanced resectable cSCC | 63% (n = 79) * | [12] |
EGFR Monotherapy: cetuximab | primary unresectable cSCC | 28% (n = 36) | [175] |
EGFR Monotherapy: panitumumab | advanced, metastatic, or recurrent cSCC | 31% (n = 16) | [176] |
EGFR Monotherapy: erlotinib | recurrent or metastatic cSCC | 8% (n = 39) | [177] |
EGFR Monotherapy: gefitinib | recurrent and or metastatic cSCC | 15% (n = 40) | [178] |
Radiation + EGFR Inhibitors: cetuximab | locally advanced HNSCC | 91% (n = 36) | [179] |
Immunotherapy + EGFR Inhibitors: pembrolizumab and cetuximab | recurrent or metastatic HNSCC | 45% (n = 33) | [180] |
Immunotherapy + EGFR Inhibitors: nivolamb and cetuximab | previously treated recurrent or metastatic HNSCC; first-line recurrent or metastatic HNSCC | 23% (n = 47); 33% (n = 48) | [181] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini, T.M.; Park, S.J.; Guo, T. The Mutational and Microenvironmental Landscape of Cutaneous Squamous Cell Carcinoma: A Review. Cancers 2024, 16, 2904. https://doi.org/10.3390/cancers16162904
Hosseini TM, Park SJ, Guo T. The Mutational and Microenvironmental Landscape of Cutaneous Squamous Cell Carcinoma: A Review. Cancers. 2024; 16(16):2904. https://doi.org/10.3390/cancers16162904
Chicago/Turabian StyleHosseini, Tara M., Soo J. Park, and Theresa Guo. 2024. "The Mutational and Microenvironmental Landscape of Cutaneous Squamous Cell Carcinoma: A Review" Cancers 16, no. 16: 2904. https://doi.org/10.3390/cancers16162904
APA StyleHosseini, T. M., Park, S. J., & Guo, T. (2024). The Mutational and Microenvironmental Landscape of Cutaneous Squamous Cell Carcinoma: A Review. Cancers, 16(16), 2904. https://doi.org/10.3390/cancers16162904