Deep Neural Network Integrated into Network-Based Stratification (D3NS): A Method to Uncover Cancer Subtypes from Somatic Mutations
<p>Overview of D3NS. (<b>a</b>) Representation of a binary mutation matrix, where for each gene–patient pair, a black point represents a mutated gene corresponding to 1 value. (<b>b</b>) Gene interaction network onto which the mutations are projected. (<b>c</b>) Representation of network-smoothed matrix with continuous values after the network propagation process. (<b>d</b>) Autoencoder’s structure, which receives as input the smoothed mutation profiles of patients and generates their compressed representation, an encoded matrix, with 100 new essential features. (<b>e</b>) Subtypes obtained with K-means consensus clustering after 1000 repetitions and the next evaluation based on clinical data.</p> "> Figure 2
<p>Heatmaps relative to CMs for the different values of k subtypes considered for the stratification, applying some networks to cancer datasets. The blocks in blue correspond to a high consensus value among patient pairs, indicating reliable clusters.</p> "> Figure 3
<p>Analysis for bladder cancer in the 412 patients considered from the TCGA dataset. (<b>a</b>) Significant associations between survival and subtypes obtained for the three networks considered. Dashed line represents the significance threshold: -log10(Log-rank <span class="html-italic">p</span>-value = 0.05). (<b>b</b>) OS Kaplan–Meier curves for the four subtypes (k = 4) obtained using the STRING network.</p> "> Figure 4
<p>Summary of somatic mutations in the 412 patients considered from the bladder cancer TCGA dataset. (<b>a</b>) Distribution of the top 10 mutated genes in the whole population. (<b>b</b>) Distributions of the numbers of mutated genes per patient in each subtype and in the whole population. (<b>c</b>) Distribution of the top 10 mutated genes across the subtypes.</p> "> Figure 5
<p>Analysis for ovarian cancer in the 316 patients considered from the TCGA dataset. (<b>a</b>) Significant associations between survival and subtypes obtained for the three networks considered. Dashed line represents the significance threshold: -log10(Log-rank <span class="html-italic">p</span>-value = 0.05). (<b>b</b>) OS Kaplan–Meier curves for the three subtypes (k = 3) obtained using the HumanNet network.</p> "> Figure 6
<p>Summary of somatic mutations in the 316 patients considered from the ovarian cancer TCGA dataset. (<b>a</b>) Distribution of the top 10 mutated genes in the whole population. (<b>b</b>) Distributions of the numbers of mutated genes per patient in each subtype and in the whole population. (<b>c</b>) Distribution of the top 10 mutated genes across the subtypes.</p> "> Figure 7
<p>Analysis for kidney cancer in the 424 patients considered from the TCGA dataset. (<b>a</b>) Significant associations between survival and subtypes obtained for the three networks considered. Dashed line represents the significance threshold: -log10(Log-rank <span class="html-italic">p</span>-value = 0.05). (<b>b</b>) OS Kaplan–Meier curves for the two subtypes (k = 2) obtained using the Mentha network.</p> "> Figure 8
<p>Summary of somatic mutations in the 424 patients considered from the kidney cancer TCGA dataset. (<b>a</b>) Distribution of the top 10 mutated genes in the whole population. (<b>b</b>) Distributions of the numbers of mutated genes per patient in each subtype and in the whole population. (<b>c</b>) Distribution of the top 10 mutated genes across the subtypes.</p> ">
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of D3NS
- Network smoothing: consists of projecting (mapping), for each patient, the binary mutation profile contained in the MM onto a gene interaction network, Figure 1b. Subsequently, the network propagation process [13] is applied to spread the influence of each mutation to the surrounding space related to it. The resulting matrix, the network-smoothed matrix (NSM), will have continuous values and a much lower sparsity compared to that of the initial MM, Figure 1c;
- Dimensionality reduction: the NSM is provided as input to the autoencoder, which generates its compressed representation, Figure 1d. The result is a matrix with continuous values, an encoded matrix (EM), with dimensions (). The number of features is a parameter of the autoencoder, which defines the number of essential features extracted from the mutations, i.e., the dimension of the latent space where mutations are mapped;
2.2. Somatic Mutations and Clinical Data
2.3. Gene Interaction Networks
2.4. Network Propagation
2.5. Autoencoder for Dimensionality Reduction
- The input data were split into a training set and a validation set, with a ratio of 90/10, in order to evaluate the algorithm’s performance and prevent overfitting;
- The Adam algorithm [23] was used to optimize the minimization process of Lrec, setting a learning rate of 0.0001. The learning rate represents the size of the parameter update step of the autoencoder in the procedure for seeking the minimum Lrec;
- A batch size of 32 was set, useful for accelerating training; it defines the size of the number of samples (patients) processed by the algorithm before updating the parameters;
- Training was conducted for a maximum of 150 epochs.
2.6. K-Means Consensus Clustering
2.7. Statistical Analysis for Clinical Data
3. Results
3.1. Bladder Cancer Data
3.2. Ovarian Cancer Data
3.3. Kidney Cancer Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leiserson, M.D.M.; Vandin, F.; Wu, H.T.; Dobson, J.R.; Eldridge, J.V.; Thomas, J.L.; Papoutsaki, A.; Kim, Y.; Niu, B.; McLellan, M.; et al. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 2015, 47, 106–114. [Google Scholar] [CrossRef]
- Jassim, A.; Rahrmann, E.P.; Simons, B.D.; Gilbertson, R.J. Cancers make their own luck: Theories of cancer origins. Nat. Rev. Cancer 2023, 23, 710–724. [Google Scholar] [CrossRef]
- Lawrence, M.S.; Stojanov, P.; Polak, P.; Kryukov, G.V.; Cibulskis, K.; Sivachenko, A.; Carter, S.L.; Stewart, C.; Mermel, C.H.; Roberts, S.A.; et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013, 499, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011, 474, 609–615. [Google Scholar] [CrossRef]
- Cancer Genome Atlas Research Network; Kandoth, C.; Schultz, N.; Cherniack, A.D.; Akbani, R.; Liu, Y.; Shen, H.; Robertson, A.G.; Pashtan, I.; Shen, R.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 497, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Hofree, M.; Shen, J.P.; Carter, H.; Gross, A.; Ideker, T. Network-based stratification of tumor mutations. Nat. Methods 2013, 10, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Yang, H.; Zhao, S.; Shyr, Y.; Li, B. Network-based stratification analysis of 13 major cancer types using mutations in panels of cancer genes. BMC Genom. 2015, 16, S7. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhang, J.; Yuan, X.; Liu, Z.; Liu, B.; Tuo, S.; Liu, Y. Network based stratification of major cancers by integrating somatic mutation and gene expression data. PLoS ONE 2017, 12, e0177662. [Google Scholar] [CrossRef] [PubMed]
- Le Morvan, M.; Zinovyev, A.; Vert, J.-P. NetNorM: Capturing cancer-relevant information in somatic exome mutation data with gene networks for cancer stratification and prognosis. PLoS Comput. Biol. 2017, 13, e1005573. [Google Scholar] [CrossRef]
- Liu, C.; Han, Z.; Zhang, Z.-K.; Nussinov, R.; Cheng, F. A network-based deep learning methodology for stratification of tumor mutations. Bioinformatics 2021, 37, 82–88. [Google Scholar] [CrossRef]
- Shen, J.; Li, H.; Yu, X.; Bai, L.; Dong, Y.; Cao, J.; Lu, K.; Tang, Z. Efficient feature extraction from highly sparse binary genotype data for cancer prognosis prediction using an auto-encoder. Front. Oncol. 2023, 12, 1091767. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Li, H.; Su, D.; Xiong, Y.; Wei, H.; Wang, S.; Sun, H.; Wang, T.; Xi, Q.; Zuo, Y.; et al. Integrating somatic mutation profiles with structural deep clustering network for metabolic stratification in pancreatic cancer: A comprehensive analysis of prognostic and genomic landscapes. Brief. Bioinform. 2024, 25, bbad430. [Google Scholar] [CrossRef]
- Cowen, L.; Ideker, T.; Raphael, B.J.; Sharan, R. Network propagation: A universal amplifier of genetic associations. Nat. Rev. Genet. 2017, 18, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Monti, S.; Tamayo, P.; Mesirov, J.; Golub, T. Consensus Clustering: A Resampling-Based Method for Class Discovery and Visualization of Gene Expression Microarray Data. Mach. Learn. 2003, 52, 91–118. [Google Scholar] [CrossRef]
- De Bruijn, I.; Kundra, R.; Mastrogiacomo, B.; Tran, T.N.; Sikina, L.; Mazor, T.; Li, X.; Ochoa, A.; Zhao, G.; Lai, B.; et al. Analysis and Visualization of Longitudinal Genomic and Clinical Data from the AACR Project GENIE Biopharma Collaborative in cBioPortal. Cancer Res. 2023, 83, 3861–3867. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.G.; Kim, J.; Al-Ahmadie, H.; Bellmunt, J.; Guo, G.; Cherniack, A.D.; Hinoue, T.; Laird, P.W.; Hoadley, K.A.; Akbani, R.; et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell 2017, 171, 540–556.e25. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 2013, 499, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo, S.; et al. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.Y.; Baek, S.; Cha, J.; Yang, S.; Kim, E.; Marcotte, E.M.; Hart, T.; Lee, I. HumanNet v3: An improved database of human gene networks for disease research. Nucleic Acids Res. 2022, 50, D632–D639. [Google Scholar] [CrossRef]
- Calderone, A.; Castagnoli, L.; Cesareni, G. Mentha: A resource for browsing integrated protein-interaction networks. Nat. Methods 2013, 10, 690–691. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Kriegeskorte, N.; Golan, T. Neural network models and deep learning. Curr. Biol. 2019, 29, R231–R236. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Jin, X.; Han, J. K-Means Clustering. In Encyclopedia of Machine Learning; Sammut, C., Webb, G.I., Eds.; Springer: Boston, MA, USA, 2010; pp. 563–564. [Google Scholar] [CrossRef]
- Hayes, D.N.; Monti, S.; Parmigiani, G.; Gilks, C.B.; Naoki, K.; Bhattacharjee, A.; Socinski, M.A.; Perou, C.; Meyerson, M. Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts. J. Clin. Oncol. 2006, 24, 5079–5090. [Google Scholar] [CrossRef] [PubMed]
- Wilkerson, M.D.; Hayes, D.N. ConsensusClusterPlus: A class discovery tool with confidence assessments and item tracking. Bioinformatics 2010, 26, 1572–1573. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.r-project.org/ (accessed on 25 November 2023).
- Toss, A.; Piombino, C.; Tenedini, E.; Bologna, A.; Gasparini, E.; Tarantino, V.; Filieri, M.E.; Cottafavi, L.; Giovanardi, F.; Madrigali, S.; et al. The Prognostic and Predictive Role of Somatic BRCA Mutations in Ovarian Cancer: Results from a Multicenter Cohort Study. Diagnostics 2021, 11, 565. [Google Scholar] [CrossRef]
- Yang, D.; Khan, S.; Sun, Y.; Hess, K.; Shmulevich, I.; Sood, A.K.; Zhang, W. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 2011, 306, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Chetrit, A.; Hirsh-Yechezkel, G.; Ben-David, Y.; Lubin, F.; Friedman, E.; Sadetzki, S. Effect of BRCA1/2 mutations on long-term survival of patients with invasive ovarian cancer: The national Israeli study of ovarian cancer. J. Clin. Oncol. 2008, 26, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Bolton, K.L.; Chenevix-Trench, G.; Goh, C.; Sadetzki, S.; Ramus, S.J.; Karlan, B.Y.; Lambrechts, D.; Despierre, E.; Barrowdale, D.; McGuffog, L. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA 2012, 307, 382–390. [Google Scholar] [CrossRef]
- Moschetta, M.; George, A.; Kaye, S.B.; Banerjee, S. BRCA somatic mutations and epigenetic BRCA modifications in serous ovarian cancer. Ann. Oncol. 2016, 27, 1449–1455. [Google Scholar] [CrossRef]
- George, A.; Banerjee, S.; Kaye, S. Olaparib and somatic BRCA mutations. Oncotarget 2017, 8, 43598–43599. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, J.R.; Rosen, B.; Moody, J.; Pal, T.; Fan, I.; Shaw, P.A.; Risch, H.A.; Sellers, T.A.; Sun, P.; Narod, S.A. Long-term ovarian cancer survival associated with mutation in BRCA1 or BRCA2. J. Natl. Cancer Inst. 2013, 105, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Bihr, S.; Ohashi, R.; Moore, A.L.; Rüschoff, J.H.; Beisel, C.; Hermanns, T.; Mischo, A.; Corrò, C.; Beyer, J.; Beerenwinkel, N.; et al. Expression and Mutation Patterns of PBRM1, BAP1 and SETD2 Mirror Specific Evolutionary Subtypes in Clear Cell Renal Cell Carcinoma. Neoplasia 2019, 21, 247–256. [Google Scholar] [CrossRef] [PubMed]
Cohort | N Patients | N Genes | MM Sparsity |
---|---|---|---|
Bladder cancer (BLCA) | 412 | 16,385 | 98.8% |
Ovarian cancer (OVCA) | 316 | 7961 | 99.5% |
Kidney cancer (KIRC) | 424 | 10,257 | 99.5% |
Network | N Nodes 1 | N Edges 2 | Link |
---|---|---|---|
STRING v12.0 [18] | 19,622 (12,030) 3 | 6,857,702 (91,983) 3 | https://string-db.org accessed on 18 March 2024 |
HumanNet v3 [19] | 18,449 (15,435) | 977,483 (97,737) | https://www.inetbio.org/humannet/ accessed on 18 March 2024 |
Mentha [20] | 18,861 (8176) | 339,047 (26,584) | https://mentha.uniroma2.it/download.php accessed on 18 March 2024 |
Subtype (k) | |||||||
---|---|---|---|---|---|---|---|
Characteristic | N | Overall 412 (100%) | 1 121 (29%) | 2 255 (62%) | 3 34 (8.3%) | 4 2 (0.5%) | p-Value 1 |
Sex | 411 | 0.2 | |||||
Female | 108 (26%) | 24 (20%) | 74 (29%) | 10 (29%) | 0 (0%) | ||
Male | 303 (74%) | 96 (80%) | 181 (71%) | 24 (71%) | 2 (100%) | ||
Missing | 1 | 1 | 0 | 0 | 0 | ||
Age at Diagnosis | 411 | 69 (60; 76) | 69 (61; 76) | 68 (60; 76) | 69 (61; 76) | 73 (71; 74) | >0.9 |
Missing | 1 | 1 | 0 | 0 | 0 | ||
Weight | 368 | 78 (65; 92) | 80 (65; 94) | 77 (65; 90) | 82 (72; 95) | 108 (101; 114) | 0.2 |
Missing | 44 | 17 | 23 | 4 | 0 | ||
Tumor Stage | 409 | 0.031 | |||||
I–II | 133 (33%) | 42 (35%) | 79 (31%) | 11 (32%) | 1 (50%) | ||
III | 141 (34%) | 36 (30%) | 85 (34%) | 19 (56%) | 1 (50%) | ||
IV | 135 (33%) | 42 (35%) | 89 (35%) | 4 (12%) | 0 (0%) | ||
Missing | 3 | 1 | 2 | 0 | 0 | ||
Grade | 408 | 0.2 | |||||
High Grade | 387 (95%) | 115 (97%) | 236 (93%) | 34 (100%) | 2 (100%) | ||
Low Grade | 21 (5.1%) | 3 (2.5%) | 18 (7.1%) | 0 (0%) | 0 (0%) | ||
Missing | 4 | 3 | 1 | 0 | 0 | ||
Histological Subtype | 406 | 0.6 | |||||
Non-Papillary | 273 (67%) | 76 (64%) | 174 (69%) | 22 (67%) | 1 (50%) | ||
Papillary | 133 (33%) | 43 (36%) | 78 (31%) | 11 (33%) | 1 (50%) | ||
Missing | 6 | 2 | 3 | 1 | 0 |
Characteristic (N Observations = 407; N Events = 178) | HR 1 | 95% CI 1 | p-Value | p-Value 2 Global |
---|---|---|---|---|
Subtype (k) | <0.001 | |||
1 | 1.76 | 0.82, 3.80 | 0.148 | |
2 | 3.10 | 1.50, 6.42 | 0.002 | |
3 (Reference) | — | — | ||
4 | 0 | —, — | 0.994 | |
Age at Diagnosis | 1.03 | 1.01, 1.04 | <0.001 | |
Tumor Stage | <0.001 | |||
I–II (Reference) | — | — | ||
III | 1.55 | 1.01, 2.36 | 0.045 | |
IV | 2.62 | 1.76, 3.89 | <0.001 |
Subtype (k) | ||||||
---|---|---|---|---|---|---|
Characteristic | N | Overall 316 (100%) | 1 111 (35%) | 2 162 (51%) | 3 43 (14%) | p-Value 1 |
Age at Diagnosis | 316 | 59 (51; 69) | 57 (50; 66) | 59 (51; 70) | 63 (59; 72) | 0.043 |
Tumor Stage | 315 | 0.007 | ||||
II | 14 (4.4%) | 9 (8.2%) | 1 (0.6%) | 4 (9.3%) | ||
III | 248 (79%) | 83 (75%) | 134 (83%) | 31 (72%) | ||
IV | 53 (17%) | 18 (16%) | 27 (17%) | 8 (19%) | ||
Missing | 1 | 1 | 0 | 0 | ||
Grade | 309 | 0.7 | ||||
G2 | 28 (9.1%) | 12 (11%) | 12 (7.6%) | 4 (9.3%) | ||
G3 | 281 (91%) | 97 (89%) | 145 (92%) | 39 (91%) | ||
Missing | 7 | 2 | 5 | 0 | ||
Residual Tumor After Surgery | 278 | 0.6 | ||||
>10 mm | 70 (25%) | 27 (29%) | 33 (23%) | 10 (25%) | ||
≤10 mm | 208 (75%) | 67 (71%) | 111 (77%) | 30 (75%) | ||
Missing | 38 | 17 | 18 | 3 | ||
Response to Platinum Therapy | 260 | 0.030 | ||||
Complete Response | 184 (71%) | 63 (71%) | 91 (67%) | 30 (86%) | ||
Partial Response | 39 (15%) | 13 (15%) | 21 (15%) | 5 (14%) | ||
Progressive Disease | 25 (9.6%) | 12 (13%) | 13 (9.6%) | 0 (0%) | ||
Stable Disease | 12 (4.6%) | 1 (1.1%) | 11 (8.1%) | 0 (0%) | ||
Missing | 56 | 22 | 26 | 8 |
Characteristic (N Observations = 260; N Events = 144) | HR 1 | 95% CI 1 | p-Value | p-Value 2 Global |
---|---|---|---|---|
Subtype (k) | 0.011 | |||
1 | 1.35 | 0.74, 2.45 | 0.323 | |
2 | 2.03 | 1.15, 3.58 | 0.014 | |
3 (Reference) | — | — | ||
Age at Diagnosis | 1.02 | 1.01, 1.04 | 0.004 | |
Response After Platinum Therapy | <0.001 | |||
Complete Response (Reference) | — | — | ||
Partial Response | 4.20 | 2.64, 6.68 | <0.001 | |
Progressive Disease | 5.46 | 3.31, 9.01 | <0.001 | |
Stable Disease | 2.78 | 1.31, 5.91 | 0.008 |
Subtype (k) | |||||
---|---|---|---|---|---|
Characteristic | N | Overall 424 (100%) | 1 148 (35%) | 2 276 (65%) | p-Value 1 |
Sex | 424 | 0.7 | |||
Female | 147 (35%) | 53 (36%) | 94 (34%) | ||
Male | 277 (65%) | 95 (64%) | 182 (66%) | ||
Age at Diagnosis | 424 | 61 (52; 70) | 64 (57; 73) | 59 (50; 69) | <0.001 |
Tumor Stage | 423 | 0.3 | |||
I–II | 241 (57%) | 78 (53%) | 163 (59%) | ||
III | 112 (26%) | 46 (31%) | 66 (24%) | ||
IV | 70 (17%) | 24 (16%) | 46 (17%) | ||
Missing | 1 | 0 | 1 | ||
Grade | 423 | 0.4 | |||
G1–G2 | 181 (43%) | 58 (39%) | 123 (45%) | ||
G3 | 175 (41%) | 67 (46%) | 108 (39%) | ||
G4 | 67 (16%) | 22 (15%) | 45 (16%) | ||
Missing | 1 | 1 | 0 |
Characteristic (N Observations = 419; N Events = 140) | HR 1 | 95% CI 1 | p-Value | p-Value 2 Global |
---|---|---|---|---|
Subtype (k) | ||||
1 | 1.51 | 1.06, 2.14 | 0.022 | |
2 (Reference) | — | — | ||
Age at Diagnosis | 1.04 | 1.02, 1.05 | <0.001 | |
Tumor Stage | <0.001 | |||
I–II (Reference) | — | — | ||
III | 2.24 | 1.44, 3.47 | <0.001 | |
IV | 5.16 | 3.26, 8.17 | <0.001 | |
Grade | 0.013 | |||
G1–G2 (Reference) | — | — | ||
G3 | 1.17 | 0.77, 1.79 | 0.457 | |
G4 | 2.02 | 1.24, 3.29 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valerio, M.; Inno, A.; Zambelli, A.; Cortesi, L.; Lorusso, D.; Viassolo, V.; Verzè, M.; Nicolis, F.; Gori, S. Deep Neural Network Integrated into Network-Based Stratification (D3NS): A Method to Uncover Cancer Subtypes from Somatic Mutations. Cancers 2024, 16, 2845. https://doi.org/10.3390/cancers16162845
Valerio M, Inno A, Zambelli A, Cortesi L, Lorusso D, Viassolo V, Verzè M, Nicolis F, Gori S. Deep Neural Network Integrated into Network-Based Stratification (D3NS): A Method to Uncover Cancer Subtypes from Somatic Mutations. Cancers. 2024; 16(16):2845. https://doi.org/10.3390/cancers16162845
Chicago/Turabian StyleValerio, Matteo, Alessandro Inno, Alberto Zambelli, Laura Cortesi, Domenica Lorusso, Valeria Viassolo, Matteo Verzè, Fabrizio Nicolis, and Stefania Gori. 2024. "Deep Neural Network Integrated into Network-Based Stratification (D3NS): A Method to Uncover Cancer Subtypes from Somatic Mutations" Cancers 16, no. 16: 2845. https://doi.org/10.3390/cancers16162845
APA StyleValerio, M., Inno, A., Zambelli, A., Cortesi, L., Lorusso, D., Viassolo, V., Verzè, M., Nicolis, F., & Gori, S. (2024). Deep Neural Network Integrated into Network-Based Stratification (D3NS): A Method to Uncover Cancer Subtypes from Somatic Mutations. Cancers, 16(16), 2845. https://doi.org/10.3390/cancers16162845