Trapping a Hot Drop on a Superhydrophobic Surface with Rapid Condensation or Microtexture Melting
<p>A schematic illustrating how a thermally responsive superhydrophobic material could act as a fuse to prevent water above a critical temperature from reaching a sensitive surface. (<b>A</b>) If the superhydrophobic surface that is at <math display="inline"><semantics> <msub> <mi>T</mi> <mi>s</mi> </msub> </semantics></math> rapidly pinned drops above a critical temperature <math display="inline"><semantics> <msub> <mi>T</mi> <mn>0</mn> </msub> </semantics></math>, then a water drop with temperature <math display="inline"><semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics></math> below <math display="inline"><semantics> <msub> <mi>T</mi> <mn>0</mn> </msub> </semantics></math> (top) would bounce off of the surface onto the target, whereas a water drop with temperature <math display="inline"><semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics></math> above <math display="inline"><semantics> <msub> <mi>T</mi> <mn>0</mn> </msub> </semantics></math> (bottom) would stick, protecting the target; (<b>B</b>) surface microtexture with lengthscale <span class="html-italic">L</span> can trap air beneath the drop (Cassie–Baxter state), enabling the drop to bounce; (<b>C</b>) If heat from the drop melts the microstructure, the drop could enter a Wenzel state and stick; (<b>D</b>) Alternatively, if liquid from the drop evaporates and condenses within the microstructure, the drop could also enter a Wenzel state and stick.</p> "> Figure 2
<p>(<b>A</b>) a schematic of the experimental set. Cameras film a water drop at temperature <math display="inline"><semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics></math> as it falls from a suspended needle and impacts a Nasturtium leaf heated to temperature <math display="inline"><semantics> <msub> <mi>T</mi> <mi>s</mi> </msub> </semantics></math>; (<b>B</b>) images of a Nasturtium leaf taken at different magnifications illustrate the hierarchical microstructure.</p> "> Figure 3
<p>A superhydrophobic Nasturtium leaf that lets a cold drop bounce off of its surface traps a hot drop. (<b>A</b>) A cold water drop at temperatures <math display="inline"><semantics> <mrow> <mn>298</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">K</mi> </mrow> </semantics></math> impacts a Nasturtium leaf that is initially at ambient temperature <math display="inline"><semantics> <mrow> <mn>301</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">K</mi> </mrow> </semantics></math>. High-speed images show that the cold water drop spreads, retracts and leaves the surface at a finite time <math display="inline"><semantics> <mrow> <mn>10</mn> <mspace width="3.33333pt"/> <mi>ms</mi> </mrow> </semantics></math>. Simultaneously, thermal images show that the drop is at the lower temperature than the leaf in this experiment; (<b>B</b>) a hot drop at temperature <math display="inline"><semantics> <mrow> <mn>323</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">K</mi> </mrow> </semantics></math> at the same impact condition sticks to a Nasturtium leaf that is initially at ambient temperature <math display="inline"><semantics> <mrow> <mn>301</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">K</mi> </mrow> </semantics></math>. Simultaneous thermographic images show a temperature map of the drop and substrate during impact. The dotted line shows the contact line between drop and leaf.</p> "> Figure 4
<p>Effect of surface tension <math display="inline"><semantics> <mi>γ</mi> </semantics></math> and drop temperature <math display="inline"><semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics></math> on the bouncing-sticking transition for a Nasterium leaf at ambient conditions. For water drops, the transition between bouncing (open circles) and sticking (filled circles) occurs when the drop temperature <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>d</mi> </msub> <mo>≈</mo> <mn>307</mn> <mspace width="3.33333pt"/> <mi mathvariant="normal">K</mi> </mrow> </semantics></math>, which corresponds to a surface tension <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>≈</mo> <mn>70</mn> <mspace width="3.33333pt"/> <mrow> <mi>mN</mi> <mo>/</mo> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math>. For drops of varying ethanol-water concentrations at ambient conditions, the transition between bouncing (open stars) and sticking (filled stars) occurs when the surface tension is at <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>≈</mo> <mn>43</mn> <mspace width="3.33333pt"/> <mrow> <mi>mN</mi> <mo>/</mo> <mi mathvariant="normal">m</mi> </mrow> </mrow> </semantics></math>. This difference in surface tension suggests that surface tension alone cannot account for the transition. Note that the larger circles correspond to the specific drop illustrated in <a href="#micromachines-09-00566-f003" class="html-fig">Figure 3</a>.</p> "> Figure 5
<p>Effect of drop temperature <math display="inline"><semantics> <msub> <mi>T</mi> <mi>d</mi> </msub> </semantics></math> and surface temperature <math display="inline"><semantics> <msub> <mi>T</mi> <mi>s</mi> </msub> </semantics></math> on the bouncing-sticking transition on the leaf. Surface temperatures are separated into four groups for comparison: ambient (circles), warm (squares), hot (diamonds), and scalding (triangles). The transition between drop bouncing (open symbol) and sticking (closed symbol) is identified by a dashed line as a guide for the eye. The shaded gray region indicates temperatures above a surface melting temperature <math display="inline"><semantics> <msub> <mi>T</mi> <mi>m</mi> </msub> </semantics></math>. Below these temperatures, the purple region denotes where drops are colder than the surface, and the lighter yellow region highlights where drops bounce despite being warmer than the surface.</p> "> Figure 6
<p>The time <math display="inline"><semantics> <msub> <mi>t</mi> <mi>c</mi> </msub> </semantics></math> required for condensate to fill superhydrophobic microtexture is estimated and plotted as a function of temperature difference <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>d</mi> </msub> <mo>−</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </semantics></math> for three representative surface temperatures (curves). These values are calculated using Equation (<a href="#FD2-micromachines-09-00566" class="html-disp-formula">2</a>) assuming the properties of a water drop on a microtexture with a characteristic lengthscale of <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>=</mo> <mn>10</mn> <mspace width="3.33333pt"/> <mi mathvariant="sans-serif">μ</mi> <mi mathvariant="normal">m</mi> </mrow> </semantics></math>.</p> "> Figure 7
<p>A phase plot illustrating the three condensate regimes. The experimental data from <a href="#micromachines-09-00566-f005" class="html-fig">Figure 5</a> is replotted in terms of the temperature ratio <math display="inline"><semantics> <mrow> <msub> <mi>T</mi> <mi>d</mi> </msub> <mo>/</mo> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> </semantics></math> and the proposed dimensionless group <math display="inline"><semantics> <mi>β</mi> </semantics></math> (Equation (<a href="#FD3-micromachines-09-00566" class="html-disp-formula">3</a>)). Here, only data below the melting temperature <math display="inline"><semantics> <msub> <mi>T</mi> <mi>m</mi> </msub> </semantics></math> is considered. When no condensate is expected to form within the microtexture (purple region), the drop is expected to bounce, whereas, when significant condensation is expected within the microtexture, it is expected to stick (white region). The finite timescale of the bounce introduces a third regime (yellow region) in which condensate develops but can be insufficient to trap the drop.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Melting of the Surface Microtexture
4.2. Condensation of the Vapor within the Superhydrophobic Texture
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Richard, D.; Clanet, C.; Quéré, D. Surface phenomena: Contact time of a bouncing drop. Nature 2002, 417, 811. [Google Scholar] [CrossRef] [PubMed]
- Quéré, D. Non-sticking drops. Rep. Prog. Phys. 2005, 68, 2495. [Google Scholar] [CrossRef]
- Yarin, A.L. Drop impact dynamics: Splashing, spreading, receding, bouncing... Annu. Rev. Fluid Mech. 2006, 38, 159–192. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Z.; Jiang, Y.; Shi, F.; Zhang, X. Reversible pH-responsive surface: From superhydrophobicity to superhydrophilicity. Adv. Mater. 2005, 17, 1289–1293. [Google Scholar] [CrossRef]
- Xia, F.; Ge, H.; Hou, Y.; Sun, T.; Chen, L.; Zhang, G.; Jiang, L. Multiresponsive surfaces change between superhydrophilicity and superhydrophobicity. Adv. Mater. 2007, 19, 2520–2524. [Google Scholar] [CrossRef]
- Li, B.; Zhang, J. Durable and self-healing superamphiphobic coatings repellent even to hot liquids. Chem. Comrefmun. 2016, 52, 2744–2747. [Google Scholar] [CrossRef] [PubMed]
- Cassie, A.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Koishi, T.; Yasuoka, K.; Fujikawa, S.; Ebisuzaki, T.; Zeng, X.C. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface. Proc. Natl. Acad. Sci. USA 2009, 106, 8435–8440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Chen, X.; Xin, J. Can superhydrophobic surfaces repel hot water? J. Mater. Chem. 2009, 19, 5602–5611. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Rodak, D.E. Is the lotus leaf superhydrophobic? Appl. Phys. Lett. 2005, 86, 144101. [Google Scholar] [CrossRef]
- Yin, L.; Wang, Q.; Xue, J.; Ding, J.; Chen, Q. Stability of superhydrophobicity of lotus leaf under extreme humidity. Chem. Lett. 2010, 39, 816–817. [Google Scholar] [CrossRef]
- Yu, Z.J.; Yang, J.; Wan, F.; Ge, Q.; Yang, L.L.; Ding, Z.L.; Yang, D.Q.; Sacher, E.; Isimjan, T.T. How to repel hot water from a superhydrophobic surface? J. Mater. Chem. A 2014, 2, 10639–10646. [Google Scholar] [CrossRef]
- Bartolo, D.; Bouamrirene, F.; Verneuil, E.; Buguin, A.; Silberzan, P.; Moulinet, S. Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. EPL 2006, 74, 299. [Google Scholar] [CrossRef]
- Reyssat, M.; Richard, D.; Clanet, C.; Quéré, D. Dynamical superhydrophobicity. Faraday Discuss. 2010, 146, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Bird, J.C.; Dhiman, R.; Kwon, H.M.; Varanasi, K.K. Reducing the contact time of a bouncing drop. Nature 2013, 503, 385. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Moevius, L.; Xu, X.; Qian, T.; Yeomans, J.M.; Wang, Z. Pancake bouncing on superhydrophobic surfaces. Nature Phys. 2014, 10, 515. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Andrew, M.; Li, J.; Yeomans, J.M.; Wang, Z. Symmetry breaking in drop bouncing on curved surfaces. Nature Commun. 2015, 6, 10034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, C.J.; Shiri, S.; Bird, J.C. Macrotextured spoked surfaces reduce the residence time of a bouncing Leidenfrost drop. J. Phys. Condens. Matter 2017, 29, 064007. [Google Scholar] [CrossRef] [PubMed]
- Shiri, S.; Bird, J.C. Heat exchange between a bouncing drop and a superhydrophobic substrate. Proc. Natl. Acad. Sci. USA 2017, 114, 6930–6935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugden, S. VI.—The variation of surface tension with temperature and some related functions. J. Chem. Soc. Trans. 1924, 125, 32–41. [Google Scholar] [CrossRef]
- Loglio, G.; Ficalbi, A.; Cini, R. A new evaluation of the surface tension temperature coefficients for water. J. Colloid Interface Sci. 1978, 64, 198. [Google Scholar] [CrossRef]
- Khattab, I.S.; Bandarkar, F.; Fakhree, M.A.A.; Jouyban, A. Density, viscosity, and surface tension of water+ ethanol mixtures from 293 to 323K. Korean J. Chem. Eng. 2012, 29, 812–817. [Google Scholar] [CrossRef]
- Rathjen, K.A.; Jiji, L.M. Heat conduction with melting or freezing in a corner. J. Heat Transf. 1971, 93, 101–109. [Google Scholar] [CrossRef]
- Cussler, E.L. Diffusion: Mass Transfer in Fluid Systems; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Kim, S.; Kim, K.J. Dropwise condensation modeling suitable for superhydrophobic surfaces. J. Heat Transf. 2011, 133, 081502. [Google Scholar] [CrossRef]
- Rykaczewski, K. Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. Langmuir 2012, 28, 7720–7729. [Google Scholar] [CrossRef] [PubMed]
- Mills, A.; Seban, R. The condensation coefficient of water. Int. J. Heat Mass Transf. 1967, 10, 1815–1827. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiri, S.; Murrizi, A.; Bird, J.C. Trapping a Hot Drop on a Superhydrophobic Surface with Rapid Condensation or Microtexture Melting. Micromachines 2018, 9, 566. https://doi.org/10.3390/mi9110566
Shiri S, Murrizi A, Bird JC. Trapping a Hot Drop on a Superhydrophobic Surface with Rapid Condensation or Microtexture Melting. Micromachines. 2018; 9(11):566. https://doi.org/10.3390/mi9110566
Chicago/Turabian StyleShiri, Samira, Armela Murrizi, and James C. Bird. 2018. "Trapping a Hot Drop on a Superhydrophobic Surface with Rapid Condensation or Microtexture Melting" Micromachines 9, no. 11: 566. https://doi.org/10.3390/mi9110566
APA StyleShiri, S., Murrizi, A., & Bird, J. C. (2018). Trapping a Hot Drop on a Superhydrophobic Surface with Rapid Condensation or Microtexture Melting. Micromachines, 9(11), 566. https://doi.org/10.3390/mi9110566