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Abstract: AlN-based bulk acoustic wave (BAW) filters have emerged as crucial components
in 5G communication due to their high frequency, wide bandwidth, high power capacity,
and compact size. This paper mainly reviews the basic principles and recent research
advances of AlN-based BAW resonators, which are the backbone of BAW filters. We begin
by summarizing the epitaxial growth of single-crystal, polycrystalline, and doped AlN
films, with a focus on single-crystal AlN and ScAlN, which are currently the most popular.
The discussion then extends to the structure and fabrication of BAW resonators, including
the basic solidly mounted resonator (SMR) and the film bulk acoustic resonator (FBAR).
The new Xtended Bulk Acoustic Wave (XBAW) technology is highlighted as an effective
method to enhance filter bandwidth. Hybrid SAW/BAW resonators (HSBRs) combine
the benefits of BAW and SAW resonators to significantly reduce temperature drift. The
paper further explores the application of BAW resonators in ladder and lattice BAW filters,
highlighting advancements in their design improvements. The frequency-reconfigurable
BAW filter, which broadens the filter’s application range, has garnered substantial attention
from researchers. Additionally, optimization algorithms for designing AlN-based BAW
filters are outlined to reduce design time and improve efficiency. This work aims to serve as
a reference for future research on AlN-based BAW filters and to provide insight for similar
device studies.

Keywords: 5G; BAW; SAW; AlN; ScAlN; SMR; FBAR; HSBR; XBAW; MOCVD; PVD; ladder;
lattice; reconfigurable

1. Introduction
With the rapid development of the fifth generation of mobile communication tech-

nology (5G) worldwide, the scale of the mobile information market continues to expand;
the form of service continues to change; its data transmission rate, data carrying capacity,
and spectrum utilization are significantly improving; more and more functional modules
are being added to wireless terminals; and the overall utilization of the frequency band
continues to develop to high frequency [1]. n77 and n79 are core bands for global 5G
deployments due to their wide bandwidth for higher data rates [2].

The new bands need to support up to 32% fractional bandwidth and frequencies above
7 GHz. In order to maintain device lifetime and prevent data rate degradation, RF front-
end filters are required to have smaller size, higher frequency, wider bandwidth fractions,
higher power handling, lower insertion loss, and lower temperature drift [3]. At present,
the most mainstream application of radio frequency (RF) acoustic filters is dominated by
surface acoustic wave (SAW) filters and bulk acoustic wave (BAW) filters [4]. BAW refers to
acoustic waves traveling through a material’s bulk, while SAW involves waves confined to
the surface. BAW filters have advantages such as high operating frequency and large power
capacity compared with SAW filters, making them widely recognized. The high quality
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factor (Q factor) of BAW filters results in steeper skirts, while their high sound velocity
and thermal conductivity give them high power-handling capabilities. Additionally, the
low power consumption, high isolation, and compatibility with complementary metal
oxide semiconductor (CMOS) technology, which is commonly used to construct integrated
circuits, make BAW filters mainstream devices in the field of RF communication, which
refers to electromagnetic wave frequencies typically ranging from 3 kHz to 300 GHz [5].
Therefore, a comprehensive understanding of the fundamental building block, the BAW
resonator, is essential for designing higher-performance BAW filters.

Currently, aluminum nitride (AlN) piezoelectric films are used in almost all body
acoustic wave filter devices due to their mature manufacturing process and excellent perfor-
mance [6]. On the one hand, with the continuous development of Micro-Electro-Mechanical
Systems (MEMS) technology, which involves small mechanical and electromechanical de-
vices built using microfabrication techniques, the process of growing AlN thin films has
gradually matured. In practice, large-sized AlN thin films can be grown quickly and stably,
and their preparation is compatible with CMOS technology, making it more suitable for
integrated circuits [7]. On the other hand, AlN has very stable chemical properties, a
high piezoelectric coefficient, higher thermal conductivity compared to other piezoelectric
materials, and a large Q value in a wide frequency range. It also has advantages such as
high internal acoustic wave propagation speed. Due to its wide bandgap characteristics
and high temperature resistance, AlN is being developed toward semiconductor devices
that can withstand high frequencies, high powers, and high temperatures. Therefore, AlN
has excellent thermal properties, chemical properties, piezoelectric performance, high
mechanical strength, and high sound velocity characteristics, making it very suitable for
application in acoustic devices [8–10].

2. Piezoelectric Materials and Their Epitaxial Growth Methods Used in
BAW Resonators
2.1. Single-Crystal AlN

AlN films are classified as single-crystal AlN, poly-crystalline AlN, and doped AlN.
Single-crystal AlN has higher crystal quality with fewer defects and more stable chemical
properties, which is conducive to improved pressure properties and speed of sound and
reduced absorption and scattering of bulk acoustic waves [11]. Single-crystal AlN has a
strong polarization effect, and the heterojunction formed with GaN has a high concentration
of two-dimensional electron gas, which can be applied in high-frequency and high-power
fields [12]. The use of AlN significantly increases the breakdown voltage of high electron
mobility transistors (HEMTs) and facilitates low-loss operation in enhanced-mode (E-
mode) HEMTs. This is critical for devices that need to operate at higher voltages or in more
challenging electrical environments. The use of AlN and specific treatments also enhances
the overall stability and reliability of HEMTs. The potential of HEMTs with surface AlN
layers for achieving high linearity and low power consumption in amplifier applications
is significant [13–15]. The growth of AlN materials used for HEMTs can be achieved
using molecular beam epitaxy (MBE) technology. The MBE process allows precise control
of layer thickness, composition, and doping, making it an attractive technique for high-
performance III-N transistors [16]. H. Lu et al. [17,18] found that recessed ohmic structures
significantly improved the gain and output power of HEMTs, enhancing their large-signal
characteristics. By rationally designing and optimizing the ohmic contact structure and
passivation layer techniques, HEMTs have shown great potential in high-frequency and
high-power applications.

J.B. Shealy et al. [19] grew single-crystal AlN films on SiC substrates using the metal-
organic chemical vapor deposition (MOCVD) technique. Poly-crystalline AlN is usually
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grown using the physical vapor deposition (PVD) method. MOCVD uses metal-organic
compounds to grow thin films, while PVD vaporizes solid materials to deposit thin films.
Compared with poly-crystalline PVD AlN, single-crystal AlN films grown on SiC substrates
using MOCVD have higher crystal quality, which is specifically manifested in (0004) X-rays.
The full width at half maximum (FWHM) of the X-ray diffraction (XRD) sway curve is
0.025◦. Research has shown that after thermal annealing, the FWHM of the (0002) plane
of PVD-grown AlN on sapphire substrates can be reduced to as low as 147 arcseconds,
which translates to less than 1.5 degrees [20]. This improvement in crystal quality has been
shown to increase the piezoelectric coefficient [21]. AlN piezoelectric material has a higher
longitudinal speed of sound, so a thicker material can be used at the same frequency [22]
with higher thermal conductivity [23]. Y. Shen et al. [24] prepared single-crystal AlN-based
BAW filters using MOCVD and poly-crystalline AlN-based BAW filters using PVD. Under
the test conditions of a pulsed signal with a 1% duty cycle and an 800-µs period (applied to
the middle and upper edges of the passband) and a pulsed continuous-wave signal with a
1% duty cycle and an 8-µs pulse duration for RF driving, single-crystal and polycrystalline
AlN-based BAW filters were tested. The results show that the peak power capability of
the single-crystal filter at the right edge of the passband is 18.1 W higher than that of the
polycrystalline filter. Moreover, the insertion loss of the single-crystal filter ranges from
1.2 to 1.4 dB, which is lower than that of the polycrystalline filter (1.6–2.0 dB). Evidently,
the single-crystal filter performs better in terms of power handling and insertion loss.

The MOCVD method can directly grow c-axis-oriented single-crystal AIN films on
sapphire substrates [25]. Currently, there is no patterned bottom electrode beneath the
piezoelectric film, and integrating single-crystal film into BAW presents significant chal-
lenges. The current method involves depositing the piezoelectric film onto a substrate
and then transferring it to a new substrate. Then, dry etching or wet etching is used to
remove the original substrate and use the new substrate as a foundation [26]. However, this
method of transferring the original substrate is challenging, costly, and time-consuming.
To meet this challenge, B.H. Lin et al. [27] proposed a method for growing high-quality
single-crystal AlN films by using GaN as a transition layer on a sapphire substrate. The
GaN transition layer plays a crucial role by offering a template for the crystal orientation
during the deposition of AlN and creating the necessary conditions for the laser lift-off
process that follows. GaN with a single-crystal AlN film was detached from the sapphire
substrate through laser peeling (Figure 1a).

MOCVD is often used to grow single-crystal AlN, but the internal stress is difficult to
control. When the AlN film grows to 500 nm and the temperature returns to room tempera-
ture, film cracks appear and cannot be used for the preparation of BAW resonators [6]. PVD
has the advantages of high film formation rate, low substrate temperature, dense film layer,
low internal stress, strong adhesion, and good compatibility with the CMOS process [28].
However, the quality of AlN crystal using magnetron sputtering is poor, and there are many
grain boundaries and defects. In order to combine the advantages of both methods, R.D.
Qin et al. [29] proposed the use of two-step deposition to prepare single-crystal AlN. First,
200 nm thick AIN films were grown epitaxically on a 4-inch Si (111) substrate using the
MOCVD method, and then the single-crystal AIN template was transferred to the PVD sys-
tem, where an additional 300 nm AIN film was deposited (Figure 1b). For the (0002) peak,
MOCVD-grown AlN has an FWHM of 0.45, MOCVD+PVD-grown AlN has an FWHM of
0.47, and PVD-grown AlN has a significantly wider FWHM of 2.13. The results show that
the two-step growth method combines the advantages of MOVCD and PVD to effectively
regulate the stress of single-crystal AlN films, which has broad application prospects.
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Figure 1. Single-crystal AlN and its epitaxial growth. (a) Graphical illustration of growth process
under different growth temperatures [27]. Step (1) is Wafer surface cleaning; Step (2) is GaN nucleation
layer; Step (3) is GaN growth; Step (4) is AlN growth. This image has been obtained with permission
from IEEE Publishing. (b) Schematic using the epitaxial AlN layer as a sputtering template to grow
the single-crystal AlN substrate. Adapted from [29].

2.2. Doped AlN

Since the effective electromechanical coupling coefficient (k2
e f f ) of the piezoelectric

layer determines the relative bandwidth of the BAW filter [30], a way must be found to
improve k2

e f f in order to meet the requirements of RF front-end filters. Numerous studies
have shown that doping certain elements in AlN changes its piezoelectric properties and
k2

e f f . Doping can be divided into single doping and co-doping. At present, the single
doping elements studied include Sc [31–36], Ti [37,38], Ta [39], V [39], Mg [40], Er [41],
Y [42], Cr [31], etc. Among them, doping with Ti, V, Mg, and other elements will reduce
the piezoelectric properties of AlN. Co-doping mainly consists of Mg and other elements,
including Mg + Zr [43], Mg + Hf [44], Mg + Ti [45], Mg + Nb [46,47], etc. Controlling the
doping ratio of Mg and Zr/Hf/Ti/Nb and other elements will also significantly improve
the piezoelectric properties of AlN.

M. Akiyama et al. [48] first found that doping of Sc in AlN could greatly improve
the piezoelectric characteristics of AlN, and the d33 (the piezoelectric charge coefficient
representing the polarization generated in the direction of an applied mechanical stress)
of the piezoelectric film increased by 400%. As a kind of nitride semiconductor, ScAlN is
still a hot research topic due to its improved piezoelectric performance compared to pure
AlN. Structurally, the incorporation of Sc into the AlN lattice causes slight lattice distortion,
leading to changes in both mechanical and electrical properties. The FWHM of the recently
studied ScAlN can reach 1.9 deg [49,50], indicating a high crystalline quality and uniformity,
which is beneficial for improving the material’s piezoelectric properties and overall device
performance. This lattice expansion, due to the larger ionic radius of Sc compared to Al,
has been shown to affect the crystallinity and other key material properties, which are
critical in BAW resonator performance. For comparison, epitaxial AlN typically retains a
highly crystalline wurtzite structure with minimal defects, while Sc doping can introduce
strain, affecting the overall crystal quality [51–56]. M. Moreira et al. [51] prepared BAW
(FBAR) based on three kinds of ScAlN with different Sc contents. The results showed that
when the Sc content was 3%, 9%, and 15%, the k2

e f f showed an upward trend, which was
7.55%, 7.55%, and 12%, respectively. However, the quality factor (Q) showed a downward
trend, which was 601, 513, and 348, respectively. With the improvement of k2

e f f , however,
doping with Sc causes a serious problem: the deterioration of the mechanical quality factor
(Qm) [52]. Furthermore, temperature coefficients of frequency (TCF) degradation may occur
in ScAlN films compared to AlN because the elastic constants of ScxAl1−xN films decrease
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with increasing Sc concentration [53]. H. Igeta et al. [30] investigated the effect of Sc doping
concentration (ScxAl1−xN) on TCF. When x < 0.2, there was no significant change in TCF,
and when x > 0.2, TCF deteriorated. Therefore films in the region of x > 0.2 are promising
for film resonator application (Figure 2a). Under their experimental conditions, the TCF
values of ScAlN and SiO2 exhibited opposite signs. To address this discrepancy, SiO2 was
introduced, and its properties were carefully controlled to mitigate the deterioration of TCF.
Although it achieves near-zero TCF in the piezoelectric layer, it experiences a reduction
in the k2 value due to the non-piezoelectric nature of SiO2. In [30] the value of k2 is only
7.9%. Similarly, K. Izumi et al. [54] also used alternating piezoelectric and non-piezoelectric
layers to fabricate BAW resonators which can be fabricated in a large area with common
sputtering systems (ScAlN and SiO2 were alternately arranged in the report).

ScAlN/SiO2 films can be prepared by RF magnetron sputtering [54]. First, the c-axis-
oriented ScAlN film is grown on the bottom electrode film/silica glass substrate by RF
magnetron sputtering, and then the SiO2 film is deposited using the SiO2 target. The process
is then repeated. In addition to ScAlN films with normal c-axis orientation, c-axis-tilted
ScAlN films can be prepared in some scenarios. As shown in Figure 2b, c-axis-tilted films
and c-axis-normal films were fabricated using single and dual RF magnetron sputtering
systems, respectively [55]. Examples of preparing c-axis-tilted ScAlN films are reported in
the literature [33,56]. Using glancing angle magnetron sputtering, ScAlN films with a c-axis
tilt were deposited on a silica glass substrate with a bottom electrode film. The substrate
was positioned at 60◦ from the target surface to achieve a c-axis tilt of approximately
50◦ [56]. The target surface was ScAl metal alloy (Sc43Al57) (Figure 2b).
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Figure 2. Properties and preparation of doped AlN. (a) TCF of ScxAl1−xN films as a function of
Sc concentration (x) [30]. This image has been obtained with permission from IEEE Publishing.
(b) Method for depositing c-axis zig-zag ScAlN multilayers. Adapted from [56].

3. The Structure and Fabrication Process of AlN-Based BAW Resonators
3.1. Classification

BAW resonators can be divided into two categories: one is based on film bulk acoustic
wave resonator (FBAR) resonators, and the other is based on solid-state solidly mounted
resonator (SMR) resonators (Figure 3a). According to the different reflection methods, BAW
resonators with the FBAR structure are divided into back silicon etching-type FBAR, lower
concave cavity-type FBAR, and upper convex cavity-type FBAR [57] (Figure 3b–d). SMR
resonators achieve acoustic reflection through the air interface between the solid medium
and the upper and lower surfaces, or Bragg reflection layer mutation. Compared with
SMR, FBAR has a higher quality factor (Q) and a higher k2

e f f [58]. With the development
of MEMS, the FBAR filter has the advantages of low power consumption, high power
capacity, and it can be combined with CMOS. It has become a research hotspot for 5G
RF filters [59]. SMR uses the Bragg reflection layer to limit the sound wave within the
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piezoelectric oscillation stack. The Bragg reflection layer generally uses W and SiO2 as the
acoustic layer with high and low impedance, because the acoustic impedance difference
between W and SiO2 is large, which can effectively restrain the sound wave [6]. The biggest
advantages of SMR are its strong mechanical fastness, good integration, and not needing
to use MEMS technology. The disadvantages of SMR are that multi-layer films need to be
prepared, the process cost is higher than that of air gap FBAR, and the acoustic reflection
effect of the Bragg reflection layer is not as good as that of air, so the Q value of SMR is
generally lower than that of air gap FBAR [60].
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3.2. Principle and Characterization

The operational principle of BAW resonators can be succinctly described as fol-
lows [61]: Upon application of a specific RF voltage frequency across the upper and lower
electrodes, the piezoelectric material within the device undergoes an inverse piezoelectric
effect within its core, inducing mechanical vibrations. These vibrations then convert the RF
electrical signal into an acoustic wave that travels through the thickness of the piezoelectric
layer. Given that the upper and lower surfaces of the resonant oscillation region are exposed
to air, which serves as an effective acoustic reflector, the acoustic wave experiences total
reflection. Consequently, the wave undergoes multiple reflections between the two air
interfaces, resulting in the formation of an acoustic standing wave within the resonant
oscillation region, thereby achieving resonance.

The performance evaluation of BAW resonators typically revolves around two key
parameters [6,59]: the effective piezoelectric coupling coefficient (k2

e f f ) and the quality

factor (Q). k2
e f f characterizes the ratio of energy conversion between the mechanical and

electrical domains, thereby determining the bandwidth of BAW filters. Generally, a larger
k2

e f f can meet the wide bandwidth requirements of RF filters in 5G communication systems.

Research suggests that k2
e f f for advanced materials like AlScN can reach 12–16%. The Q

of a BAW resonator measures how efficiently it stores energy versus losing it to heat. A
higher Q indicates sharper resonance, meaning the filter can better separate closely spaced
frequencies with less energy loss. It directly impacts the filter’s selectivity and performance.
The Q factor typically ranges from 700 to 1000, depending on the operating frequency and
material used. Thus, k2

e f f × Q is called the figure of merit (FOM) [62]. In advanced BAW
resonators using materials like AlScN, the FOM often reaches 60 to 160 for filters operating
in the 2~5 GHz range. Research indicates that the optimal value for k2

e f f is twice the relative
bandwidth of designed BAW filters [60].
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3.3. The Design and Fabrication of BAW Resonators
3.3.1. BAW-SMR Resonator

The BAW-SMR exhibits robust mechanical strength and excellent integration char-
acteristics. And there is a heat conduction path leading to the substrate in the structure,
which can well dissipate heat through the substrate [63], so it has an excellent TCF [64]. It
has many application scenarios in communication systems. D. Mercier et al. [65] fabricated
filters for space using BAW resonators with the SMR structure. The resonators and filters
were manufactured on 200 mm high-resistivity silicon wafers with a resistivity greater
than 2 kΩ·cm. The resonator structure comprised an AlN piezoelectric layer sandwiched
between Mo electrodes, situated atop a bragg reflector. This reflector, composed of W
and SiO2, served to confine the acoustic wave effectively. Additionally, a silicon nitride
(Si3N4) passivation layer was uniformly deposited over the resonator to enhance reliability.
It was selectively etched to establish electrical connections with the Mo electrodes. The
RF transmission lines and electrode contacts were fabricated using Al. The resonance
frequency of the acoustic resonators was finely tuned by partially etching the Si3N4 layer
atop each resonator. Figure 3a shows a basic cross-section schematic of SMR technology.
Based on the above, Andreas Bogner et al. [66] used two-layer Al/W electrodes to optimize
the effective coupling of W while maintaining low electrical losses of Al. As shown in
Figure 6b in reference [66], the extracted effective k2

e f f showed lower values around 12.5%,
which could be attributed to the usually lower quality at the beginning of crystal growth
of the used thin films. The inhomogeneous distribution of Q is mainly determined by
mirror performance bias. Literature [66] also compares the situations with and without
electrode frames (Figure 4a). In the research of n41 band filters, for suppressing spuri-
ous modes, electrode apodization was adopted in some cases, and electrode frames were
only applied to n41 single resonators. The results show that the insertion loss increases
when there is no electrode frame. Moreover, in some samples, additional notches appear
due to the inhomogeneity of the mechanical polishing process of the bottom electrode,
while this phenomenon was not observed in the ladder experiment of the sample with
electrode frames.
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SiO2 in the Bragg reflection layer is the most common low-impedance material due to
its appropriate acoustic properties in SMR-BAW. Metallic materials such as W [65,67], Ir [68],
and Mo [69,70] are usually the ones occupying these positions in high-impedance materials.
However, undesired capacitive coupling may occur if specific electrode grounding methods
are used [67]. To avoid the aforementioned interference, accessing the bottom electrode by
capacitive coupling avoids the use of additional masking steps and etching through the
AlN piezoelectric layer [64] (Figure 4b).
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Since the operating frequency of BAW-SMR is completely determined by the set of
layers, especially their thickness, it is crucial to carefully control these parameters. This
means that a set of resonators operating at a specific frequency can be fabricated at a time.
However, it is hardly possible to synthesize two filters for different standards [71]. This will
increase the complexity of the manufacturing process. In order to solve this problem, it is
proposed to deposit piezoelectric films with different thicknesses on the same substrate [72].
At present, there are two realization ideas. The first method is to deposit the thinner film
first for the highest frequency filter, and then continue to deposit the thicker film at the
location of the low-frequency filter [73]. However, the piezoelectric properties of thicker
films will be decreased [71]. The second method involves depositing the thickest film first
and then using etching to obtain the required film thickness for the RF filter. This method
will not reduce the piezoelectric properties of the membrane but will increase the roughness
of the membrane surface, which may reduce the electromechanical coupling coefficient. In
order to solve the above shortcomings, E. Iborra et al. [74] proposed a new method based
on multiple deposition and imaging of piezoelectric layers.

3.3.2. BAW-FBAR Resonator

The key difference between BAW-FBAR and BAW-SMR is that the FBAR resonator
forms a cavity under the bottom electrode. R. Ding et al. [75] reported a conventional
method for fabricating FBAR resonators. First, a 4 µm cavity was etched on the silicon
wafer. Then, 5 µm phosphor-silicon glass (PSG) was deposited on the silicon wafer for
chemical mechanical polishing (CMP) flat polishing. To improve the crystal axis orientation
of the bottom electrodes [76], a 30 nm AlN seed layer was deposited on the silicon substrate
and 150 nm Mo bottom electrodes were sputtered randomly. The AlScN piezoelectric films
were then epitaxially grown by DC magnetron sputtering. Subsequently, a top Mo film
with a thickness of 150 nm was deposited by dc sputtering, then patterned and etched
using inductively coupled plasma (ICP). A 100 nm thick AlN passivation layer was also
deposited in order to protect Mo from oxidation [77]. This layer also served to fine-tune
the resonant frequency. Finally, in order to release the sacrificial layer of PSG to obtain the
cavity, the PSG layer was reached through a via hole [27] and hydrogen fluoride (HF) was
used (Figure 5a).

The cavity can also be formed on top of the Si substrate, and the preparation process
is different from the process in which the cavity is embedded in the Si substrate. Y. Zou
et al. [78] fabricated FBAR resonators by forming cavities on Si substrates. Different from
the above methods, Y. Zou et al. [79–81] first used high-resistance silicon etching to form
an isolation wall to define the shape of the cavity, which was then filled with SiO2 as the
support for the growth of the upper layer material, which was later removed to release the
cavity. Two layers of Mo were deposited on the top, with 100 nm thick Mo used as the top
electrode and 37 nm thick Mo used as the mass loading layer. After that, 1 µm thick Al was
deposited by magnetron sputtering and patterned to define the probing pad. Figure 5b
illustrates the flow of the preparation [82].

R.D. Qin et al. [29] introduced wafer bonding and layer transfer methods for inserting
the bottom electrode utilizing single-crystal AlN films epitaxially grown using a two-step
growth method. A 200 nm thick Mo was first deposited on the AlN surface by sputtering as
the bottom electrode. Then, a sacrificial layer was deposited and flattened. The piezoelectric
film was then stacked onto another highly resistive silicon using a wafer bonding and
substrate removal process. Pt electrodes, AlN-VIAs, and Ti/Au substrates were processed
on them. Finally, the sacrificial layer was selectively removed to create a cavity beneath the
resonance region (Figure 5c).
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Figure 5. The fabrication of BAW-FBAR. (a) Fabrication process of the FBAR device. Adapted
from [75]. (b) Fabrication of AlScN-based upper mounted cavity-type FBAR. Adapted from [82]
(c) Wafer bonding and layer transfer techniques. Adapted from [29].
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3.3.3. BAW-XBAW Resonator

Conventional BAW resonator technology is limited in its ability to address wider band-
width requirements owing to its relatively modest piezoelectric coupling. Consequently,
there has been considerable interest in a novel device known as Xtended Bulk Acoustic
Wave (XBAW), which has garnered significant attention [83–86]. XBAW is a new process for
manufacturing BAW resonators, offering optimized performance over traditional designs.
While both XBAW and FBAR resonators use bulk acoustic waves, XBAW resonators are
not classified as FBAR resonators but are part of advanced BAW resonators technology.
Thus, BAW-XBAW resonators are a specific type of BAW device. The XBAW process
has the advantage of being compatible with both single-crystal and poly-crystalline AlN
piezoelectric materials [87]. XBAW resonators feature dual air interfaces [24] and a unique
transferred substrate manufacturing process, which can utilize AlScN material with high
Sc concentrations, deposited via either PVD or MOCVD. The XBAW process, in contrast
to traditional BAW resonator fabrication methods, lies in the uniformity and continuity
of the produced piezoelectric film. In employing the XBAW technique, the resultant film
maintains a flat, uninterrupted surface, characterized by a consistent grain structure and
high-quality acoustic properties across the entire device, from which a high FOM resonator
will be fabricated [88,89]. The transfer process in XBAW eliminates the need for sputtering
the piezoelectric film over a bottom electrode, enabling the growth on any arbitrary and
high-quality substrate. Thus, the XBAW process also enables removal of that portion of the
piezoelectric film that incorporates a higher defect level [90,91].

Y. Shen et al. [92] introduced the manufacturing process of XBAW: Firstly, a doped
AlN piezoelectric layer with a thickness of 0.42 µm was grown on a Si substrate with a
diameter of 150 mm. After sputtering and deposition of the electrode and a two-sided wafer
process (an 11-mask layer, two-sided wafer process), resonators with two air interfaces were
generated. The backside resonator electrode was routed to the topside of the wafer using
vias in the doped AlN thin film [88]. Figure 6a shows a schematic diagram of the XBAW
resonator. Since XBAW technology has the advantage of combining multilayer piezoelectric
films at the same time, such as single-crystal ScAlN and poly-crystalline ScAlN. Thus, a new
technique has been developed to enhance FOM: a fabricable, periodically polarized piezo-
electric film (P3F) BAW resonator based on the XBAW process [89,93]. P3F is constructed by
stacking oppositely polarized piezoelectric layers on top of each other, which increases the
total piezoelectric thickness and avoids any decrease in electromechanical coupling. The
advantages of P3F are shown in Figure 6b. P3F enhances acoustic resonator performance
by increasing the effective piezoelectric thickness, improving acoustic energy confinement,
and maintaining electromechanical coupling. This approach provides frequency scaling
benefits for millimeter wave applications while reducing filter bandwidth loss. Overall,
P3F significantly boosts the acoustic Q factor and mitigates resistive losses, improving
resonator efficacy.

The currently studied XBAW resonators are summarized in Table 1. The filters using
this process will have great application scenarios in the future 5G/6G communication field
because of their excellent performance.
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Table 1. The characteristic of BAW-XBAR resonators.

Ref. Piezo Layer Center Freq. (GHz) k2
eff (%) Q FOM (k2

eff × Q)

[88] Al0.72Sc0.28N 3.5 16.7 951 158
[89] Al0.2Sc0.2N on Al0.2Sc0.2N (P3F) 10.7 7.94 342 27.2
[89] Al0.3Sc0.2N on Al0.2Sc0.2N (P3F) 18.4 7.55 260 20
[90] highly doped AlScN 6.4 20 500 100
[92] Doped AlN 5.66 10.24 1479 151
[93] Single and polycrystalline AlScN (P3F) 8.76 13 935 122
[93] Single and polycrystalline AlScN (P3F) 10.72 10 789 79

3.3.4. Hybrid SAW/BAW Resonators (HSBRs)

In HSBRs, which are proposed by V. Plessky et al. [94], BAW resonators replace the
fingers of the cross transducer (IDT) of each SAW resonator, which is periodically repeated
through the SAW wavelength. The BAW resonator vibrates periodically on the substrate,
generating surface acoustic waves in the substrate [90]. The efficient transduction of
SAW by vibrating BAW resonators depends upon the fact that both waves have the same
wavelength (λSAW = λBAW), which means that the thickness of the piezoelectric thin-film
(AlN) should be λSAW/2. The literature [95] gives a general preparation process based on
a six-mask process (Figure 7): The common bottom Mo electrode for all transducers is
deposited first and then patterned. AIN piezoelectric films, Mo electrodes, and SiO2 hard
masks are fabricated on this basis. UV lithography and dry etching are then used to define
the transducer separation grooves. After chemical removal of the etching mask, the Mo and
AlN films are patterned again using dry and wet etching methods, respectively, to expose
the electrical contacts to the bottom electrode. The top Mo electrode is then shaped via
dry etching, and Al contact pads are added using the lift-off process to facilitate electrical
probing. Test results show that HSBRs can achieve high Q values. The electromechanical
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coupling factors of the pseudo-BAW mode can reach up to 2%, and its quality factors can
reach as high as 1900.
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The electromechanical coupling coefficient (k2) and phase velocity (v) are critical pa-
rameters for SAW devices [96,97]. However, the k2 value of HSBRs is not ideal [98]. S.
Barsoum et al. [99,100] studied the effect of the transducer aspect ratio on the electrome-
chanical coupling factor. The maximum k2 value of pseudo-SAW mode is only 2.4%, and
the maximum k2 value of pseudo-BAW mode is 3.4%, which is significantly lower than that
of BAW resonators. In order to enhance k2, one method is to deposit a low-impedance layer
on the Si substrate, then deposit the bottom electrode, and then deposit a high-impedance
layer to reduce the acoustic loss. Finally, the top BAW resonator part is fabricated [35,101]
(Figure 8a). The structure proposed in [35] is referred to as HAL, where the high-impedance
material is AlN, the low-impedance material is SiO2, and the piezoelectric layer is ScAlN.
As shown in Figure 4 in [35], by optimization of the structure configuration parameters,
the obtained k2 has a remarkable value of 21%, where the v is about 5100 m/s. The
study [101] investigated the characteristics of coupled BAW/SAW devices under different
conditions. When the ratio of the etching depth of the interdigitated transducer (IDT)
fingers to the total AlN thickness was varied, the k2 of the coupled BAW/SAW devices
on non-piezoelectric substrates was significantly enhanced compared with that of the
conventional AlN/Si-based SAW devices. When a GaN piezoelectric substrate was used,
the coupling efficiency was also greatly improved. Meanwhile, the phase velocities of both
piezoelectric and non-piezoelectric substrates decreased rapidly as the above-mentioned
ratio increased, which was due to the fact that a BAW mechanical source was adopted
to excite SAW in these devices. Finite-element method (FEM) analysis showed that the
high elastic constant of GaN was the reason for the higher k2 in AlN/Mo/GaN devices
compared with AlN/Mo/Si devices (Figure 8b,c). Y. Zhang et al. [102] provided a new idea
in which 6H-SiC was used as the substrate and the piezoelectric layer was ScAlN, with SiO2

filling the grooves. It had a remarkable k2
e f f value of 14.55% and a high v above 7500 m/s.

Furthermore, acoustic metamaterial devices also have significant potential to achieve high
k2. X. Y. Zhao et al. [49,103] provided complementary approaches to enhance k2 using
acoustic metamaterials. The studies introduced AlN-based two-dimensional resonant rods
(2DRRs) with a k2 value of 7.4%, and a record k2 value of 23.9% was achieved using AlScN.
The enhanced k2 allows for ultra-wideband filters suitable for next-generation 5G and
6G applications.
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4. The Application of AlN-Based BAW Resonators
AlN-based BAW resonators are primarily used to construct BAW filters. Therefore,

this chapter focuses on reviewing the current research directions from the perspective of
BAW filters, including circuit topologies, methods for expanding BAW filter bandwidth,
frequency reconfiguration technologies, and studies aimed at improving the speed of
circuit design.

The basic BAW filter chip structure includes the ladder structure and lattice struc-
ture [104]. The individual resonators in these two topologies are not coupled and work
separately, and their structures are shown in Figure 9a–c. The ladder structure usually
grounds the parallel resonators to realize the single-ended input and output structure,
which is widely used. The structure of the ladder connection topology is mainly composed
of series resonators and parallel resonators, and the resonant frequency of series resonators
is always higher than that of parallel resonators [105]. The ladder structure has transmis-
sion zero out of band, good proximal suppression but poor distal suppression, it directly
processes single-ended signals, does not need to introduce additional devices, and it is
conducive to miniaturization [75]. The lattice connection structure is a double-terminal
output structure, which can achieve wider bandwidth and better remote rejection, but it
has the disadvantage of a poor rectangular coefficient. Moreover, this kind of filter needs to
introduce additional devices to process the input signal, which will increase the volume of
the filter and is not conducive to integrated processing, so the applications of this structure
are limited [106]. In order to combine the advantages of both structures, it is common to
mix the two structures [107,108]. The new structure not only maintains the broadband
property of the lattice structure but also introduces transmission zero points through the
ladder structure, which makes the filter have steep edge characteristics.

In order to enhance the bandwidth of BAW filters, several effective approaches are
available. On the basis of the ladder structure, Q. Wang et al. [109] found that when the
FBAR resonator was connected in series or parallel with the inductor element, the spacing
between the series and parallel resonant frequencies of the resonators could be increased,
thus increasing the electromechanical coupling coefficient of the resonators to a certain
extent, which was conducive to the realization of wideband filter design. The topological
structure is shown in Figure 9d. The relative bandwidth of 1 dB was up to 8.7%. Y. Zou
et al. [78] formed Mo layers on the connecting bands of each FBAR resonator. It not only
expanded the bandwidth but also improved the notch formed in the passband of the
traditional filter. The measured voltage standing wave ratio (VSWR) of the modified FBAR
filter is below 2 in the pass-band, so it demonstrates a favorable match to 50Ω without the
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need for any auxiliary circuits. In general, the filter exhibits a low insertion loss of 1.804 dB,
a broad bandwidth of 189 MHz, and an out-of-band rejection of 30 dB. Y. Jang et al. [110]
innovatively combined BAW resonators and IPD filters (Figure 9e), demonstrating superior
attenuation performance and boasting an impressive 900 MHz wide passband. Also using
the idea of “hybridization”, E. Guerrero et al. [111] designed a new BAW filter based
on the ladder configuration by combining AlN-based BAW resonators and ScAlN-based
BAW resonators, called a hybrid BAW filter (Figure 9f), which not only improved the
bandwidth but also improved the skirt steepness of the filter. M. Z. Koohi et al. [112]
introduced a cascaded FBAR (cas-FBAR) constructed on an oxide/silicon substrate using a
fully epitaxial metal/Al0.8Sc0.2N/metal layer. This cas-FBAR achieved the highest FOM of
14.71 at 19.11 GHz. The electromechanical coupling coefficient reached 10.14%, which is
the highest value reported in k-band FBAR devices so far.
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Figure 9. The measures to expand bandwidth. (a) Ladder filter. (b) lattice filter. (c) ladder-lattice
filter [78]. (d) Topological structure of the ladder-type FBAR filter circuit. Adapted from [109]. (e) The
filter topology structure combining BAW and IPD technologies. Adapted from [110] (f) Topology of
the hybrid B41 BAW filter. Adapted from [111] with AlN resonators.

In order to broaden the application range of BAW filters, it is necessary to study
frequency reconfigurable technology. The AlN-based BAW filter can change the thickness
of the piezoelectric layer by applying a large external DC electric field and then achieve
frequency tuning, but the achieved tunability is very limited, usually less than or much less
than 1% [113]. The electrothermal technique, which utilizes a micro heater to change the
resonator’s frequency, shows a large tuning capability (4500 to 96,800 ppm), but its high
power requirement (2.8 mW) limits its application [114–116]. W. Pang et al. [117] utilized an
electrostatic actuator to reconstruct the frequency, which achieved a tuning range of 7826 to
15,000 ppm. B. Kim et al. [118] proposed a new approach to tune the resonant frequencies
in overtone resonators using reactive components such as capacitors and inductors. The
tuning range achieved by the reported resonator was 1500 ppm. Along the same lines,
Y. Izhar et al. [119] improved the tunability range (17,783~24,694 ppm) by using ScAlN
materials and the novel XBAW process. BAW filters using ferroelectric materials (such
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as BST) as piezoelectric layers have relatively good reconfigurable properties [120–122].
Recent studies have shown that ScAlN also has excellent ferroelectric properties [123].
Therefore, tunable BAW resonators based on ScAlN, with frequencies reaching up to
10 GHz, continue to be developed [124,125]. Along these lines, D. Mo et al. [126,127]
alternately stacked N ferroelectric ScAlN films and N + 1 metal electrodes and realized
the independent polarization switching of each piezoelectric film to achieve the switching
of the center frequency. In addition to the discussed technologies, Lamb wave resonators
(LWR), leveraging their distinctive vibration modes and structural design, enable the
tuning of resonant frequencies by modifying material thickness or electrode configurations.
This tunability facilitates the development of multi-mode or dual-passband filters, which
are well-suited to meet the dynamic frequency reconfiguration requirements of modern
communication systems, such as those in 5G networks [128,129].

Given the significant increase in the demand for filters, it is significant to enhance
the speed of filter circuit design. Filter design usually uses ADS to build models and
simulations. When using ADS for simulations and optimization, it is very complex to
adjust the structural parameters of the BAW filters according to the design objectives [130].
When optimizing, the optimization function will automatically search for parameters to
reach the target, but it takes a long time when the optimization range is wide. In order
to improve the speed and accuracy of design, J. L. An et al. [131] proposed a mode for
optimizing FBAR parameters based on deep learning. This model gave appropriate initial
values for the 12 design parameters of FBAR and narrowed the optimization range of
each parameter, thus the design time of FBAR filters was shortened in ADS simulations.
H. Zhu et al. [132] combined the Mason model with the fine multi-physical coupling
model based on the space mapping optimization algorithm. This approach enhanced
design efficiency by ensuring consistency between coarse and fine models, significantly
reducing computational time. The Mason model [132,133] is an equivalent circuit model
that transforms mechanical behavior into electrical behavior, using parameters such as
capacitance, inductance, and resistance to describe dynamic characteristics and predict
performance metrics like resonant frequency and electromechanical coupling coefficients.
By contrast, the fine multi-physical coupling model [134,135] analyzes the interactions
of multiple physical fields, integrating electrical, mechanical, and acoustic coupling. It
employs high-precision numerical methods, such as finite element analysis, to achieve
comprehensive modeling and optimization of system behavior. Together, these models
provide effective tools for analysis and optimization in acoustic device design. In order to
develop an accurate and effective tool for FBAR coupled vibration analysis, 2D plate theory
was derived and established by N. Li et al. [136] based on the frame-like structure. By
simplifying the plate structure to a two-dimensional model, this theory focuses on in-plane
deformation and stress, effectively ignoring the thickness direction. And the accuracy
and efficiency of the 2D plate theory were ensured by comparison with the finite element
method. This method can well suppress the influence of other coupling modes on the
filter performance.

5. Conclusions
This article provides a comprehensive review of AlN-based BAW resonators, the

essential components of BAW filters, which play a critical role in 5G communication
systems. This paper includes the epitaxial growth of piezoelectric films, the structure
and fabrication of BAW resonators, and the application of BAW resonators in BAW filters.
Compared with traditional AlN, doped AlN (especially ScAlN) has better performance.
The new XBAW technology provides a new idea for expanding the bandwidth of BAW
filters. In addition, frequency reconfiguration as a filter technology provides broader
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application scenarios for BAW filters. The insights gained from this extensive examination
underscore the immense potential of AlN-based BAW resonators to revolutionize the field
of telecommunications.
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