Picosecond Laser Etching of Glass Spiral Microfluidic Channel for Microparticles Dispersion and Sorting
<p>Micro–nano topology design diagram of microfluidic chip: (<b>a</b>) chip 3D model; (<b>b</b>) particle dispersion pool; (<b>c</b>) particle sorting port.</p> "> Figure 2
<p>Picosecond green light etching of glass experimental scene.</p> "> Figure 3
<p>Schematic diagram of laser optical path.</p> "> Figure 4
<p>Processing path of laser etching channel.</p> "> Figure 5
<p>Physical encapsulated glass microfluidic chip.</p> "> Figure 6
<p>Chip flow performance testing platform.</p> "> Figure 7
<p>Relationship between <span class="html-italic">P</span>, <span class="html-italic">v<sub>l</sub></span>, and <span class="html-italic">N</span> at different levels and channel depth <span class="html-italic">h</span>.</p> "> Figure 8
<p>Relationship between <span class="html-italic">P</span>, <span class="html-italic">v<sub>l</sub></span>, and <span class="html-italic">N</span> at different levels and surface roughness <span class="html-italic">R</span><sub>a</sub>.</p> "> Figure 9
<p>Three-dimensional (3D) morphology detection of microfluidic chips: (<b>a</b>) structural morphology of micropillar array; (<b>b</b>) sorting port channel morphology and contour.</p> "> Figure 10
<p>Cross-sectional view of microfluidic channel simulation: (<b>a</b>) 3D spiral microfluidic channel; (<b>b</b>) section A; (<b>c</b>) section B; (<b>d</b>) section C; (<b>e</b>) section D.</p> "> Figure 11
<p>Simulation results of particle motion in x-y plane: (<b>a</b>) particulate motion result; (<b>b</b>) partial enlargement.</p> "> Figure 12
<p>The relationship between the focusing bandwidth <span class="html-italic">w</span> of microparticles and flow rate (5 μm fluorescent particles).</p> "> Figure 13
<p>Focusing results for 5um particles(red): (<b>a</b>) flow rate of 300 μL/min; (<b>b</b>) flow rate of 400 μL/min; (<b>c</b>) flow rate of 500 μL/min; (<b>d</b>) flow rate of 600 μL/min.</p> "> Figure 14
<p>The relationship between the focusing bandwidth <span class="html-italic">w</span> of microparticles and flow rate (10 μm fluorescent particles).</p> "> Figure 15
<p>Focusing results for10 μm fluorescent particles(blue): (<b>a</b>) flow rate of 300 μL/min; (<b>b</b>) flow rate of 400 μL/min; (<b>c</b>) flow rate of 500 μL/min; (<b>d</b>) flow rate of 600 μL/min.</p> "> Figure 16
<p>5 μm (red) and 10 μm (blue) particles stratification process: (<b>a</b>) 2 s before stabilization; (<b>b</b>) 1 s before stabilization; (<b>c</b>) stabilization.</p> "> Figure 17
<p>The relationship between the focusing bandwidth <span class="html-italic">w</span> of microparticles and injection flow rate.</p> "> Figure 18
<p>Results of stratification of 5 μm (red) and 10 μm (blue) mixed particles (<b>a</b>) flow rate of 300 μL/min; (<b>b</b>) flow rate of 400 μL/min; (<b>c</b>) flow rate of 500 μL/min; (<b>d</b>) flow rate of 600 μL/min.</p> ">
Abstract
:1. Introduction
2. Microfluidic Structure Design and Laser Processing
2.1. Microfluidic Flow Channel Structure Design
2.2. Microfluidic Chip Processing Materials and Experimental Conditions
2.3. Microfluidic Chip Laser Processing Method
3. Numerical Simulation of Particle Motion in Microfluidic Chips
4. Microfluidic Chip Packaging and Flow Performance Testing
4.1. Packaging of Microfluidic Chips
4.2. Microfluidic Chip Detection Platform and Detection Method
5. Results and Discussion
5.1. Determination of Laser Process Parameters and Experimental Analysis
5.2. Simulation Results of Particle Motion on Microfluidic Chips
5.3. Microfluidic Chip Performance Testing
6. Conclusions
- (1)
- A 7 ps green laser was used to directly etch the micro–nano runners, and the results showed that the laser power was the most important factor affecting the surface roughness and depth of the glass microrunners by selecting a lower power in order to obtain a high quality of the processed surface. Meanwhile, the runner depth was increased by decreasing the scanning speed and increasing the number of scans. When the scanning path interval is set to 5 μm, the laser power used is 9 W, the scanning speed is 1000 mm/s, and the cumulative number of scans is four times, a high-quality micro–nano runner without edge defects can be obtained, and the bottom roughness is less than 500 nm.
- (2)
- The experimental inspection and simulation of the flow channel show that the particle size and flow rate have a significant effect on the width and position of the focusing band of microparticles. The 5 μm microparticles are influenced by the Dean force, and the focusing position is far from the inner wall of the flow channel. As the flow rate increases, the aggregation position migrates with the Dean vortex and gradually moves to the center of the flow channel
- (3)
- The 10 μm microparticle is dominated by inertial lift, its focus band is located near the inner wall of the flow channel, and its width also decreases with the increase in flow velocity. The mixed microparticles have stable and clear delamination at 400 μL/min and 500 μL/min. This characteristic provides an experimental basis for the sorting of microparticles based on particle size. This also shows that the separation of 5 μm and 10 μm microparticles can be achieved by adjusting the flow rate.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bagi, M.; Amjad, F.; Ghoreishian, S.M.; Shahsavari, S.S.; Huh, Y.S.; Moraveji, M.K.; Shimpalee, S. Advances in Technical Assessment of Spiral Inertial Microfluidic Devices Toward Bioparticle Separation and Profiling: A Critical Review. BioChip J. 2024, 18, 45–67. [Google Scholar] [CrossRef]
- Petruzzellis, I.; Vazquez, R.M.; Caragnano, S.; Gaudiuso, C.; Osellame, R.; Ancona, A.; Volpe, A. Lab-on-Chip Systems for Cell Sorting: Main Features and Advantages of Inertial Focusing in Spiral Microchannels. Micromachines 2024, 15, 1135. [Google Scholar] [CrossRef] [PubMed]
- Saffar, Y.; Kashanj, S.; Nobes, D.S.; Sabbagh, R. The Physics and Manipulation of Dean Vortices in Single- and Two-Phase Flow in Curved Microchannels: A Review. Micromachines 2023, 14, 2202. [Google Scholar] [CrossRef] [PubMed]
- Al-Faqheri, W.; Thio, T.H.G.; Qasaimeh, M.A.; Dietzel, A.; Madou, M.; Al-Halhouli, A. Particle/Cell Separation on Microfluidic Platforms Based on Centrifugation Effect: A Review. Microfluid. Nanofluid. 2017, 21, 102. [Google Scholar] [CrossRef]
- Mi, F.; Hu, C.; Wang, Y.; Wang, L.; Peng, F.; Geng, P.; Guan, M. Recent Advancements in Microfluidic Chip Biosensor Detection of Foodborne Pathogenic Bacteria: A Review. Anal. Bioanal. Chem. 2022, 414, 2883–2902. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, M.B.; Rajagopal, S.; Prieto-Simon, B.; Pogue, B.W. Recent Advances in Smart Wearable Sensors for Continuous Human Health Monitoring. Talanta 2024, 272, 125817. [Google Scholar] [CrossRef]
- Gomez-Varela, A.I.; Vina, A.; Bao-Varela, C.; Flores-Arias, M.T.; Carnero, B.; Gonzalez-Peteiro, M.; Gonzalez-Juanatey, J.R.; Alvarez, E. Biocompatibility Testing of UV-Curable Polydimethylsiloxane for Human Umbilical Vein Endothelial Cell Culture on-a-Chip. ACS Omega 2024, 9, 30281–30293. [Google Scholar] [CrossRef] [PubMed]
- Palma, C.; Aterini, B.; Ferrari, E.; Mangione, M.; Romeo, M.; Nezi, L.; Lopa, S.; Manzo, T.; Occhetta, P.; Rasponi, M. A Compartmentalized Microfluidic Platform to Investigate Immune Cells Cross-Talk in Rheumatoid Arthritis. Biofabrication 2025, 17, 015008. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wu, H.; Wang, J.; Lv, J. Field-Programmable Topographic-Morphing Array for General-Purpose Lab-on-a-Chip Systems. Adv. Mater. 2024, 2410604. [Google Scholar] [CrossRef]
- Capillary Flow Velocity-Based Length Identification of PCR and RPA Products on Paper Microfluidic Chips-All Databases. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/WOS:001350484500001 (accessed on 29 November 2024).
- Oliveira, B.B.; Fernandes, A.R.; Baptista, P.V. Shrinking Cancer Research Barriers: Crafting Accessible Tumor-on-Chip Device for Gene Silencing Assays. Adv. Eng. Mater. 2024, 26, 2402254. [Google Scholar] [CrossRef]
- Liu, X.; Sun, A.; Brodsky, J.; Gablech, I.; Lednicky, T.; Voparilova, P.; Zitka, O.; Zeng, W.; Neuzil, P. Microfluidics Chips Fabrication Techniques Comparison. Sci. Rep. 2024, 14, 28793. [Google Scholar] [CrossRef]
- Betti, A.; Ongaro, C.; Zardin, B.; Bertacchini, J.; Tagliaferri, N.; Siciliani, V.; Orazi, L.; Borghi, M. Evaluating Laser-Based Microfabrication in Microfluidics: An Experimental and Computational Trial. Adv. Eng. Mater. 2024, 26, 2401105. [Google Scholar] [CrossRef]
- Yi, J.; Liu, X.; Wang, T.; Song, Q.; Chen, W.; Gong, T.; Shao, Y. Surface Quality Study of Longitudinal Torsional Ultrasonic Micro-Milling of Borosilicate Glass Based on Morphological Modeling. Int. J. Adv. Manuf. Technol. 2024, 133, 183–198. [Google Scholar] [CrossRef]
- Ye, J.; Wang, X.; Zhuang, J.; Zhou, Y.; Tian, Z. Microcontact Electrochemical Etching Technique for Rapid Fabrication of Glass-Based Microfluidic Chips. RSC Adv. 2013, 3, 6960–6963. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, Y.; Liu, X.; Wang, L.; Zuo, D. Prediction of Erosion Volume of PDMS by Cryogenic Micro-Abrasive Jet Machining Based on Dimensional Analysis Method and Experimental Verification. Int. J. Adv. Manuf. Technol. 2021, 114, 2447–2455. [Google Scholar] [CrossRef]
- Ge, J.; Ren, Y.; Li, C.; Li, Z.; Yan, S.; Tang, P.; Xu, X.; Wang, Q. Ultrasonic Coupled Abrasive Jet Polishing (UC-AJP) of Glass-Based Micro-Channel for Micro-Fluidic Chip. Int. J. Mech. Sci. 2023, 244, 108055. [Google Scholar] [CrossRef]
- A Simple Approach to Fabricate Multi-Layer Glass Microfluidic Chips Based on Laser Processing and Thermocompression Bonding-All Databases. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/WOS:000686718900002 (accessed on 29 November 2024).
- Tauseef, M.A.; Sabet, R.A.; Tokel, O. Laser Lithography of Monolithically-Integrated Multi-Level Microchannels in Silicon. Adv. Mater. Technol. 2024, 9, 2301617. [Google Scholar] [CrossRef]
- Ren, J.; Wu, M.; Dong, K.; Zhang, M.; Cheng, Y.; Shi, G. Highly Efficient Synthesis and Application of Aryl Diazonium Salts via Femtosecond Laser-Tailored 3D Flow Microfluidic Chips. Chin. Chem. Lett. 2023, 34, 107694. [Google Scholar] [CrossRef]
- Fan, X.; Rong, Y.; Zhang, G.; Wu, C.; Luo, Y.; Huang, Y. High-Profile-Quality Microchannels Fabricated by UV Picosecond Laser for Microfluidic Mixing. Opt. Laser Technol. 2024, 170, 110314. [Google Scholar] [CrossRef]
- Staicu, C.E.; Jipa, F.; Porosnicu, I.; Bran, A.; Stancu, E.; Dobrea, C.; Radu, B.M.; Axente, E.; Tiseanu, I.; Sima, F.; et al. Glass Lab-on-a-Chip Platform Fabricated by Picosecond Laser for Testing Tumor Cells Exposed to X-Ray Radiation. Appl. Phys. A-Mater. Sci. Process. 2022, 128, 770. [Google Scholar] [CrossRef]
- Jing, X.; Wang, J.; Song, X.; Chen, Y.; Jaffery, S.H.I. A Comparative Investigation on Micro-Channel by Using Direct Laser Ablation and Liquid-Assisted Laser Ablation on Zirconia. Ceram. Int. 2023, 49, 31871–31880. [Google Scholar] [CrossRef]
- Fan, J.; Deng, Y.; Xuan, M.; Liu, Y.; Wu, J.; Wu, Y. Synergistic Bonding Process of Solvent and Tendon for PC-Based Microfluidic Chips. Opt. Precis. Eng. 2015, 23, 708–713. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.; Guo, J.; Cheung, C.F. Micro-Milling Tool Mark Removal Mechanism by Fluid Jet Polishing and Its Application for the Precision Manufacturing of Micro-Fluidic Chip Molds. Tribol. Int. 2023, 189, 108913. [Google Scholar] [CrossRef]
Density/ (g/cm3) | Elastic Modulus/GPa | Linear Expansion Coefficient/°C−1 | Vickers Hardness HV/GPa | Transition Temperature Tg/°C | Poisson’s Coefficient | Toughness KIC/MPa·m0.5 |
---|---|---|---|---|---|---|
2.5 | 72 | 9 × 10−6 | 2.5 | 550 | 0.22 | 0.75 |
Wavelength/nm | Laser Power P/W | Spot Diameter D/μm | Repetition Frequency f/kHz | Scanning Speed vl/(mm·s−1) | Pulse Width/ps |
---|---|---|---|---|---|
532 | 0~18 | 20 | 100~500 | 0~4500 | 7 |
Parameter | Level 1 | Level 2 | Level 3 | Level 4 |
---|---|---|---|---|
Laser power P/W | 2 | 6 | 10 | 14 |
Scanning speed vl/(mm·s−1) | 200 | 600 | 1000 | 1600 |
Number of scans N | 2 | 4 | 6 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.; He, S.; He, X.; Xie, J.; Zhu, X. Picosecond Laser Etching of Glass Spiral Microfluidic Channel for Microparticles Dispersion and Sorting. Micromachines 2025, 16, 66. https://doi.org/10.3390/mi16010066
Chen R, He S, He X, Xie J, Zhu X. Picosecond Laser Etching of Glass Spiral Microfluidic Channel for Microparticles Dispersion and Sorting. Micromachines. 2025; 16(1):66. https://doi.org/10.3390/mi16010066
Chicago/Turabian StyleChen, Rong, Shanshan He, Xiansong He, Jin Xie, and Xicong Zhu. 2025. "Picosecond Laser Etching of Glass Spiral Microfluidic Channel for Microparticles Dispersion and Sorting" Micromachines 16, no. 1: 66. https://doi.org/10.3390/mi16010066
APA StyleChen, R., He, S., He, X., Xie, J., & Zhu, X. (2025). Picosecond Laser Etching of Glass Spiral Microfluidic Channel for Microparticles Dispersion and Sorting. Micromachines, 16(1), 66. https://doi.org/10.3390/mi16010066