Dual-Band High-Throughput and High-Contrast All-Optical Topology Logic Gates
<p>Schematic of two-dimensional photonic crystal structure and its band structures. (<b>a</b>) Schematic of photonic crystal structure with <span class="html-italic">θ</span> = 0°; (<b>b</b>) view of the first Brillouin zone of a triangular lattice, dashed triangle marked <span class="html-italic">k</span>-path for band calculation; (<b>c</b>) photonic crystal band structure with <span class="html-italic">θ</span> = 0°; (<b>d</b>) schematic of photonic crystal rotation structure at <span class="html-italic">θ</span> = 5° (blue represents scattered body at <span class="html-italic">θ</span> = 0°, red represents scatterer at <span class="html-italic">θ</span> = 5°); (<b>e</b>) photonic crystal band structure with <span class="html-italic">θ</span> = 5°; (<b>f</b>) schematic of photonic crystal rotation structure at <span class="html-italic">θ</span> = −5° (blue represents scattered body at <span class="html-italic">θ</span> = 0°, red represents scatterer at <span class="html-italic">θ</span> = −5°); (<b>e</b>) photonic crystal band structure with <span class="html-italic">θ</span> = 5°; the curves in (<b>e</b>,<b>g</b>) represent the first band, second band, third band, fourth band, and fifth band in sequence from top to bottom.</p> "> Figure 2
<p>Schematic of AC-type supercell structure with zigzag-type boundary and its band structure. (<b>a</b>) Schematic diagram of AC-type supercell structure; (<b>b</b>) the band structure of the AC-type supercell structure in Gap I; (<b>c</b>) the band structure of the AC-type supercell structure in Gap II. Dashed lines represent both the intrinsic bulk and edge states of the photonic crystal. Refer to the main text for details on their differentiation based on energy and momentum.</p> "> Figure 3
<p>Design diagram of “OR” and “XOR” gate.</p> "> Figure 4
<p>The calculation results of the light field distribution in the logical states of “OR” gate and “XOR” gate. (<b>a</b>) “OR/XOR” gate logic input state 01, logic output state 1 (OR_01(XOR_01)); (<b>b</b>) “OR/XOR” gate logic input state 10, logic output state 1 (OR_10(XOR_10)); (<b>c</b>) “OR” gate logic input state 11, logic output state 1 (OR_11); (<b>d</b>) “XOR” gate logic input state 11, logic output state 0 (XOR_11). The color scale represents the magnitude of the electric field (V/m) obtained directly from simulations.</p> "> Figure 5
<p>Design diagram of “NOT”, “NAND”, “NOR”, and “XNOR” gates.</p> "> Figure 6
<p>Calculation results of the light field distribution in the logic state of the “NOT” gate. (<b>a</b>) “NOT” gate logic input state 00, logic output state 1 (NOT_00); (<b>b</b>) “NOT” gate logic input state 01, logic output state 1 (NOT_01); (<b>c</b>) “NOT” gate logic input state 10, logic output state (0NOT_10); (<b>d</b>) “NOT” gate logic input state 11, logic output state 0 (NOT_11). The color scale represents the magnitude of the electric field, and the scale is adjusted to best visualize the field distribution.</p> "> Figure 7
<p>The calculation result of the optical field distribution in the “NAND” gate logic state. (<b>a</b>) “NAND” gate logic input state 00, the logic output state 1 (NAND_00); (<b>b</b>) “NAND” gate logic input state 01, logic output state 1 (NAND_01); (<b>c</b>) “NAND” gate logic input state 10, logic output state 1 (NAND_10); (<b>d</b>) “NAND” gate logic input state 11, logic output state 0 (NAND_11).</p> "> Figure 8
<p>The calculation result of the optical field distribution in the “NOR” gate logic state. (<b>a</b>) “NOR” gate logic input state 00, the logic output state 1 (NOR_00); (<b>b</b>) “NOR” gate logic input state 01, logic output state 0 (NOR_01); (<b>c</b>) “NOR” gate logic input state 10, logic output state 0 (NOR_10); (<b>d</b>) “NOR” gate logic input state 11, logic output state 0 (NOR_11).</p> "> Figure 9
<p>Calculation results of optical field distribution in “XNOR” gate logic state. (<b>a</b>) “XNOR” gate logic input state 00, logic output state 1 (XNOR_00); (<b>b</b>) “XNOR” gate logic input state 01, logic output state 0 (XNOR_01); (<b>c</b>) “XNOR” gate logic input state 10, logic output state 0 (XNOR_10); (<b>d</b>) “XNOR” gate logic input state 11, logic output state 1 (XNOR_11).</p> "> Figure 10
<p>Design diagram of “AND” gate.</p> "> Figure 11
<p>Calculation results of the light field distribution in the logic state of the “AND” gate. (<b>a</b>) “AND” gate logic input state 00, logic output state 0 (AND_00); (<b>b</b>) “AND” gate logic input state 01, logic output state 0 (AND_01); (<b>c</b>) “AND” gate logic input state 10, logic output state_ 0 (AND_10); (<b>d</b>) “AND” gate logic input state 11, logic output state 1 (AND_11).</p> "> Figure 12
<p>The calculation results of optical field distribution for AC-type “OR/XOR” gate logic states at 281.95 THz (1064 nm). (<b>a</b>) “OR/XOR” gate logic input state 01, logic output state 1 (OR_01(XOR_01)); (<b>b</b>) “OR/XOR” gate logic input state 10, logic output state 1 (OR_10(XOR_10)); (<b>c</b>) “OR” gate logic input state 11, logic output state 1 (OR_11); (<b>d</b>) “XOR” gate logic input state 11, logic output state 0 (XOR_11).</p> "> Figure 13
<p>The calculation results of optical field distribution for ABC-type “OR/XOR” gate logic states at 193.54 THz (1550 nm). (<b>a</b>) “OR/XOR” gate logic input state 01, logic output state 1 (OR_01(XOR_01)); (<b>b</b>) “OR/XOR” gate logic input state 10, logic output state 1 (OR_10(XOR_10)); (<b>c</b>) “OR” gate logic input state 11, logic output state 1 (OR_11); (<b>d</b>) “XOR” gate logic input state 11, logic output state 0 (XOR_11).</p> "> Figure 14
<p>The calculation results of optical field distribution for ABC-type “OR/XOR” gate logic states at 281.95 THz (1064 nm). (<b>a</b>) “OR/XOR” gate logic input state 01, logic output state 1 (OR_01(XOR_01)); (<b>b</b>) “OR/XOR” gate logic input state 10, logic output state 1 (OR_10(XOR_10)); (<b>c</b>) “OR” gate logic input state 11, logic output state 1 (OR_11); (<b>d</b>) “XOR” gate logic input state 11, logic output state 0 (XOR_11).</p> "> Figure 15
<p>The calculation results of field distribution when introducing impurity defect in the “OR” logic gate (rectangular area represents SiO<sub>2</sub> impurity defect). (<b>a</b>) Calculation results of AC-type optical field distribution at 193.54 THz (1550 nm); (<b>b</b>) calculation results of ABC-type optical field distribution at 193.54 THz (1550 nm); (<b>c</b>) calculation results of AC-type optical field distribution at 281.95 THz (1064 nm); (<b>d</b>) calculation results of ABC-type optical field distribution at 281.95 THz (1064 nm).</p> ">
Abstract
:1. Introduction
2. Structure and Band Structure Analysis of Topological Valley Photonic Crystals
3. Structure Design and Functional Implementation of All-Optical Logic Gates
4. Verification of Dual-Band Computing Contrast and Robustness for All-Optical Logic Gates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, C.; Dai, B.; Price, J.; Li, J.; Pearl, M.; Soltmann, B.; Myrick, M.L. A New Multivariate Optical Computing Microelement and Miniature Sensor for Spectroscopic Chemical Sensing in Harsh Environments: Design, Fabrication, and Testing. Sensors 2019, 19, 701. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.A.B. Are optical transistors the logical next step. Nat. Photonics 2010, 4, 3–5. [Google Scholar] [CrossRef]
- Woods, D.; Naughton, T.J. Optical computing. Appl. Math. Comput. 2009, 215, 1417–1430. [Google Scholar] [CrossRef]
- Caulfield, H.J.; Dolev, S. Why future supercomputing requires optics. Nat. Photonics 2010, 4, 261–263. [Google Scholar] [CrossRef]
- Sousa, J.R.R.; Filho, A.F.G.F.; Ferreira, A.C.; Batista, G.S.; Sobrinho, C.S.; Bastos, A.M.; Lyra, M.L.; Sombra, A.S.B. Generation of logic gates based on a photonic crystal fiber Michelson interferometer. Opt. Commun. 2014, 322, 143–149. [Google Scholar] [CrossRef]
- Menezes, J.W.M.; de Fraga, W.B.; Ferreira, A.C.; Saboia, K.D.A.; Filho, A.F.G.F.; Guimarães, G.F.; Sousa, J.R.R.; Rocha, H.H.B.; Sombra, A.S.B. Logic gates based in two- and three-modes nonlinear optical fiber couplers. Opt. Quantum Electron. 2007, 39, 1191–1206. [Google Scholar] [CrossRef]
- Kang, B.; Kim, J.H.; Byun, Y.T.; Lee, S.; Jhon, Y.M.; Woo, D.H.; Yang, J.S.; Kim, S.H.; Park, Y.H.; Yu, B.G. All-Optical AND Gate Using Probe and Pump Signals as the Multiple Binary Points in Cross Phase Modulation. Jpn. J. Appl. Phys. 2002, 41 Pt 2, L568–L570. [Google Scholar] [CrossRef]
- Kim, J.H.; Jhon, Y.M.; Byun, Y.T.; Lee, S.; Woo, D.H.; Kim, S.H. All-optical XOR gate using semiconductor optical amplifiers without additional input beam. IEEE Photonics Technol. Lett. 2002, 14, 1436–1438. [Google Scholar]
- Stubkjaer, K.E. Semiconductor optical amplifier-based all-optical gates for high-speed optical processing. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1428–1435. [Google Scholar] [CrossRef]
- Zhang, F.; He, L.; Zhang, H.; Kong, L.J.; Xu, X.; Zhang, X. Experimental Realization of Topologically-Protected All-Optical Logic Gates Based on Silicon Photonic Crystal Slabs. Laser Photonics Rev. 2023, 17, 2200329. [Google Scholar] [CrossRef]
- Lu, C.; Hu, X.; Yue, S.; Fu, Y.; Yang, H.; Gong, Q. Ferroelectric Hybrid Plasmonic Waveguide for All-Optical Logic Gate Applications. Plasmonics 2013, 8, 749–754. [Google Scholar] [CrossRef]
- Xiong, M.; Lei, L.; Ding, Y.; Huang, B.; Ou, H.; Peucheret, C.; Zhang, X. All-optical 10 Gb/s AND logic gate in a silicon microring resonator. Opt. Express 2013, 21, 25772–25779. [Google Scholar] [CrossRef]
- Fu, Y.; Hu, X.; Gong, Q. Silicon photonic crystal all-optical logic gates. Phys. Lett. A 2013, 377, 329–333. [Google Scholar] [CrossRef]
- Shukla, A.K.; Pandey, G.N. A Novel Design of All Optical Logical AND Gate Based on 2-D Photonic Crystal. Macromol. Symp. 2021, 397, 2000341. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, F.; Meng, Z.M.; Zhou, F.; Mao, Q.-H.; Li, Z.-Y. All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt. Express 2011, 19, 1945–1953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Li, B. Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals. Opt. Express 2007, 15, 9287–9292. [Google Scholar] [CrossRef]
- Jandieri, V.; Khomeriki, R.; Erni, D. Realization of true all-optical AND logic gate based on nonlinear coupled air-hole type photonic crystal waveguides. Opt. Express 2018, 26, 19845–19853. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhang, W.X.; Zhang, X.D. Topological all-optical logic gates based on two-dimensional photonic crystals. Opt. Express 2019, 27, 25841–25859. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Liang, E.; Yuan, J.; Qiu, H.-Y.; Chen, X.-D.; Zhao, F.-L.; Dong, J.-W. A silicon-on-insulator slab for topological valley transport. Nat. Commun. 2019, 10, 872. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chong, Y.; Joannopoulos, J.D.; Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 2009, 461, 772–775. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Gao, Y.; Ma, Q.; Zhang, W.; Song, H.; Sun, J.-P. Regularly multiple double Dirac cones in photonic bands and topological transitions of all-dielectric photonic crystals. Phys. Rev. Mater. 2021, 5, 024204. [Google Scholar] [CrossRef]
- He, L.; Ji, H.Y.; Wang, Y.J.; Zhang, X.D. Topologically protected beam splitters and logic gates based on two-dimensional silicon photonic crystal slabs. Opt. Express 2020, 28, 34015–34023. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.; Cheng, B.; Liu, Q.; Zhang, W.-J.; Xu, Y.; Song, G.-F. Novel optical XOR/OR logic gates based on topologically protected valley photonic crystals edges. J. Opt. 2021, 23, 115002. [Google Scholar] [CrossRef]
- Jia, D.; Ge, Y.; Xue, H.; Yuan, S.-Q.; Sun, H.-X.; Yang, Y.; Liu, X.-J.; Zhang, B. Topological refraction in dual-band valley sonic crystals. Phys. Rev. B 2021, 103, 144309. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Wang, B.N.; Wang, R.; Wang, X. Transport Characteristics of Topological Edge States in Dual-Band Valley Photonic Crystals. Acta Opt. Sin. 2023, 43, 157–170. [Google Scholar]
- Pirie, H.; Sadhuka, S.; Wang, J.; Andrei, R.; Hoffman, J.E. Topological Phononic Logic. Phys. Rev. Lett. 2022, 128, 15501. [Google Scholar] [CrossRef] [PubMed]
Inputs | Logic Gates | |||||||
---|---|---|---|---|---|---|---|---|
Input 1 | Input 2 | OR | XOR | NOT (Input 1) | NAND | NOR | XNOR | AND |
0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 |
1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Si, Y.; Zhang, Y.; Wang, B.; Wang, X. Dual-Band High-Throughput and High-Contrast All-Optical Topology Logic Gates. Micromachines 2024, 15, 1492. https://doi.org/10.3390/mi15121492
Zhang J, Si Y, Zhang Y, Wang B, Wang X. Dual-Band High-Throughput and High-Contrast All-Optical Topology Logic Gates. Micromachines. 2024; 15(12):1492. https://doi.org/10.3390/mi15121492
Chicago/Turabian StyleZhang, Jinying, Yulin Si, Yexiaotong Zhang, Bingnan Wang, and Xinye Wang. 2024. "Dual-Band High-Throughput and High-Contrast All-Optical Topology Logic Gates" Micromachines 15, no. 12: 1492. https://doi.org/10.3390/mi15121492
APA StyleZhang, J., Si, Y., Zhang, Y., Wang, B., & Wang, X. (2024). Dual-Band High-Throughput and High-Contrast All-Optical Topology Logic Gates. Micromachines, 15(12), 1492. https://doi.org/10.3390/mi15121492