A High-Performance Micro Differential Pressure Sensor
<p>(<b>a</b>) Schematic diagram of a typical P-type piezoresistive resistor. (<b>b</b>) Wheatstone bridge diagram.</p> "> Figure 2
<p>P (N, T) coefficient of P-type silicon vs. doping concentration for different temperatures.</p> "> Figure 3
<p>(<b>a</b>) Schematic diagram of inductive diaphragm. (<b>b</b>) Stress distribution on the surface of a piezoresistor at 10 μm from the edge of the diaphragm under an applied pressure of 1 kPa.</p> "> Figure 4
<p>Distribution of doping concentration of the piezoresistor in the depth direction for different device layer thicknesses.</p> "> Figure 5
<p>Simulation results for different diaphragm thicknesses W: (<b>a</b>) Output vs. Pressure. (<b>b</b>) Sensitivity vs. Temperature.</p> "> Figure 6
<p>Three-dimensional model drawing of the sensor (values is μm).</p> "> Figure 7
<p>Manufacturing process flowchart and 8-inch MEMS wafer of the pressure sensor. (<b>a</b>) thermal oxidation; (<b>b</b>) boron light doping; (<b>c</b>) boron heave doping; (<b>d</b>) excess silicon; (<b>e</b>) deposition of silica and metal wiring; (<b>f</b>) back cavity release.</p> "> Figure 8
<p>Profiler result plot of the pressure sensor.</p> "> Figure 9
<p>Diagram of the pressure sensor test environment. (<b>a</b>) gas pressure source; (<b>b</b>) pressure controller; (<b>c</b>) DC power analyzer; (<b>d</b>) test sample; (<b>e</b>) semiconductor device analyzer; (<b>f</b>) digital multimeter; (<b>g</b>) temperature-controlled heating stage.</p> "> Figure 10
<p>(<b>a</b>) Static performance test chart of the sensor. (<b>b</b>) Enlargement of detail from <a href="#micromachines-15-01396-f010" class="html-fig">Figure 10</a>a.</p> "> Figure 11
<p>Temperature performance of the sensor.</p> ">
Abstract
:1. Introduction
2. Theory, Design, and Simulation
2.1. Sensor Principle and Temperature Drift Inducements
2.2. Design and Simulation
3. Manufacturing and Testing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, X.; Huang, M.; Wu, Z.; Gao, Y.; Xia, Y.; Yang, P.; Fan, S.; Lu, X.; Yang, X.; Liang, L.; et al. Advances in High-Performance MEMS Pressure Sensors: Design, Fabrication, and Packaging. Microsyst. Nanoeng. 2023, 9, 156. [Google Scholar] [CrossRef] [PubMed]
- Basov, M. Ultra-High Sensitivity MEMS Pressure Sensor Utilizing Bipolar Junction Transistor for Pressures Ranging From −1 to 1 kPa. IEEE Sens. J. 2021, 21, 4357–4364. [Google Scholar] [CrossRef]
- Byrne, R.A.; Stone, G.W.; Ormiston, J.; Kastrati, A. Coronary Balloon Angioplasty, Stents, and Scaffolds. Lancet 2017, 390, 781–792. [Google Scholar] [CrossRef]
- Spaide, R.F.; Klancnik, J.M.; Cooney, M.J. Retinal Vascular Layers Imaged by Fluorescein Angiography and Optical Coherence Tomography Angiography. JAMA Ophthalmol. 2015, 133, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Tungjitkusolmun, S.; Choy, Y.B.; Tsai, J.Z.; Vorperian, V.R.; Webster, J.G. Using Electrical Impedance to Predict Catheter-Endocardial Contact during RF Cardiac Ablation. IEEE Trans. Biomed. Eng. 2002, 49, 247–253. [Google Scholar] [CrossRef]
- Hu, X.; Chen, A.; Luo, Y.; Zhang, C.; Zhang, E. Steerable Catheters for Minimally Invasive Surgery: A Review and Future Directions. Comput. Assist. Surg. 2018, 23, 21–41. [Google Scholar] [CrossRef]
- da Costa, C.S.; Czosnyka, M.; Smielewski, P.; Mitra, S.; Stevenson, G.N.; Austin, T. Monitoring of Cerebrovascular Reactivity for Determination of Optimal Blood Pressure in Preterm Infants. J. Pediatr. 2015, 167, 86–91. [Google Scholar] [CrossRef]
- Kozikowska, M.; Grusza, M.; Mrugacz, G.; Gagan, J.; Zbucka-Kretowska, M.; Grygoruk, C. The Influence of Intrauterine Pressure on Embryo Retention in a Catheter After Embryo Transfer. Sci. Rep. 2019, 9, 11969. [Google Scholar] [CrossRef]
- Sondergaard, S.; Parkin, G.; Aneman, A. Central Venous Pressure: We Need to Bring Clinical Use into Physiological Context. Acta Anaesthesiol. Scand. 2015, 59, 552–560. [Google Scholar] [CrossRef]
- Pöll, J.S. The Story of the Gauge. Anaesthesia 1999, 54, 575–581. [Google Scholar] [CrossRef]
- Assadsangabi, B.; Chen, X.; Brox, D.; Takahata, K. Ferrofluid Sacrificial Microfabrication of Capacitive Pressure Sensors. IEEE Sens. J. 2014, 14, 3442–3447. [Google Scholar] [CrossRef]
- Pramanik, C.; Saha, H. Low Pressure Piezoresistive Sensors for Medical Electronics Applications. Mater. Manuf. Process. 2006, 21, 233–238. [Google Scholar] [CrossRef]
- Zeng, F.; Lu, L.; Zhang, Y.; Guo, S.; Wong, M.; Chau, K. MEMS Pressure Sensors for High-Temperature High-Pressure Downhole Applications. In Proceedings of the 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China, 3–5 August 2016; IEEE: New York, NY, USA, 2016; pp. 39–43. [Google Scholar]
- Li, T.; Shang, H.; Wang, B.; Mao, C.; Wang, W. High-Pressure Sensor With High Sensitivity and High Accuracy for Full Ocean Depth Measurements. IEEE Sens. J. 2022, 22, 3994–4003. [Google Scholar] [CrossRef]
- Huff, M. Recent Advances in Reactive Ion Etching and Applications of High-Aspect-Ratio Microfabrication. Micromachines 2021, 12, 991. [Google Scholar] [CrossRef]
- Barlian, A.A.; Park, W.-T.; Mallon, J.R.; Rastegar, A.J.; Pruitt, B.L. Review: Semiconductor Piezoresistance for Microsystems. Proc. IEEE 2009, 97, 513–552. [Google Scholar] [CrossRef]
- Otmani, R.; Benmoussa, N.; Benyoucef, B. The Thermal Drift Characteristics of Piezoresistive Pressure Sensor. Phys. Procedia 2011, 21, 47–52. [Google Scholar] [CrossRef]
- Tufte, O.N.; Stelzer, E.L. Piezoresistive Properties of Heavily Doped N-Type Silicon. Phys. Rev. 1964, 133, A1705. [Google Scholar] [CrossRef]
- Tufte, O.N.; Stelzer, E.L. Piezoresistive Properties of Silicon Diffused Layers. J. Appl. Phys. 1963, 34, 313–318. [Google Scholar] [CrossRef]
- Yao, Z.; Liang, T.; Jia, P.; Hong, Y.; Qi, L.; Lei, C.; Zhang, B.; Xiong, J. A High-Temperature Piezoresistive Pressure Sensor with an Integrated Signal-Conditioning Circuit. Sensors 2016, 16, 913. [Google Scholar] [CrossRef]
- Mansoor, M.; Haneef, I.; Akhtar, S.; Rafiq, M.A.; De Luca, A.; Ali, S.Z.; Udrea, F. An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications. Sensors 2016, 16, 1608. [Google Scholar] [CrossRef]
- Tang, X.; Tian, J.; Zhao, J.; Jin, Z.; Liu, Y.; Liu, J.; Chen, T.; Li, J. Structure Design and Optimization of SOI High-Temperature Pressure Sensor Chip. Microelectron. J. 2021, 118, 105245. [Google Scholar] [CrossRef]
- Giuliani, A.; Drera, L.; Arancio, D.; Mukhopadhyay, B.; Ngo, H.-D. SOI-Based, High Reliable Pressure Sensor with Floating Concept for High Temperature Applications. In Proceedings of the 28th European Conference on Solid-State Transducers (Eurosensors 2014), Brescia, Italy, 7–10 September 2014; Sberveglieri, G., Ferrari, V., Eds.; Elsevier Science Bv: Amsterdam, The Netherlands, 2014; Volume 87, pp. 720–723. [Google Scholar]
- Ha-Duong, N.; Mukhopadhyay, B.; Vu, C.T.; Mackowiak, P.; Schlichting, V.; Obermeier, E.; Lang, K.-D.; Giuliani, A.; Drera, L.; Arancio, D. Liquid-Free, Piezoresistive, SOI-Based Pressure Sensor for High Temperature Measurements up to 400 °C. In Proceedings of the 2012 IEEE Sensors Proceedings, Brescia, Italy, 7–9 February 2012; IEEE: New York, NY, USA, 2012; pp. 958–961. [Google Scholar]
- Wang, L.; Zhao, Y.; Zhao, Y.; Yang, Y.; Gong, T.; Hao, L.; Ren, W. Design and Fabrication of Bulk Micromachined 4H-SiC Piezoresistive Pressure Chips Based on Femtosecond Laser Technology. Micromachines 2021, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhao, Y.; Sun, L.; Tian, B.; Jiang, Z. Incorporation of Beams into Bossed Diaphragm for a High Sensitivity and Overload Micro Pressure Sensor. Rev. Sci. Instrum. 2013, 84, 015004. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cordovilla, F.; Jagdheesh, R.; Ocaña, J. Design Optimization and Fabrication of a Novel Structural SOI Piezoresistive Pressure Sensor with High Accuracy. Sensors 2018, 18, 439. [Google Scholar] [CrossRef] [PubMed]
- Basov, M.; Prigodskiy, D.M. Investigation of High-Sensitivity Piezoresistive Pressure Sensors at Ultra-Low Differential Pressures. IEEE Sens. J. 2020, 20, 7646–7652. [Google Scholar] [CrossRef]
- Smith, C.S. Piezoresistance Effect in Germanium and Silicon. Phys. Rev. 1954, 94, 42–49. [Google Scholar] [CrossRef]
- Kumar, S.S.; Pant, B.D. Design Principles and Considerations for the “ideal” Silicon Piezoresistive Pressure Sensor: A Focused Review. Microsyst. Technol. 2014, 20, 1213–1247. [Google Scholar] [CrossRef]
- Fiorillo, A.S.; Critello, C.D.; Pullano, S.A. Theory, Technology and Applications of Piezoresistive Sensors: A Review. Sens. Actuator A-Phys. 2018, 281, 156–175. [Google Scholar] [CrossRef]
- Kanda, Y. A Graphical Representation of the Piezoresistance Coefficients in Silicon. IEEE Trans. Electron. Devices 1982, 29, 64–70. [Google Scholar] [CrossRef]
- Tran, A.V.; Zhang, X.; Zhu, B. Effects of Temperature and Residual Stresses on the Output Characteristics of a Piezoresistive Pressure Sensor. IEEE Access 2019, 7, 27668–27676. [Google Scholar] [CrossRef]
- Richter, J.; Pedersen, J.; Brandbyge, M.; Thomsen, E.V.; Hansen, O. Piezoresistance in P-Type Silicon Revisited. J. Appl. Phys. 2008, 104, 023715. [Google Scholar] [CrossRef]
- Doll, J.C.; Pruitt, B.L. Piezoresistor Design and Applications; Springer: New York, NY, USA, 2013; Chapter 2; pp. 33–35. [Google Scholar]
- Xu, Z.; Yan, J.; Ji, M.; Zhou, Y.; Wang, D.; Wang, Y.; Mai, Z.; Zhao, X.; Nan, T.; Xing, G.; et al. An SOI-Structured Piezoresistive Differential Pressure Sensor with High Performance. Micromachines 2022, 13, 2250. [Google Scholar] [CrossRef] [PubMed]
- Belwanshi, V.; Philip, S.; Topkar, A. Performance Study of MEMS Piezoresistive Pressure Sensors at Elevated Temperatures. IEEE Sens. J. 2022, 22, 9313–9320. [Google Scholar] [CrossRef]
- Park, S.-J.; Doll, J.C.; Pruitt, B.L. Piezoresistive Cantilever Performance-Part I: Analytical Model for Sensitivity. J. Microelectromech. Syst. 2010, 19, 137–148. [Google Scholar] [CrossRef]
- Sridhar, U.; Foster, R. Temperature Coefficient of Resistance of Piezoresistors. In Proceedings of the Technical Digest IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, USA, 22–25 June 1992; IEEE: Piscataway, NJ, USA, 1992; pp. 54–57. [Google Scholar]
- Essa, Z.; Pelletier, B.; Morin, P.; Boulenc, P.; Pakfar, A.; Tavernier, C.; Wacquant, F.; Zechner, C.; Juhel, M.; Autran, J.L.; et al. Modeling Boron Dose Loss in Sidewall Spacer Stacks of Complementary Metal Oxide Semiconductor Transistors. Solid-State Electron. 2016, 126, 163–169. [Google Scholar] [CrossRef]
- Huo, J.Z.; Wei, M.Z.; Ma, Y.J.; Cao, Z.H.; Meng, X.K. The Enhanced Strength and Electrical Conductivity in Ag/Cu Multilayers by Annealing Process. Mater. Sci. Eng. A 2020, 772, 138818. [Google Scholar] [CrossRef]
- Jiang, H.; Cao, G.; Xu, C.; Zhang, Z.; Liu, S. Effects of Residual Stress in the Membrane on the Performance of Surface Micromachining Silicon Nitride Pressure Sensor. In Proceedings of the 2014 15th International Conference On Electronic Packaging Technology (Icept), Chengdu, China, 12–15 August 2014; Bi, K., Tian, Z., Xu, Z., Eds.; IEEE: New York, NY, USA, 2014; pp. 664–670. [Google Scholar]
- Wang, J.; Xia, X.; Li, X. Monolithic Integration of Pressure Plus Acceleration Composite TPMS Sensors With a Single-Sided Micromachining Technology. J. Microelectromech. Syst. 2012, 21, 284–293. [Google Scholar] [CrossRef]
Process | Parameter | |
---|---|---|
Light doping | Dose 1 × 1014 Ion/cm2 | Energy 40 keV |
Heavy doping | Dose 1 × 1015 Ion/cm2 | Energy 25 keV |
Anneal | Temperature 1000 °C | Time 15 min |
Pressure Range (kPa) | Sensor Dimension (mm) | Sensitivity (mV/V/kPa) | TCS (% FS/°C) | TCO (% FS/°C) | Nonlinearity (% FS) | Accuracy (% FS) |
---|---|---|---|---|---|---|
0–1 [this work] | 1 × 1 | 3.401 | −0.144 | 0.093 | 0.376 | 0.59 |
0–0.5 [14] | 7 × 7 | 11.089 | 3.046 | 3.204 | ||
0–6.8 [15] | 3.6 × 3.6 | 4.48 | −0.15 | 1.8 | 0.25 | 0.34 |
0–0.5 [16] | 6.15 × 6.15 | 34.2 | −0.280 | 0.81 | ||
0–30 [36] | 1 × 1 | 2.25 | −0.221 | −0.209 | ||
0–3 [43] | 3.4 × 3.4 | 4.67 | 0.18 | |||
0–6 (Honeywell TSC Series) | 2.6 | ±2 | ±1.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Wang, L.; Zhang, S. A High-Performance Micro Differential Pressure Sensor. Micromachines 2024, 15, 1396. https://doi.org/10.3390/mi15111396
Fan X, Wang L, Zhang S. A High-Performance Micro Differential Pressure Sensor. Micromachines. 2024; 15(11):1396. https://doi.org/10.3390/mi15111396
Chicago/Turabian StyleFan, Xutao, Lei Wang, and Songsong Zhang. 2024. "A High-Performance Micro Differential Pressure Sensor" Micromachines 15, no. 11: 1396. https://doi.org/10.3390/mi15111396
APA StyleFan, X., Wang, L., & Zhang, S. (2024). A High-Performance Micro Differential Pressure Sensor. Micromachines, 15(11), 1396. https://doi.org/10.3390/mi15111396