Limited Stability of Microcystins in Oligopeptide Compositions of Microcystis aeruginosa (Cyanobacteria): Implications in the Definition of Chemotypes
<p>Presence/absence matrices of oligopeptides for strains UAM254, UAM264 and UAM265 under N- and P-poor treatments. Columns show previously described oligopeptides, whereas rows represent the analyzed samples, sorted by nutrient treatment applied and time of sampling (days). Filled/colored cells correspond to presence; blank cells stand for absence.</p> "> Figure 2
<p>Presence/absence matrices of oligopeptides for strains UAM254, UAM264 and UAM265 under different light intensities. Columns show previously described oligopeptides, whereas rows represent the analyzed samples, sorted by light intensity treatment applied and time of sampling (days). Filled/colored cells correspond to presence; blank cells stand for absence.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Oligopeptide Compositions
2.2. Growth Rates
Peptide Name | Protonated m/z [M + H+] (Da) | UAM254 | UAM264 | UAM265 |
---|---|---|---|---|
Desmethyl-Mcyst-LR | 981.5 | x | x | x |
Mcyst-LR | 995.6 | x | x | x |
Cyanopeptolin 1006A | 1007.5 | x | x | |
Desmethyl-Mcyst-RR | 1024.6 | x | x | x |
Mcyst-FR | 1029.5 | x | x | x |
Desmethyl-Mcyst-YR | 1031.5 | x | x | x |
Mcyst-RR | 1038.6 | x | x | x |
Mcyst-YR | 1045.5 | x | x | x |
Mcyst-H4YR | 1049.6 | x | x | x |
Mcyst-WR | 1068.6 | x | x | x |
Strain | Growth rates (day−1) | Relative intensity threshold (a) | |
---|---|---|---|
Strain UAM254 | NC | 0.146 | 0.04 |
NN | 0.108 (*) | 0.34 | |
NP | 0.181 | 0.04 | |
LL | 0.135 | 0.08 | |
LM | 0.060 (*) | 0.25 | |
LH | 0.070 (*) | 0.25 | |
Strain UAM264 | NC | 0.274 | 0 (stable) |
NN | 0.205 | 0 (stable) | |
NP | 0.275 | 0 (stable) | |
LL | 0.206 | 0 (stable) | |
LM | 0.117 (*) | 0.03 | |
LH | 0.163 (*) | 0.03 | |
Strain UAM265 | NC | 0.383 | 0 (stable) |
NN | 0.172 (*) | 0.07 | |
NP | 0.179 (*) | 0.06 | |
LL | 0.190 | 0 (stable) | |
LM | 0.103 (*) | 0.03 | |
LH | ----- | ----- |
2.3. Stability under N- and P-Reduction
IDF | Average relative intensities | IDF | Average relative intensities | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Strain UAM254 | Total | NC | NN | NP | Total | NC | NN | NP | Strain UAM254 | Total | LL | LM | LH | Total | LL | LM | LH | ||||||
MC-LR | 91% | 96% | 75% | 100% | STABLE | 1.00 | 1.00 | 1.00 | 1.00 | MC-RR | 79% | 99% | 76% | 61% | STABLE | 0.97 | 1.00 | 0.89 | 0.98 | ||||
MC-RR | 84% | 94% | 60% | 100% | STABLE | 0.63 | 0.73 | 0.39 | 0.65 | MC-LR | 87% | 97% | 91% | 70% | STABLE | 0.61 | 0.29 | 0.87 | 0.91 | ||||
MC-YR | 78% | 89% | 42% | 100% | UNSTABLE | 0.34 | 0.39 | 0.24 | 0.31 | MC-YR | 59% | 91% | 37% | 34% | UNSTABLE | 0.25 | 0.24 | 0.23 | 0.28 | ||||
MC-H4YR | 71% | 80% | 33% | 98% | UNSTABLE | 0.18 | 0.20 | 0.17 | 0.16 | Desmethyl-MC-RR | 61% | 93% | 33% | 41% | UNSTABLE | 0.24 | 0.25 | 0.15 | 0.29 | ||||
Desmethyl-MC-LR | 76% | 77% | 52% | 98% | UNSTABLE | 0.18 | 0.15 | 0.31 | 0.13 | MC-WR | 56% | 93% | 34% | 24% | UNSTABLE | 0.16 | 0.17 | 0.15 | 0.14 | ||||
Desmethyl-MC-RR | 66% | 77% | 20% | 98% | UNSTABLE | 0.14 | 0.15 | 0.15 | 0.13 | Desmethyl-MC-LR | 32% | 47% | 20% | 23% | UNSTABLE | 0.08 | 0.05 | 0.08 | 0.15 | ||||
MC-WR | 61% | 75% | 10% | 95% | UNSTABLE | 0.11 | 0.13 | 0.08 | 0.10 | Desmethyl-MC-YR | 8% | 18% | 1% | 1% | UNSTABLE | 0.06 | 0.06 | 0.04 | 0.07 | ||||
Desmethyl-MC-YR | 53% | 76% | 10% | 67% | UNSTABLE | 0.08 | 0.09 | 0.11 | 0.06 | MC-FR | 14% | 28% | 7% | 1% | UNSTABLE | 0.03 | 0.03 | 0.03 | 0.04 | ||||
MC-FR | 26% | 37% | 0% | 37% | UNSTABLE | 0.04 | 0.04 | ND | 0.04 | MC-H4YR | 13% | 25% | 5% | 3% | UNSTABLE | 0.03 | 0.03 | 0.04 | 0.05 | ||||
Strain UAM264 | Total | NC | NN | NP | Total | NC | NN | NP | Strain UAM264 | Total | LL | LM | LH | Total | LL | LM | LH | ||||||
MC-LR | 99% | 100% | 97% | 100% | STABLE | 0.99 | 0.97 | 0.99 | 1.00 | MC-RR | 100% | 100% | 100% | 100% | STABLE | 0.80 | 1.00 | 0.71 | 0.60 | ||||
MC-RR | 98% | 100% | 95% | 98% | STABLE | 0.81 | 0.85 | 0.79 | 0.77 | MC-LR | 100% | 100% | 100% | 100% | STABLE | 0.79 | 0.51 | 0.99 | 0.99 | ||||
MC-YR | 99% | 100% | 95% | 100% | STABLE | 0.47 | 0.53 | 0.39 | 0.47 | Cyanopeptolin 1006A | 100% | 99% | 100% | 100% | STABLE | 0.33 | 0.15 | 0.36 | 0.56 | ||||
MC-H4YR | 98% | 99% | 95% | 100% | STABLE | 0.34 | 0.32 | 0.26 | 0.43 | MC-YR | 100% | 100% | 100% | 100% | STABLE | 0.33 | 0.29 | 0.38 | 0.33 | ||||
Cyanopeptolin 1006A | 99% | 100% | 97% | 100% | STABLE | 0.30 | 0.26 | 0.37 | 0.30 | MC-WR | 100% | 99% | 100% | 100% | STABLE | 0.20 | 0.17 | 0.25 | 0.18 | ||||
MC-WR | 99% | 100% | 95% | 100% | STABLE | 0.23 | 0.27 | 0.19 | 0.22 | MC-FR | 100% | 99% | 100% | 100% | STABLE | 0.16 | 0.10 | 0.17 | 0.23 | ||||
MC-FR | 97% | 99% | 92% | 100% | STABLE | 0.10 | 0.10 | 0.09 | 0.11 | MC-H4YR | 98% | 96% | 99% | 100% | STABLE | 0.12 | 0.06 | 0.17 | 0.13 | ||||
Desmethyl-MC-RR | 96% | 99% | 90% | 97% | STABLE | 0.09 | 0.09 | 0.10 | 0.09 | Desmethyl-MC-RR | 97% | 99% | 95% | 95% | STABLE | 0.11 | 0.14 | 0.09 | 0.08 | ||||
Desmethyl-MC-LR | 97% | 99% | 93% | 97% | STABLE | 0.09 | 0.08 | 0.11 | 0.09 | Desmethyl-MC-LR | 95% | 95% | 94% | 96% | STABLE | 0.06 | 0.04 | 0.06 | 0.07 | ||||
Desmethyl-MC-YR | 91% | 95% | 88% | 88% | STABLE | 0.05 | 0.05 | 0.05 | 0.05 | Desmethyl-MC-YR | 52% | 75% | 47% | 23% | UNSTABLE | 0.03 | 0.03 | 0.03 | 0.04 | ||||
Strain UAM265 | Total | NC | NN | NP | Total | NC | NN | NP | Strain UAM265 | Total | LL | LM | LH | Total | LL | LM | LH | ||||||
MC-LR | 99% | 100% | 100% | 96% | STABLE | 1.00 | 1.00 | 1.00 | 1.00 | MC-RR | 100% | 100% | 100% | STABLE | 0.88 | 1.00 | 0.71 | ||||||
MC-H4YR | 98% | 100% | 96% | 99% | STABLE | 0.39 | 0.32 | 0.28 | 0.58 | MC-LR | 100% | 100% | 100% | STABLE | 0.74 | 0.57 | 0.99 | ||||||
MC-RR | 98% | 99% | 96% | 99% | STABLE | 0.33 | 0.38 | 0.26 | 0.34 | MC-YR | 100% | 100% | 100% | STABLE | 0.42 | 0.38 | 0.48 | ||||||
MC-YR | 98% | 99% | 95% | 99% | STABLE | 0.33 | 0.38 | 0.28 | 0.32 | MC-WR | 100% | 100% | 100% | STABLE | 0.23 | 0.20 | 0.27 | ||||||
Cyanopeptolin 1006A | 92% | 96% | 82% | 96% | STABLE | 0.17 | 0.15 | 0.13 | 0.23 | Cyanopeptolin 1006A | 100% | 100% | 100% | STABLE | 0.23 | 0.13 | 0.36 | ||||||
MC-WR | 90% | 99% | 78% | 91% | STABLE | 0.14 | 0.16 | 0.13 | 0.13 | MC-H4YR | 99% | 99% | 100% | STABLE | 0.15 | 0.09 | 0.23 | ||||||
Desmethyl-MC-LR | 88% | 97% | 69% | 96% | STABLE | 0.13 | 0.12 | 0.09 | 0.17 | Desmethyl-MC-RR | 100% | 100% | 100% | STABLE | 0.12 | 0.14 | 0.10 | ||||||
Desmethyl-MC-RR | 67% | 86% | 27% | 84% | UNSTABLE | 0.07 | 0.06 | 0.04 | 0.08 | MC-FR | 99% | 99% | 100% | STABLE | 0.10 | 0.08 | 0.14 | ||||||
Desmethyl-MC-YR | 58% | 85% | 26% | 56% | UNSTABLE | 0.06 | 0.06 | 0.04 | 0.07 | Desmethyl-MC-LR | 98% | 99% | 96% | STABLE | 0.06 | 0.04 | 0.08 | ||||||
MC-FR | 53% | 74% | 29% | 50% | UNSTABLE | 0.05 | 0.05 | 0.04 | 0.05 | Desmethyl-MC-YR | 77% | 88% | 60% | UNSTABLE | 0.03 | 0.03 | 0.05 |
2.4. Stability under High Light Intensities
2.5. Extent of the Peptide Fingerprint Stability
3. Discussion
4. Experimental Section
4.1. Microcystis aeruginosa Strains
4.2. Experimental Setup
4.3. MALDI-TOF MS Analysis
4.4. Data Processing
5. Conclusions
Acknowledgments
Conflict of Interest
References
- Codd, G.A.; Morrison, L.F.; Metcalf, J.S. Cyanobacterial toxins: Risk management for health protection. Toxicol. Appl. Pharmacol. 2005, 203, 264–272. [Google Scholar]
- Komarek, J.; Kling, H. Variation in 6 planktonic cyanophyte genera in lake Victoria (East-Africa). Arch. Hydrobiol. 1991, 88, 21–45. [Google Scholar]
- Laamanen, M.J.; Gugger, M.F.; Lehtimaki, J.M.; Haukka, K.; Sivonen, K. Diversity of toxic and nontoxic Nodularia isolates (Cyanobacteria) and filaments from the Baltic Sea. Appl. Environ. Microbiol. 2001, 67, 4638–4647. [Google Scholar] [CrossRef]
- Sivonen, K.; Jones, G. Cyanobacterial Toxins. In Toxic Cyanobacteria in Water. A Guide to Their Public Health Consequences, Monitoring and Management; Chorus, I., Bartram, J., Eds.; E & FN Spoon: London, UK, 1999; pp. 41–111. [Google Scholar]
- Neilan, B.A.; Dittmann, E.; Rouhiainen, L.; Bass, R.A.; Schaub, V.; Sivonen, K.; Borner, T. Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J. Bacteriol. 1999, 181, 4089–4097. [Google Scholar]
- Welker, M.; von Dohren, H. Cyanobacterial peptides—Nature’s own combinatorial biosynthesis. Fems Microbiol. Rev. 2006, 30, 530–563. [Google Scholar] [CrossRef]
- Dittmann, E.; Neilan, B.A.; Erhard, M.; von Dohren, H.; Borner, T. Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol. Microbiol. 1997, 26, 779–787. [Google Scholar] [CrossRef]
- Fastner, J.; Erhard, M.; von Dohren, H. Determination of oligopeptide diversity within a natural population of Microcystis spp. (Cyanobacteria) by typing single colonies by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl. Environ. Microbiol. 2001, 67, 5069–5076. [Google Scholar] [CrossRef]
- Welker, M.; Sejnohova, L.; Nemethova, D.; von Dohren, H.; Jarkovsky, J.; Marsalek, B. Seasonal shifts in chemotype composition of Microcystis sp communities in the pelagial and the sediment of a shallow reservoir. Limnol. Oceanogr. 2007, 52, 609–619. [Google Scholar] [CrossRef]
- Rohrlack, T.; Edvardsen, B.; Skulberg, R.; Halstvedt, C.B.; Utkilen, H.C.; Ptacnik, R.; Skulberg, O.M. Oligopeptide chemotypes of the toxic freshwater cyanobacterium Planktothrix can form subpopulations with dissimilar ecological traits. Limnol. Oceanogr. 2008, 53, 1279–1293. [Google Scholar] [CrossRef]
- Carrasco, D.; Moreno, E.; Sanchis, D.; Wormer, L.; Paniagua, T.; del Cueto, A.; Quesada, A. Cyanobacterial abundance and microcystin occurrence, in Mediterranean water reservoirs in Central Spain: microcystins in the Madrid area. Eur. J. Phycol. 2006, 41, 281–291. [Google Scholar] [CrossRef]
- Orr, P.T.; Jones, G.J. Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol. Oceanogr. 1998, 43, 1604–1614. [Google Scholar] [CrossRef]
- Agha, R.; Cires, S.; Woermer, L.; Antonio Dominguez, J.; Quesada, A. Multi-scale strategies for the monitoring of freshwater cyanobacteria: Reducing the sources of uncertainty. Water Res. 2012, 46, 3043–3053. [Google Scholar] [CrossRef]
- Halstvedt, C.B.; Rohrlack, T.; Ptacnik, R.; Edvardsen, B. On the effect of abiotic environmental factors on production of bioactive oligopeptides in field populations of Planktothrix spp. (Cyanobacteria). J. Plankton Res. 2008, 30, 607–617. [Google Scholar] [CrossRef]
- Repka, S.; Koivula, M.; Harjunpa, V.; Rouhiainen, L.; Sivonen, K. Effects of phosphate and light on growth of and bioactive peptide production by the cyanobacterium Anabaena strain 90 and its anabaenopeptilide mutant. Appl. Environ. Microbiol. 2004, 70, 4551–4560. [Google Scholar] [CrossRef]
- Rohrlack, T.; Utkilen, H. Effects of nutrient and light availability on production of bioactive anabaenopeptins and microviridin by the cyanobacterium Planktothrix agardhii. Hydrobiologia 2007, 583, 231–240. [Google Scholar] [CrossRef]
- Cook, C.M.; Vardaka, E.; Lanaras, T. Toxic cyanobacteria in Greek freshwaters, 1987–2000: Occurrence, toxicity, and impacts in the Mediterranean region. Acta Hydrochim. Hydrobiol. 2004, 32, 107–124. [Google Scholar] [CrossRef]
- Welker, M.; Marsalek, B.; Sejnohova, L.; von Dohren, H. Detection and identification of oligopeptides in Microcystis (cyanobacteria) colonies: Toward an understanding of metabolic diversity. Peptides 2006, 27, 2090–2103. [Google Scholar] [CrossRef]
- Erhard, M.; von Dohren, H.; Jungblut, P. Rapid typing and elucidation of new secondary metabolites of intact cyanobacteria using MALDI-TOF mass spectrometry. Nat. Biotechnol. 1997, 15, 906–909. [Google Scholar] [CrossRef]
- Welker, M.; Fastner, J.; Erhard, M.; von Dohren, H. Applications of MALDI-TOF MS analysis in cyanotoxin research. Environ. Toxicol. 2002, 17, 367–374. [Google Scholar] [CrossRef]
- Martins, J.; Saker, M.L.; Moreira, C.; Welker, M.; Fastner, J.; Vasconcelos, V.M. Peptide diversity in strains of the cyanobacterium Microcystis aeruginosa isolated from Portuguese water supplies. Appl. Microbiol. Biotechnol. 2009, 82, 951–961. [Google Scholar] [CrossRef]
- Bister, B.; Keller, S.; Baumann, H.I.; Nicholson, G.; Weist, S.; Jung, G.; Sussmuth, R.D.; Juttner, F. Cyanopeptolin 963A, a chymotrypsin inhibitor of Microcystis PCC 7806. J. Nat. Prod. 2004, 67, 1755–1757. [Google Scholar] [CrossRef]
- Tillett, D.; Dittmann, E.; Erhard, M.; von Dohren, H.; Borner, T.; Neilan, B.A. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: An integrated peptide-polyketide synthetase system. Chem. Biol. 2000, 7, 753–764. [Google Scholar] [CrossRef]
- Kosol, S.; Schmidt, J.; Kurmayer, R. Variation in peptide net production and growth among strains of the toxic cyanobacterium Planktothrix spp. Eur. J. Phycol. 2009, 44, 49–62. [Google Scholar] [CrossRef]
- Wu, Z.X.; Song, L.R. Physiological comparison between colonial and unicellular forms of Microcystis aeruginosa Kutz. (Cyanobacteria). Phycologia 2008, 47, 98–104. [Google Scholar] [CrossRef]
- Zilliges, Y.; Kehr, J.C.; Meissner, S.; Ishida, K.; Mikkat, S.; Hagemann, M.; Kaplan, A.; Borner, T.; Dittmann, E. The Cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS One 2011, 6, e17615. [Google Scholar] [CrossRef]
- Kurmayer, R.; Dittmann, E.; Fastner, J.; Chorus, I. Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis spp. in Lake Wannsee (Berlin, Germany). Microb. Ecol. 2002, 43, 107–118. [Google Scholar]
- Van de Waal, D.B.; Ferreruela, G.; Tonk, L.; van Donk, E.; Huisman, J.; Visser, P.M.; Matthijs, H.C.P. Pulsed nitrogen supply induces dynamic changes in the amino acid composition and microcystin production of the harmful cyanobacterium Planktothrix agardhii. FEMS Microbiol. Ecol. 2010, 74, 430–438. [Google Scholar] [CrossRef]
- Tonk, L.; van de Waal, D.B.; Slot, P.; Huisman, J.; Matthijs, H.C.P.; Visser, P.M. Amino acid availability determines the ratio of microcystin variants in the cyanobacterium Planktothrix agardhii. FEMS Microbiol. Ecol. 2008, 65, 383–390. [Google Scholar] [CrossRef]
- Krause, E.; Wenschuh, H.; Jungblut, P.R. The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins. Anal. Chem. 1999, 71, 4160–4165. [Google Scholar] [CrossRef]
- Sanchis, D.; Carrasco, D.; Padilla, C.; Leganes, F.; Fernandez-Valiente, E.; del Campo, F.F.; Quesada, A. Spatial and temporal heterogeneity in succession of cyanobacterial blooms in a Spanish reservoir. Ann. Limnol. Int. J. Limnol. 2002, 38, 173–183. [Google Scholar] [CrossRef]
- Sanchis, D.; Carrasco, D.; Quesada, A. The genus Microcystis (Microcystaceae/Cyanobacteria) from a Spanish reservoir: A contribution to the definition of morphological variations. Nova Hedwig. 2004, 79, 479–495. [Google Scholar] [CrossRef]
Supplementary Files
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Agha, R.; Cirés, S.; Wörmer, L.; Quesada, A. Limited Stability of Microcystins in Oligopeptide Compositions of Microcystis aeruginosa (Cyanobacteria): Implications in the Definition of Chemotypes. Toxins 2013, 5, 1089-1104. https://doi.org/10.3390/toxins5061089
Agha R, Cirés S, Wörmer L, Quesada A. Limited Stability of Microcystins in Oligopeptide Compositions of Microcystis aeruginosa (Cyanobacteria): Implications in the Definition of Chemotypes. Toxins. 2013; 5(6):1089-1104. https://doi.org/10.3390/toxins5061089
Chicago/Turabian StyleAgha, Ramsy, Samuel Cirés, Lars Wörmer, and Antonio Quesada. 2013. "Limited Stability of Microcystins in Oligopeptide Compositions of Microcystis aeruginosa (Cyanobacteria): Implications in the Definition of Chemotypes" Toxins 5, no. 6: 1089-1104. https://doi.org/10.3390/toxins5061089
APA StyleAgha, R., Cirés, S., Wörmer, L., & Quesada, A. (2013). Limited Stability of Microcystins in Oligopeptide Compositions of Microcystis aeruginosa (Cyanobacteria): Implications in the Definition of Chemotypes. Toxins, 5(6), 1089-1104. https://doi.org/10.3390/toxins5061089