The Snake Venom Rhodocytin from Calloselasma rhodostoma— A Clinically Important Toxin and a Useful Experimental Tool for Studies of C-Type Lectin-like Receptor 2 (CLEC-2)
Abstract
:1. Introduction
2. The Clinical Presentation of Calloselasma rhodostoma Bites
Local effects of snakebite in all 250 patients | |
48/250 | No local swelling, bleeding or other local reaction. |
24/250 | Negligible reaction with a maximum extent of swelling of <1 cm difference in circumference between the bitten and healthy extremity. |
57/250 | Mild local swelling, eventually together with local bleeding or blistering, but without necrosis; 1–4 cm difference in circumference between the bitten and the healthy extremity. |
94/250 | Moderate local reaction with swelling corresponding to a more than 4 cm difference in the circumference between the affected and the healthy extremity; no necrosis. |
27/250 | Local necrosis; this occurred mainly on bites located on fingers and toes. |
Systemic or distant effects in all 250 patients | |
37/250 | General or distant bleeding tendency. |
8/250 | Hypotension or shock. |
Hemorrhages in the 37 patients with general bleeding tendency | |
29/37 | Hemoptysis (this number may be overestimated, because this diagnosis was based on clinical evaluation alone). |
21/37 | Skin bleeding, usually discoid ecchymoses. |
17/37 | Gingival bleedings. |
3/37 | Hematemesis. |
1/37 | Macroscopic hematuria. |
1/37 | Intracerebral hemorrhage. |
3. Rhodocytin Ligation of the CLEC-2 Receptor
3.1. Molecular Characterization of Rhodocytin and Its Interaction with the CLEC-2 Receptor
3.2. Expression and Function of the CLEC-2 Receptor in Normal Cells
Cell | Expression and functional effects of CLEC-2 ligation/activation |
---|---|
Direct effects on CLEC-2 expressing cells | |
Platelets and megakaryocytes [18,19] | (i) CLEC-2 ligation induces intracellular tyrosine-phosphorylation signaling cascades mediated by Src, Syk, Vav, SLP-76 and PLCγ family members; (ii) There is also an increase in intracellular calcium levels and; (iii) finally, induction of platelet activation. Thus, Syk is a downstream mediator in platelets, neutrophils, monocytes, dendritic cells and endothelial cells (see below). |
Neutrophils [20,21,24] | Murine studies indicate that CLEC-2 activation initiates intracellular signaling through Syk and also affects signaling initiated by Toll-like Receptors (TLRs); this TLR effect is then similar to the effects seen in monocytes. CLEC-2 ligation triggers phagocytosis, and this is probably initiated via the cytoplasmic ITAM-like motif of its cytoplasmic tail. Similar to monocytes, CLEC-2 ligation in neutrophils seems to initiate production and release of IL-6, IL-10 and TNF-α. |
Monocytes [20,24] | CLEC-2 initiated Syk-coupled signaling is able to modulate TLR-initiated signaling, and proinflammatory responses are thereby altered. Production and release of IL-6, IL-10 and TNF-α is induced. |
Dendritic cells [25] | Intracellular signaling initiated by CLEC-2 ligation in dendritic cells involves many of the same mediators as platelets: CLEC-ligation triggers cell migration via downregulation of RhoA activity and myosin light-chain phosphorylation. F-actin-rich protrusions is triggered by Vav signaling and Rac1 activation. This signaling cascade finally results in rearrangement of the actin cytoskeleton, and dendritic cell migration is thereby promoted. |
NK cells [17] | Reverse transcriptase-PCR and Northern blot analysis indicate that CLEC-2 is expressed in NK cells, but the functional effects of CLEC-2 ligation have not been examined. |
Liver sinusoidal endothelial cells, liver Kupffer cells [20] | CLEC-2 is expressed on liver sinusoidal endothelial cells and Kupffer cells in both mice and humans, but the functional effects of CLEC-2 ligation on these cells have not been studied. |
Indirect effects in podoplanin expressing target cells | |
Endothelial cells and vessel formation [26,27,28] | Interaction between CLEC-2 in platelets and podoplanin in lymph endothelial cells are necessary for the embryonic separation of lymph and blood vessels; Syk- and SLP-76-deficient mice have blood/lymphatic misconnections. These effects are probably caused by reduced signaling in platelets rather than a direct effect via endothelium-expressed CLEC-2. |
Cancer cells and development of metastases [29,30,31,32] | Podoplanin is expressed in several malignancies and seems to be important for cancer cell migration and metastasis. The likely mechanism is cancer-induced platelet activation with the release of soluble mediators that affect endothelial cells and/or cancer cell migration with the development of metastases. |
3.3. The Possible Role of CLEC-2 in Cancer Development
3.4. Biological Studies of Local and Systemic Effects after Calloselasma Rhodostoma Bites—A Hypothesis-Generating Basis for Future Studies of CLEC-2 Biology?
4. Conclusions
Conflict of Interest
References
- Suzuki-Inoue, K.; Inoue, O.; Ozaki, Y. Novel platelet activation receptor CLEC-2: From discovery to prospects. J. Thromb. Haemost. 2011, 9, 44–55. [Google Scholar] [CrossRef]
- Watson, A.A.; Christou, C.M.; James, J.R.; Fenton-May, A.E.; Moncayo, G.E.; Mistry, A.R.; Davis, S.J.; Gilbert, R.J.; Chakera, A.; O’Callaghan, C.A. The platelet receptor CLEC-2 is active as a dimer. Biochemistry 2009, 48, 10988–10996. [Google Scholar] [CrossRef]
- Mourão-Sá, D.; Robinson, M.J.; Zelenay, S.; Sancho, D.; Chakravarty, P.; Larsen, R.; Plantinga, M.; van Rooijen, N.; Soares, M.P.; Lambrecht, B.; Reis e Sousa, C. CLEC-2 signaling via Syk in myeloid cells can regulate inflammatory responses. Eur. J. Immunol. 2011, 41, 3040–3053. [Google Scholar] [CrossRef]
- Kerrigan, A.M.; Dennehy, K.M.; Mourão-Sá, D.; Faro-Trindade, I.; Willment, J.A.; Taylor, P.R.; Eble, J.A.; Reis e Sousa, C.; Brown, G.D. CLEC-2 is a phagocytic activation receptor expressed on murine peripheral blood neutrophils. J. Immunol. 2009, 182, 4150–4157. [Google Scholar] [CrossRef]
- Warrell, D.A.; Looareesuwan, S.; Theakston, R.D.; Phillips, R.E.; Chanthavanich, P.; Viravan, C.; Supanaranond, W.; Karbwang, J.; Ho, M.; Hutton, R.A.; et al. Randomized comparative trial of three monospecific antivenoms for bites by the Malayan pit viper (Calloselasma rhodostoma) in southern Thailand: Clinical and laboratory correlations. Am. J. Trop. Med. Hyg. 1986, 35, 1235–1247. [Google Scholar]
- Ho, M.; Warrell, D.A.; Looareesuwan, S.; Phillips, R.E.; Chanthavanich, P.; Karbwang, J.; Supanaranond, W.; Viravan, C.; Hutton, R.A.; Vejcho, S. Clinical significance of venom antigen levels in patients envenomed by the Malayan pit viper (Calloselasma rhodostoma). Am. J. Trop. Med. Hyg. 1986, 35, 579–587. [Google Scholar]
- Ahmed, S.M.; Ahmed, M.; Nadeem, A.; Mahajan, J.; Choudhary, A.; Pal, J. Emergency treatment of a snake bite: Pearls from literature. J. Emerg. Trauma Shock 2008, 1, 97–105. [Google Scholar] [CrossRef]
- Venomous and Poisonous Animals Biology & Clinical Management. Available online: http://www.vapaguide.info/catalogue/TER-PIT-59-91 (accessed on 1 March 2013).
- Reid, H.A.; Thean, P.C.; Martin, W.J. Specific antivenom and prednisone in viper-bite poisoning: Controlled trial. Br. Med. J. 1963, 2, 1378–1380. [Google Scholar] [CrossRef]
- Apelseth, T.O.; Hervig, T.; Bruserud, O. Current practice and future directions for optimization of platelet transfusions in patients with severe therapy-induced cytopenia. Blood Rev. 2011, 25, 113–122. [Google Scholar] [CrossRef]
- Huang, T.F.; Liu, C.Z.; Yang, S.H. Aggretin, a novel platelet-aggregation inducer from snake (Calloselasma rhodostoma) venom, activates phospholipase C by acting as a glycoprotein Ia/IIa agonist. Biochem. J. 1995, 309, 1021–1027. [Google Scholar]
- Shin, Y.; Morita, T. Rhodocytin, a functional novel platelet agonist belonging to the heterodimeric C-type lectin family, induces platelet aggregation independently of glycoprotein Ib. Biochem. Biophys. Res. Commun. 1998, 245, 741–745. [Google Scholar] [CrossRef]
- Watson, A.A.; Eble, J.A.; O’Callaghan, C.A. Crystal structure of rhodocytin, a ligand for the platelet-activating receptor CLEC-2. Protein Sci. 2008, 17, 1611–1616. [Google Scholar] [CrossRef]
- Hooley, E.; Papagrigoriou, E.; Navdaev, A.; Pandey, A.V.; Clemetson, J.M.; Clemetson, K.J.; Emsley, J. The crystal structure of the platelet activator aggretin reveals a novel (alphabeta)2 dimeric structure. Biochemistry 2008, 47, 7831–7837. [Google Scholar] [CrossRef]
- O’Callaghan, C.A. Thrombomodulation via CLEC-2 targeting. Curr. Opin. Pharmacol. 2009, 9, 90–95. [Google Scholar] [CrossRef]
- Huysamen, C.; Brown, G.D. The fungal pattern recognition receptor, Dectin-1, and the associated cluster of C-type lectin-like receptors. FEMS Microbiol. Lett. 2009, 290, 121–128. [Google Scholar] [CrossRef]
- Colonna, M.; Samaridis, J.; Angman, L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur. J. Immunol. 2000, 30, 697–704. [Google Scholar] [CrossRef]
- Sobanov, Y.; Bernreiter, A.; Derdak, S.; Mechtcheriakova, D.; Schweighofer, B.; Düchler, M.; Kalthoff, F.; Hofer, E. A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. Eur. J. Immunol. 2001, 31, 3493–3503. [Google Scholar] [CrossRef]
- Chaipan, C.; Soilleux, E.J.; Simpson, P.; Hofmann, H.; Gramberg, T.; Marzi, A.; Geier, M.; Stewart, E.A.; Eisemann, J.; Steinkasserer, A.; et al. DC-SIGN and CLEC-2 mediate human immunodeficiency virus type 1 capture by platelets. J. Virol. 2006, 80, 8951–8960. [Google Scholar] [CrossRef]
- Tang, T.; Li, L.; Tang, J.; Li, Y.; Lin, W.Y.; Martin, F.; Grant, D.; Solloway, M.; Parker, L.; Ye, W.; et al. A mouse knockout library for secreted and transmembrane proteins. Nat. Biotechnol. 2010, 28, 749–755. [Google Scholar] [CrossRef]
- Wang, L.; Ren, S.; Zhu, H.; Zhang, D.; Hao, Y.; Ruan, Y.; Zhou, L.; Lee, C.; Qiu, L.; Yun, X.; Xie, J. Structural and functional conservation of CLEC-2 with the species-specific regulation of transcript expression in evolution. Glycoconj. J. 2012, 29, 335–345. [Google Scholar] [CrossRef]
- Suzuki-Inoue, K.; Fuller, G.L.; García, A.; Eble, J.A.; Pöhlmann, S.; Inoue, O.; Gartner, T.K.; Hughan, S.C.; Pearce, A.C.; Laing, G.D.; et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 2006, 107, 542–549. [Google Scholar] [CrossRef]
- Fuller, G.L.; Williams, J.A.; Tomlinson, M.G.; Eble, J.A.; Hanna, S.L.; Pöhlmann, S.; Suzuki-Inoue, K.; Ozaki, Y.; Watson, S.P.; Pearce, A.C. The C-type lectin receptors CLEC 2 and Dectin-1, but not DC-SIGN, signal via a novel YXXL-dependent signaling cascade. J. Biol. Chem. 2007, 282, 12397–12409. [Google Scholar] [CrossRef]
- Chang, C.H.; Chung, C.H.; Hsu, C.C.; Huang, T.Y.; Huang, T.F. A novel mechanism of cytokine release in phagocytes induced by aggretin, a snake venom C-type lectin protein, through CLEC-2 ligation. J. Thromb. Haemost. 2010, 8, 2563–2570. [Google Scholar] [CrossRef]
- Acton, S.E.; Astarita, J.L.; Malhotra, D.; Lukacs-Kornek, V.; Franz, B.; Hess, P.R.; Jakus, Z.; Kuligowski, M.; Fletcher, A.L.; Elpek, K.G.; et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the C-type lectin receptor CLEC-2. Immunity 2012, 37, 276–289. [Google Scholar] [CrossRef]
- Osada, M.; Inoue, O.; Ding, G.; Shirai, T.; Ichise, H.; Hirayama, K.; Takano, K.; Yatomi, Y.; Hirashima, M.; Fujii, H.; Suzuki-Inoue, K.; Ozaki, Y. Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J. Biol. Chem. 2012, 287, 22241–22252. [Google Scholar] [CrossRef]
- Suzuki-Inoue, K.; Inoue, O.; Ding, G.; Nishimura, S.; Hokamura, K.; Eto, K.; Kashiwagi, H.; Tomiyama, Y.; Yatomi, Y.; Umemura, K.; et al. Essential in vivo roles of the C-type lectin receptor CLEC-2: Embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. J. Biol. Chem. 2010, 285, 24494–24507. [Google Scholar] [CrossRef]
- Bertozzi, C.C.; Schmaier, A.A.; Mericko, P.; Hess, P.R.; Zou, Z.; Chen, M.; Chen, C.Y.; Xu, B.; Lu, M.M.; Zhou, D.; et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010, 116, 661–670. [Google Scholar] [CrossRef]
- Lowe, K.L.; Navarro-Nunez, L.; Watson, S.P. Platelet CLEC-2 and podoplanin in cancer metastasis. Thromb. Res. 2012, 129, S30–S37. [Google Scholar]
- Suzuki-Inoue, K. Essential in vivo roles of the platelet activation receptor CLEC-2 in tumor metastasis, lymphangiogenesis and thrombus formation. J. Biochem. 2011, 150, 127–132. [Google Scholar] [CrossRef]
- Suzuki-Inoue, K.; Kato, Y.; Inoue, O.; Kaneko, M.K.; Mishima, K.; Yatomi, Y.; Yamazaki, Y.; Narimatsu, H.; Ozaki, Y. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J. Biol. Chem. 2007, 282, 25993–6001. [Google Scholar] [CrossRef]
- Astarita, J.L.; Acton, S.E.; Turley, S.J. Podoplanin: Emerging functions in development, the immune system and cancer. Front. Immunol. 2012, 3, 283. [Google Scholar]
- Reikvam, H.; Hatfield, K.J.; Lassalle, P.; Kittang, A.O.; Ersvaer, E.; Bruserud, Ø. Targeting the angiopoietin (Ang)/Tie-2 pathway in the crosstalk between acute myeloid leukaemia and endothelial cells: Studies of Tie-2 blocking antibodies, exogenous Ang-2 and inhibition of constitutive agonistic Ang-1 release. Expert Opin. Investig. Drugs 2010, 19, 169–183. [Google Scholar] [CrossRef]
- Reikvam, H.; Hatfield, K.J.; Fredly, H.; Nepstad, I.; Mosevoll, K.A.; Bruserud, Ø. The angioregulatory cytokine network in human acute myeloid leukemia—From leukemogenesis via remission induction to stem cell transplantation. Eur. Cytokine Netw. 2012, 23, 140–153. [Google Scholar]
- Hatfield, K.J.; Hovland, R.; Øyan, A.M.; Kalland, K.H.; Ryningen, A.; Gjertsen, B.T.; Bruserud, Ø. Release of angiopoietin-1 by primary human acute myelogenous leukemia cells is associated with mutations of nucleophosmin, increased by bone marrow stromal cells and possibly antagonized by high systemic angiopoietin-2 levels. Leukemia 2008, 22, 287–293. [Google Scholar] [CrossRef]
- Reikvam, H.; Fredly, H.; Kittang, A.O.; Bruserud, O. The possible diagnostic and prognostic use of systemic chemokine profiles in clinical medicine—The experience in acute myeloid leukemia from disease development and diagnosis via conventional chemotherapy to allogeneic stem cell transplantation. Toxins 2013, 5, 336–362. [Google Scholar] [CrossRef]
- Reikvam, H.; Mosevoll, K.A.; Melve, G.K.; Günther, C.C.; Sjo, M.; Bentsen, P.T.; Bruserud, Ø. The pretransplantation serum cytokine profile in allogeneic stem cell recipients differs from healthy individuals, and various profiles are associated with different risks of posttransplantation complications. Biol. Blood Marrow Transplant. 2012, 18, 190–199. [Google Scholar] [CrossRef]
- Bruserud, O.; Halstensen, A.; Peen, E.; Solberg, C.O. Serum levels of adhesion molecules and cytokines in patients with acute leukaemia. Leuk. Lymphoma. 1996, 23, 423–430. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Bruserud, Ø. The Snake Venom Rhodocytin from Calloselasma rhodostoma— A Clinically Important Toxin and a Useful Experimental Tool for Studies of C-Type Lectin-like Receptor 2 (CLEC-2). Toxins 2013, 5, 665-674. https://doi.org/10.3390/toxins5040665
Bruserud Ø. The Snake Venom Rhodocytin from Calloselasma rhodostoma— A Clinically Important Toxin and a Useful Experimental Tool for Studies of C-Type Lectin-like Receptor 2 (CLEC-2). Toxins. 2013; 5(4):665-674. https://doi.org/10.3390/toxins5040665
Chicago/Turabian StyleBruserud, Øyvind. 2013. "The Snake Venom Rhodocytin from Calloselasma rhodostoma— A Clinically Important Toxin and a Useful Experimental Tool for Studies of C-Type Lectin-like Receptor 2 (CLEC-2)" Toxins 5, no. 4: 665-674. https://doi.org/10.3390/toxins5040665
APA StyleBruserud, Ø. (2013). The Snake Venom Rhodocytin from Calloselasma rhodostoma— A Clinically Important Toxin and a Useful Experimental Tool for Studies of C-Type Lectin-like Receptor 2 (CLEC-2). Toxins, 5(4), 665-674. https://doi.org/10.3390/toxins5040665