Observation of T-2 Toxin and HT-2 Toxin Glucosides from Fusarium sporotrichioides by Liquid Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS)
"> Figure 1
<p>.Chemical structure of (<b>a</b>) T-2 toxin (m.w. 466.5) and (<b>b</b>) HT-2 toxin (m.w. 424.5).</p> "> Figure 2
<p>Product ion scan spectra (APCI, ion trap mode, scan range 100-1000 <span class="html-italic">m/z</span>) for the [M + NH<sub>4</sub>]<sup>+</sup> ions of the (<b>a</b>) HT-2 toxin (<span class="html-italic">m/z</span> 442) and (<b>b</b>) T-2 toxin (<span class="html-italic">m/z</span> 484).</p> "> Figure 3
<p>Parent ion chromatograms (ESI mode) for the (<b>a</b>) 185 and (<b>b</b>) 215 <span class="html-italic">m/z</span> ions selected for probing extracts for “masked toxins”.</p> "> Figure 4
<p>Extracted ion chromatograms for <span class="html-italic">m/z</span> (<b>a</b>) 442, (<b>b</b>) 604, (<b>c</b>) 484, (<b>d</b>) 646 and (<b>e</b>) 400 from full scan experiments (ESI, Q3 scan mode, scan range 100-1000 <span class="html-italic">m/z</span>) of the extracts were performed to evaluate the presence of [M + NH<sub>4</sub>]<sup>+</sup> ions for T-2 toxin and HT-2 toxin, and their glucosides.</p> "> Figure 5
<p>Product ion scan (ESI mode) for the (<b>a</b>) 646 and (<b>b</b>) 604 <span class="html-italic">m/z</span> ions from the NRRL-3299 <span class="html-italic">F. sporotrichioides</span> extract, along with a purified concentration standard of (<b>c</b>) DON-3-glucoside.</p> "> Figure 6
<p>.Proposed chemical structures for (<b>a</b>) T-2 toxin (m.w. 628.7) and (<b>b</b>) HT-2 toxin (m.w. 586.6) glucosides.</p> "> Figure 7
<p>Selected ion chromatograms (ESI mode) for <span class="html-italic">m/z</span> (<b>a</b>) 442-263, (<b>b</b>) 604-323, (<b>c</b>) 484-305, (<b>d</b>) 646-263 and (<b>e</b>) 400-305 transitions from MS/MS experiments (selected reaction monitoring mode) of an extract were performed to evaluate the presence of [M + NH<sub>4</sub>]<sup>+</sup> ions for HT-2 toxin, HT-2 toxin-glucoside, T-2 toxin, T-2 toxin-glucoside and neosolaniol in an extract from NRRL-3299.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Fungal Isolates
2.3. Fungal Culture in Liquid Media
2.4. Fungal Culture on Cracked Corn or Rice Media
2.5. Extraction of Fungal Cultures on Cracked Corn or Rice Media
2.6. Comparison of Extraction Methods of Fungal Cultures on Cracked Corn
2.7. Fungal Growth on Growing Wheat or Oats
2.8. Extraction of Wheat or Oats for Toxin Analysis
2.9. Flow Injection and High Perfomance Liquid Chromatography (HPLC)-Mass Spectrometry
3. Results and Discussion
3.1. Fungal Production of T-2 Toxin and HT-2 Toxin
3.2. Product Ion MS/MS for T-2 Toxin and HT-2 Toxin
3.3. Parent Ion MS/MS for T-2 and HT-2 Related Compounds
3.4. Production MS/MS for T-2 and HT-2
3.5. LC-MS/MS of Glucosides and Extraction Efficiency Comparisons
Solvent system | T-2 toxin | HT-2 toxin | Neosolaniol | T-2 toxin-glucoside | HT-2 toxin-glucoside |
---|---|---|---|---|---|
Acetonitrile- water (1/1) | 100 | 9.7 | 12.0 | 0 | 0.4 |
Acetonitrile- water (86/14) | 100 | 8.7 | 11.2 | 0 | 0.5 |
Acetonitrile | 100 | 9.6 | 11.5 | 0 | 0.5 |
Methanol | 100 | 10.3 | 11.8 | 0 | 0.5 |
Ethyl acetate | 100 | 14.3 | 18.2 | 0.048 | 0.5 |
3.6. Production of T-2 Toxin and HT-2 Toxin, along with the Proposed Glucosides with a Variety of Growth Conditions
Support | T-2 toxin | HT-2 toxin | Neosolaniol | T-2 toxin-glucoside | HT-2 toxin-glucoside |
---|---|---|---|---|---|
Cracked corn | 100 | 14.3 | 18.2 | 0.048 | 0.5 |
Rice kernels | 100 | 4.7 | 14.2 | 0.002 | 0.2 |
Growing wheat | 100 | 43.5 | 0.0 | 0 | 19.2 |
Growing oats | 100 | 11.1 | 0.0 | 0 | 1.9 |
GYEP-liquid medium | 100 | 0.9 | 11.5 | 0 | 0.1 |
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Desjardins, A.E. Fusarium Mycotoxins: Chemistry, Genetics, and Biology; American Phytopathological Society Press: St. Paul, MN, USA, 2006. [Google Scholar]
- Joint FAO/WHO Expert Committee on Food Additives (JECFA), Safety Evaluation of Certain Mycotoxins in Food; Food and Agriculture Organisation: Rome, Italy, 2001.
- Richard, J.L.; Payne, G.A. Mycotoxins: Risks in Plant, Animal and Human Systems; Council for Agricultural Science and Technology: Ames, IA, USA, 2002. [Google Scholar]
- Visconti, A.; Minervini, F.; Lucifero, G.; Gambatesa, V. Cytotoxic and immunotoxic effects of Fusarium mycotoxins using a rapid colorimetric bioassay. Mycopathologia 1991, 113, 181–186. [Google Scholar]
- Königs, M.; Mulac, D.; Schwerdt, G.; Gekle, M.; Humpf, H.-U. Metabolism and cytotoxic effects of T-2 toxin and its metabolites on human cells in primary culture. Toxicology 2009, 258, 106–115. [Google Scholar]
- Lippolis, V.; Pascale, M.; Maragos, C.M.; Visconti, A. Improvement of detection sensitivity of T-2 and HT-2 toxins using different fluorescent labeling reagents by high-performance liquid chromatography. Talanta 2007, 74, 1476–1483. [Google Scholar]
- Pascale, M.; Lippolis, V.; Maragos, C.M.; Visconti, A. Recent Developments in Trichothecene Analysis. Food Contaminants; Siantar, D.P., Trucksess, M.W., Scott, P.M., Herman, E.M., Eds.; American Chemical Society: Washington, DC, USA, 2008. [Google Scholar]
- Jiménez, M.; Mateo, J.J.; Mateo, R. Determination of type A trichothecenes by high-performance liquid chromatography with coumarin-3-carbonyl chloride derivatisation and fluorescence detection. J. Chromatogr. A 2000, 870, 473–481. [Google Scholar]
- Poppenberger, B.; Berthiller, F.; Lucyshyn, D.; Sieberer, T.; Schuhmacher, R.; Krska, R.; Kuchler, K.; Glössl, J.; Luschnig, C.; Adam, G. Detoxification of the fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from arabidopsis thaliana. J. Biol. Chem. 2003, 278, 47905–47914. [Google Scholar]
- Poppenberger, B.; Berthiller, F.; Bachmann, H.; Lucyshyn, D.; Peterbauer, C.; Mitterbauer, R.; Schuhmacher, R.; Krska, R.; Glössl, J.; Adam, G. Heterologous expression of Arabidopsis UDP-glucosyltransferases in Saccharomyces cerevisiae for production of zearalenone-4-O-glucoside. Appl. Environ. Microbiol. 2006, 72, 4404–4410. [Google Scholar] [PubMed]
- Berthiller, F.; Krska, R.; Dornig, D.J.; Kneifel, W.; Juge, N.; Schuhmacher, R.; Adam, G. Hydrolytic fate of deoxynivalenol-3-glucoside during digestion. Toxicol. Lett. 2011, 206, 264–267. [Google Scholar]
- Gareis, M.; Bauer, J.; Thiem, J.; Plank, G.; Grabley, S.; Gedek, B. Cleavage of zearalenone-glycoside, a “masked” mycotoxin, during digestion in swin. J. Vet. Med. Ser. B 1990, 37, 236–240. [Google Scholar]
- Zachariasova, M.; Hajslova, J.; Kostelanska, M.; Poustka, J.; Krplova, A.; Cuhra, P.; Hochel, I. Deoxynivalenol and its conjugates in beer: A critical assessment of data obtained by enzyme-linked immunosorbent assay and liquid chromatography coupled to tandem mass spectrometry. Anal. Chim. Acta 2008, 625, 77–86. [Google Scholar]
- Kostelanska, F.; Hajslova, J.; Zachariasova, M.; Malachova, A.; Kalachova, K.; Poustka, J.; Fiala, J.; Scott, P.M.; Berthiller, F.; Krska, R. Occurence of Deoxynivalenol and its major conjugate, deoxynivalenol-3-glucoside, in beer and some brewing intermediate. J. Agric. Food Chem. 2009, 57, 3187–3194. [Google Scholar]
- Berthiller, F.; Dall’Asta, C.; Schumacher, R.; Lemmens, M.; Adam, G.; Krska, R. Masked mycotoxins: Determination of a deoxynivalenol glucoside in artificially and naturally contaminated wheat by liquid chromatography-tandem mass spectrometry. J. Agric. Food Chem. 2005, 53, 3421–3425. [Google Scholar]
- Desjardins, A.E.; Busman, M.; Proctor, R.H.; Stessman, R. Wheat kernel black point and fumonisin contamination by Fusarium proliferatum. Food Addit. Contam. 2007, 24, 1131–1137. [Google Scholar]
- Kostiainen, R.; Hesso, A. Characterization of trichothecenes by ammonia chemical ionization and tandem mass spectrometry. Biomed. Environ. Mass Spectrom. 1988, 15, 79–87. [Google Scholar]
- Dall’Asta, C.; Berthiller, F.; Schumacher, R.; Adam, G.; Lemmens, M.; Krska, R. DON-Glycosides: Characterization of synthesis products and screening for their occurrence in DON-treated wheat samples. Mycotoxin Res. 2005, 21, 123–127. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Busman, M.; Poling, S.M.; Maragos, C.M. Observation of T-2 Toxin and HT-2 Toxin Glucosides from Fusarium sporotrichioides by Liquid Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS). Toxins 2011, 3, 1554-1568. https://doi.org/10.3390/toxins3121554
Busman M, Poling SM, Maragos CM. Observation of T-2 Toxin and HT-2 Toxin Glucosides from Fusarium sporotrichioides by Liquid Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS). Toxins. 2011; 3(12):1554-1568. https://doi.org/10.3390/toxins3121554
Chicago/Turabian StyleBusman, Mark, Stephen M. Poling, and Chris M. Maragos. 2011. "Observation of T-2 Toxin and HT-2 Toxin Glucosides from Fusarium sporotrichioides by Liquid Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS)" Toxins 3, no. 12: 1554-1568. https://doi.org/10.3390/toxins3121554
APA StyleBusman, M., Poling, S. M., & Maragos, C. M. (2011). Observation of T-2 Toxin and HT-2 Toxin Glucosides from Fusarium sporotrichioides by Liquid Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS). Toxins, 3(12), 1554-1568. https://doi.org/10.3390/toxins3121554