Venom from Loxosceles Spiders Collected in Southeastern and Northeastern Brazilian Regions Cause Hemotoxic Effects on Human Blood Components
<p>Reported accidents involving <span class="html-italic">Loxosceles</span> spiders in Brazil (2007–2022) and locations of spider specimen collections. (<b>A</b>) Map of Brazil depicting the occurrence of <span class="html-italic">Loxosceles</span>-related accidents by state in 2022, along with the regions where the species used in this study were collected. (<b>B</b>) The number of reported accidents caused by <span class="html-italic">Loxosceles</span> spiders from 2007 to 2023, categorized by region within Brazil. (<b>C</b>) The change in the incidence rate of <span class="html-italic">Loxosceles</span> accidents over a decade (2013–2023) per region, with the national average represented by a dotted line. Color intensity reflects incidence rates as detailed in the legend. The map was created using QGIS 3.32.3 software. Incident data was retrieved from the Sistema de Informação de Agravos de Notificação—SINAN. * Data is subject to revision by SINAN for the period 2020–2023. Data from the Southeast region does not include Espirito Santo state, which stopped providing data to SINAN since 2020.</p> "> Figure 2
<p>The crude venom of <span class="html-italic">Loxosceles amazonica</span> and <span class="html-italic">Loxosceles similis</span> induce platelet aggregation. Washed platelets were incubated with 100 μg/mL and 200 μg/mL of <span class="html-italic">Loxosceles</span> crude venoms. Aggregation was monitored by measuring light transmittance for 10 min by an aggregometer. The percentage of aggregation was automatically calculated by comparing the initial optical density with the optical density after the addition of the aggregating agent, using the HemoRam 1.1 software. The mean ± standard deviation is shown. The results are representative of two or three experiments with different individual donors (points of graph). (<b>A</b>) Platelet aggregation with <span class="html-italic">Loxosceles amazonica</span>; (<b>B</b>) <span class="html-italic">Loxosceles aff. Variegata</span>, and (<b>C</b>) <span class="html-italic">Loxosceles similis</span>. Collagen or convulxin were used as platelet-aggregation agonists (C+). Statistical analysis was performed using one-way ANOVA (Kruskal–Wallis test) with Dunn post-test for multiple comparison. (*) = <span class="html-italic">p</span> ≤ 0.05.</p> "> Figure 3
<p>The crude venom of <span class="html-italic">Loxosceles aff. variegata</span> inhibits platelet aggregation induced by collagen and convulxin. Washed human platelets were pre-incubated with different concentrations of <span class="html-italic">Loxosceles aff. variegata</span> venom (100 and 200 μg/mL) under agitation at 600 rpm at 37 °C. After 3 min, platelet aggregation was induced by 10 μg/mL collagen or 0.3 mg/mL convulxin and monitored by aggregometer by measuring light transmittance for 7 min. The mean ± standard deviation is shown. The results are representative of three experiments with different individual donors (points of graph). (<b>A</b>) The crude <span class="html-italic">L. amazonica</span> venom does not have the ability to inhibit platelet aggregation induced by agonist collagen. (<b>B</b>) Platelet aggregation assay to assess the ability of crude <span class="html-italic">Loxosceles aff. variegata</span> venom to inhibit collagen-induced and convulxin-induced aggregation. (<b>C</b>) The crude <span class="html-italic">L. similis</span> venom does not have the ability to inhibit platelet aggregation induced by agonist Convulxin. Statistical analysis was performed using two-way ANOVA with Tukey post-test for multiple comparison. (*) = <span class="html-italic">p</span> ≤ 0.05 and (**) = <span class="html-italic">p</span> ≤ 0.01.</p> "> Figure 4
<p>In vitro hemolytic assay of <span class="html-italic">Loxosceles</span> venoms. Human erythrocytes were exposed to various concentrations (7.8; 15.6; 31.25; and 62.5 μg/mL) of different <span class="html-italic">Loxosceles</span> spider venoms for 20 h at 37.0 °C and were evaluated for hemolysis. As a negative control, the erythrocytes were incubated only in Ringer’s Lactate. The positive control was incubated with a 0.1% (<span class="html-italic">v</span>/<span class="html-italic">v</span>) Triton X-100 solution. (<b>A</b>) The tubes containing the Ringer’s Lactate solution, the venoms, and the controls after incubation and centrifugation. (<b>B</b>) Percentage of hemolysis considering Triton X-100 (positive control) as 100%. Statistical analysis was performed using two-way ANOVA with Tukey post-test for multiple comparison. (*) = <span class="html-italic">p</span> ≤ 0.05, (**) = <span class="html-italic">p</span> ≤ 0.01 and (****) = <span class="html-italic">p</span> ≤ 0.0001.</p> "> Figure 5
<p>Influence of the Rh system on the direct hemolytic activity of <span class="html-italic">Loxosceles</span> venoms. The blood types were incubated with 31.25 μg/mL of different <span class="html-italic">Loxosceles</span> venoms for 20 h. LaV—<span class="html-italic">Loxosceles amazonica</span> venom. LgV—<span class="html-italic">Loxosceles gaucho</span> venom. LvV—<span class="html-italic">Loxosceles aff. variegata</span> venom. LsV—<span class="html-italic">Loxosceles similis</span> venom. Statistical analysis was performed using two-way ANOVA, with post-test of Bonferroni. (*) = <span class="html-italic">p</span> < 0.05.</p> "> Figure 6
<p>Zymogram of the fibrinogenolytic activity of <span class="html-italic">Loxosceles</span> venoms and the inhibition of this activity. (<b>A</b>) Zymography of <span class="html-italic">Loxosceles</span> venoms using 12% SDS–PAGE, containing 5 mg/mL of bovine fibrinogen integrated into the gel. (<b>B</b>) Gel incubated overnight in a 1 M phosphate buffer at pH 8.0 with 2 mM EDTA. (<b>C</b>) Gel incubated overnight in a 1 M phosphate buffer at pH 8.0 with 3 mM Phenanthroline. (<b>D</b>) Gel incubated overnight in a 1 M phosphate buffer at pH 8.0 with 5 mM Phenylmethylsulfonyl Fluoride (PMSF). Arrows in yellow point to regions where enzymatic degradation by the venoms is present. LaV—<span class="html-italic">Loxosceles amazonica</span> venom. LgV—<span class="html-italic">Loxosceles gaucho</span> venom. LvV—<span class="html-italic">Loxosceles aff. variegata</span> venom. LsV—<span class="html-italic">Loxosceles similis</span> venom.</p> "> Figure 7
<p>Fibrinogenolytic activity of Brazilian <span class="html-italic">Loxosceles</span>. Proteolytic activity was determined by a fibrinogen digestion (Fg) assay described by Medina-Santos et al., 2019. Fibrinogenolytic activity was performed using 3 µg of <span class="html-italic">Loxosceles</span> venoms, incubated with bovine or human fibrinogen for 16 h at 37 °C. The fibrinogen samples, either pure or pre- incubated with the venoms, were analyzed by 12% SDS–PAGE. The graphs were plotted with the mean and standard deviation of the percentage density of the bands compared to the fibrinogen control, considered as 100%, analyzed in ImageJ, considering two independent assays. (<b>A</b>) On the left, the graph shows the percentage of degradation of fibrinogen chains. On the right, 12% SDS–PAGE displays the fibrinogenolytic activity of male and female <span class="html-italic">L. amazonica</span> venom. (<b>B</b>) On the left, the graph shows the percentage of degradation of fibrinogen chains. On the right, 12% SDS–PAGE displays the fibrinogenolytic activity of male and female <span class="html-italic">L. aff. variegata</span> venom. (<b>C</b>) On the left, the graph shows the percentage degradation of fibrinogen chains. On the right, 12% SDS–PAGE displays the fibrinogenolytic activity of <span class="html-italic">L. similis</span> venom. (<b>D</b>) On the left, the graph shows the percentage degradation of fibrinogen chains. On the right, 12% SDS–PAGE displays the fibrinogenolytic activity of <span class="html-italic">L. gaucho</span> venom. LaV—<span class="html-italic">Loxosceles amazonica</span> venom. LgV—<span class="html-italic">Loxosceles gaucho</span> venom. LvV—<span class="html-italic">Loxosceles aff. variegata</span> venom. LsV—<span class="html-italic">Loxosceles similis</span> venom. Fg—Fibrinogen.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Platelet Aggregation and Inhibition Assays
2.2. Dose-Response Curve of the Direct Hemolytic Activity of Loxosceles Venoms
2.3. Assessment of Rh System Interference in Direct Hemolysis
2.4. Fibrinogenolytic Activity
3. Conclusions
4. Materials and Methods
4.1. Spiders, Venoms, and Antivenoms
4.2. Platelet Aggregation and Inhibition Assay
4.3. Hemolytic Activity
4.4. Fibrinogenolytic Activity
4.4.1. Zymogram
4.4.2. Fibrinogen Digestion Assay
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bern, N.H.M. World Spider Catalogue-Version 25.0. Available online: http://wsc.nmbe.ch (accessed on 30 September 2024).
- Kurpiewski, G.; Forrester, L.J.; Barrett, J.T.; Campbell, B.J. Platelet Aggregation and Sphingomyelinase D Activity of a Purified Toxin from the Venom of Loxosceles Reclusa. BBA Gen. Subj. 1981, 678, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Lopes, P.H.; Squaiella-Baptistão, C.C.; Marques, M.O.T.; Tambourgi, D.V. Clinical Aspects, Diagnosis and Management of Loxosceles Spider Envenomation: Literature and Case Review. Arch. Toxicol. 2020, 94, 1461–1477. [Google Scholar] [CrossRef] [PubMed]
- Futrell, J.M. Loxoscelism. Am. J. Med. Sci. 1992, 304, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Castro, P.H.C.; Paiva, A.L.B.; Peixoto, G.V.M.; Oliveira-Mendes, B.B.R.; Calaça, P.; Matavel, A. Epidemiology of Arthropods Envenomation in Brazil: A Public Health Issue. An. Acad. Bras. Cienc. 2023, 95, 1–12. [Google Scholar] [CrossRef]
- De Oliveira-Mendes, B.B.R.; Chatzaki, M.; Sales-Medina, D.F.; Leal, H.G.; van der Veer, R.; Biscoto, G.L.; Gonçalves, P.M.; Soares da Silva, T.; Guerra-Duarte, C.; Kalapothakis, E.; et al. From Taxonomy to Molecular Characterization of Brown Spider Venom: An Overview Focused on Loxosceles Similis. Toxicon 2020, 173, 5–19. [Google Scholar] [CrossRef]
- Silva-Magalhães, R.; Silva-Araújo, A.L.; Peres-Damásio, P.; Teixeira Pereira, E.H.; de Oliveira Souza, R.; Varela, L.S.d.R.N.; Tomé, L.M.R.; de Melo Iani, F.C.; Silveira, A.L.; Borges, M.H.; et al. Loxosceles Amazonica Brown Spider Venom: Insights into Enzymatic Activities, Immunorecognition, and Novel Phospholipase D Isoforms. Biochimie 2024, 227, 86–98. [Google Scholar] [CrossRef]
- Danilo Leite da Silva Rocha, K.; Hugo Melo Carvalho, V.; Ivo Martins Cidade, P.; Sávio Soares Macedo, A.; Fernandes Peixoto Furtado, M.I.; Felippe de Araújo Rolim, F.; Carvalho Bezerra de Brito Vieira, L. Severe Evolution of Brown Spider Arachnid Accident: A Case Report. Amadeus Int. Multidiscip. J. 2021, 6, 26–33. [Google Scholar] [CrossRef]
- Amorim, M.L.P.; Simão, D.G.d.O.; Albuquerque, J.P.V.eS.d.; Ramos, B.M.T.; Nascimento, G.J.L.d.; Mello, M.J.G.d. Brown Spiders (Loxosceles) Are Taking Hold in Pernambuco, Brazil: A Case Series, 2018–2022. Epidemiol. Serviços Saúde 2024, 33, 2018–2022. [Google Scholar] [CrossRef]
- Silveira, A.L. New Geographic Records of the Brown Spider Loxosceles Amazonica Gertsch, 1967 (Araneae, Sicariidae) in Northeastern Brazil and Its Medical Importance. Rev. Médica Minas Gerais 2015, 25, 37–45. [Google Scholar] [CrossRef]
- Almeida, M.Q.; Salvatierra, L.; Carvalho, T.G.; Prestes, F.J.; Brescovit, A.D.; Gasnier, T.R. Muito Tempo Sem Ver: Expansão Dos Registros de Loxosceles amazonica (Araneae: Sicariidae) Para o Estado Do Amazonas, Brasil. Acta Amaz. 2017, 47, 163–166. [Google Scholar] [CrossRef]
- De Albuquerque, H.N.; Barbosa, A.R.; de Albuquerque, I.C.S.; Menezes, I.R.d. Registro de Loxosceles Amazonica Gertsch, 1967 (Aranae, Sicariidae) No Cariri Paraibano. Rev. Biol. Ciências Terra 2004, 5, 1–4. [Google Scholar]
- Lopes, P.H.; Fukushima, C.S.; Shoji, R.; Bertani, R.; Tambourgi, D.V. Searching for the Toxic Potential of Loxosceles amazonica and Loxosceles willianilsoni Spiders’ Venoms. Toxicon 2021, 191, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Binford, G.J.; Bodner, M.R.; Cordes, M.H.J.; Baldwin, K.L.; Rynerson, M.R.; Burns, S.N.; Zobel-Thropp, P.A. Molecular Evolution, Functional Variation, and Proposed Nomenclature of the Gene Family That Includes Sphingomyelinase D in Sicariid Spider Venoms. Mol. Biol. Evol. 2009, 26, 547–566. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, T.G.; Ferreira, R.L. Are Inner Cave Communities More Stable than Entrance Communities in Lapa Nova Show Cave? Subterr. Biol. 2016, 20, 15–37. [Google Scholar] [CrossRef]
- Chatzaki, M.; Horta, C.C.; Almeida, M.O.; Pereira, N.B.; Mendes, T.M.; Dias-Lopes, C.; Guimarães, G.; Moro, L.; Chávez-Olórtegui, C.; Horta, M.C.R.; et al. Cutaneous Loxoscelism Caused by Loxosceles similis Venom and Neutralization Capacity of Its Specific Antivenom. Toxicon 2012, 60, 21–30. [Google Scholar] [CrossRef]
- De Andrade, R.M.G.; Galati, E.A.B.; Tambourgi, D.V. Presença de Loxosceles Similis Moenkhaus, 1898 (Araneae, Sicariidae) Na Serra Da Bodoquena, Estado de Mato Grosso Do Sul, Brasil. Rev. Soc. Bras. Med. Trop. 2001, 34, 275–277. [Google Scholar] [CrossRef]
- Lucas, S. Spiders in Brazil. Toxicon 1988, 26, 759–772. [Google Scholar] [CrossRef]
- Trajano, E.; Gnaspini-Netto, P. Composição Da Fauna Cavernícola Brasileira, Com Uma Análise Preliminar Da Distribuição Dos Taxons. Rev. Bras. Zool. 1990, 7, 383–407. [Google Scholar] [CrossRef]
- Machado, É.O.; Álvares, É.S.S.; De Maria, M.; Kalapothakis, E. Sobre a Presença de Três Espécies de Loxosceles Heineken & Lowe (Araneae: Sicariidae) No Município de Belo Horizonte, Minas Gerais, Brasil. Lundiana 2005, 6, 113–115. [Google Scholar]
- Silvestre, F.G.; Castro, C.S.D.; Moura, J.F.D.; Giusta, M.S.; De Maria, M.; Álvares, É.S.S.; Lobato, F.C.F.; Assis, R.A.; Gonçalves, L.A.; Gubert, I.C.; et al. Characterization of the Venom from the Brazilian Brown Spider Loxosceles Similis Moenkhaus, 1898 (Araneae, Sicariidae). Toxicon 2005, 46, 927–936. [Google Scholar] [CrossRef]
- Calabria, P.A.L.; Shimokava-Falcao, L.H.A.L.; Colombini, M.; Moura-da-Silva, A.M.; Barbaro, K.C.; Faquim-Mauro, E.L.; Magalhaes, G.S. Design and Production of a Recombinant Hybrid Toxin to Raise Protective Antibodies against Loxosceles Spider Venom. Toxins 2019, 11, 108. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, D.A.; Caporrino, M.C.; Barbaro, K.C.; Della-Casa, M.S.; Faquim-Mauro, E.L.; Magalhaes, G.S. Recombinant Phospholipase D from Loxosceles gaucho Binds to Platelets and Promotes Phosphatidylserine Exposure. Toxins 2017, 9, 191. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, P.L.M.M.; Tessarolo, L.D.; Menezes, F.H.; De Lima, T.B.; Paiva, J.H.H.G.L.; Da Silva Júnior, G.B.; Martins, A.M.C.; Daher, E.d.F. Acute Kidney Injury Due to Systemic Loxoscelism: A Cross Sectional Study in Northeast Brazil. Rev. Soc. Bras. Med. Trop. 2018, 51, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Malaque, C.M.S.; Castro-Valencia, J.E.; Cardoso, J.L.C.; França, F.O.S.; Barbaro, K.C.; Fan, H.W. Clinical And Epidemiological Features Of Definitive and Presumed Loxoscelism in São Paulo, Brazil. Rev. Do Inst. Med. Trop. São Paulo 2002, 44, 139–143. [Google Scholar] [CrossRef]
- Bertoni da Silveira, R.; Pigozzo, R.B.; Chaim, O.M.; Appel, M.H.; Dreyfuss, J.L.; Toma, L.; Mangili, O.C.; Gremski, W.; Dietrich, C.P.; Nader, H.B.; et al. Molecular Cloning and Functional Characterization of Two Isoforms of Dermonecrotic Toxin from Loxosceles Intermedia (Brown Spider) Venom Gland. Biochimie 2006, 88, 1241–1253. [Google Scholar] [CrossRef]
- Magalhães, G.S.; Caporrino, M.C.; Della-Casa, M.S.; Kimura, L.F.; Prezotto-Neto, J.P.; Fukuda, D.A.; Portes-Junior, J.A.; Neves-Ferreira, A.G.C.; Santoro, M.L.; Barbaro, K.C. Cloning, Expression and Characterization of a Phospholipase D from Loxosceles gaucho Venom Gland. Biochimie 2013, 95, 1773–1783. [Google Scholar] [CrossRef]
- Tavares, F.L.; Peichoto, M.E.; Rangel, D.D.M.; Barbaro, K.C.; Cirillo, M.C.; Santoro, M.L.; Sano-Martins, I.S. Loxosceles gaucho Spider Venom and Its Sphingomyelinase Fraction Trigger the Main Functions of Human and Rabbit Platelets. Hum. Exp. Toxicol. 2011, 30, 1567–1574. [Google Scholar] [CrossRef]
- Appel, M.H.; da Silveira, R.B.; Chaim, O.M.; Paludo, K.S.; Silva, D.T.; Chaves, D.M.; da Silva, P.H.; Mangili, O.C.; Senff-Ribeiro, A.; Gremski, W.; et al. Identification, Cloning and Functional Characterization of a Novel Dermonecrotic Toxin (Phospholipase D) from Brown Spider (Loxosceles intermedia) Venom. Biochim. Biophys. Acta Gen. Subj. 2008, 1780, 167–178. [Google Scholar] [CrossRef]
- Tambourgi, D.V.; Morgan, B.P.; De Andrade, R.M.G.; Magnoli, F.C.; Van Den Berg, C.W. Loxosceles Intermedia Spider Envenomation Induces Activation of an Endogenous Metalloproteinase, Resulting in Cleavage of Glycophorins from the Erythrocyte Surface and Facilitating Complement-Mediated Lysis. Blood 2000, 95, 683–691. [Google Scholar] [CrossRef]
- Chaves-moreira, D.; Chaim, O.M.; Sade, Y.B.; Paludo, K.S.; Gremski, L.H.; Donatti, L.; De Moura, J.; Mangili, O.C.; Gremski, W.; Silveira, R.B.; et al. Identification of a Direct Hemolytic Effect Dependent on the Catalytic Activity Induced by Phospholipase-D (Dermonecrotic Toxin) From Brown Spider Venom. J. Cell. Biochem. 2009, 107, 655–666. [Google Scholar] [CrossRef]
- Tambourgi, D.V.; Magnoli, F.C.; Van Den Berg, C.W.; Morgan, B.P.; De Araujo, P.S.; Alves, E.W.; Da Silva, W.D. Sphingomyelinases in the Venom of the Spider Loxosceles intermedia Are Responsible for Both Dermonecrosis and Complement-Dependent Hemolysis. Biochem. Biophys. Res. Commun. 1998, 251, 366–373. [Google Scholar] [CrossRef]
- Moreira, D.C. Estudo Da Atividade Hemolítica Do Veneno de Loxosceles intermedia (Aranha Marrom) e Seus Mecanismos Moleculares. Master’s Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 2008. Available online: http://hdl.handle.net/1884/18565 (accessed on 29 November 2024).
- Trevisan-Silva, D.; Gremski, L.H.; Chaim, O.M.; da Silveira, R.B.; Meissner, G.O.; Mangili, O.C.; Barbaro, K.C.; Gremski, W.; Veiga, S.S.; Senff-Ribeiro, A. Astacin-like Metalloproteases Are a Gene Family of Toxins Present in the Venom of Different Species of the Brown Spider (Genus Loxosceles). Biochimie 2010, 92, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Markland, F.S. Snake Venoms and the Hemostatic System. Toxicol. Appl. Pharmacol. 1998, 36, 1749–1800. [Google Scholar] [CrossRef] [PubMed]
- Medina-Santos, R.; Guerra-Duarte, C.; de Almeida Lima, S.; Costal-Oliveira, F.; Alves de Aquino, P.; Oliveira do Carmo, A.; Ferreyra, C.B.; Gonzalez-Kozlova, E.E.; Kalapothakis, E.; Chávez-Olórtegui, C. Diversity of Astacin-like Metalloproteases Identified by Transcriptomic Analysis in Peruvian Loxosceles Laeta Spider Venom and in vitro Activity Characterization. Biochimie 2019, 167, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, K.C.; Knysak, I.; Martins, R.; Hogan, C.; Winkel, K. Enzymatic Characterization, Antigenic Cross-Reactivity and Neutralization of Dermonecrotic Activity of Five Loxosceles Spider Venoms of Medical Importance in the Americas. Toxicon 2005, 45, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Grashof, D.; Zdenek, C.N.; Dobson, J.S.; Youngman, N.J.; Coimbra, F.; Benard-Valle, M.; Alagon, A.; Fry, B.G. A Web of Coagulotoxicity: Failure of Antivenom to Neutralize the Destructive (Non-Clotting) Fibrinogenolytic Activity of Loxosceles and Sicarius Spider Venoms. Toxins 2020, 12, 91. [Google Scholar] [CrossRef]
- Sanchez, E.F.; Richardson, M.; Gremski, L.H.; Veiga, S.S.; Yarleque, A.; Niland, S.; Lima, A.M.; Estevao-Costa, M.I.; Eble, J.A. A Novel Fibrinolytic Metalloproteinase, Barnettlysin-I from Bothrops Barnetti (Barnett’s Pitviper) Snake Venom with Anti-Platelet Properties. Biochim. Biophys. Acta Gen. Subj. 2016, 1860, 542–556. [Google Scholar] [CrossRef]
- Karim-silva, S.; De Moura, J.; Noiray, M.; Carlos, J.; Aubrey, N.; Alvarenga, L.M.; Billiald, P. Generation of Recombinant Antibody Fragments with Toxin-Neutralizing Potential in Loxoscelism. Immunol. Lett. 2016, 176, 90–96. [Google Scholar] [CrossRef]
- Campos, L.B.; Pucca, M.B.; Roncolato, E.C.; Netto, J.C.; Barbosa, J.E. Analysis of Phospholipase A2, L-Amino Acid Oxidase, and Proteinase Enzymatic Activities of the Lachesis Muta Rhombeata Venom. J. Biochem. Mol. Toxicol. 2012, 26, 308–314. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Magalhães, R.; Gomes dos Santos, A.M.; Silva-Araújo, A.L.; Peres-Damásio, P.L.; Gonçalves de Alvarenga, V.; Souza de Oliveira, L.; Sanchez, E.F.; Chávez-Olórtegui, C.; Varela, L.S.d.R.N.; Paiva, A.L.B.; et al. Venom from Loxosceles Spiders Collected in Southeastern and Northeastern Brazilian Regions Cause Hemotoxic Effects on Human Blood Components. Toxins 2024, 16, 532. https://doi.org/10.3390/toxins16120532
Silva-Magalhães R, Gomes dos Santos AM, Silva-Araújo AL, Peres-Damásio PL, Gonçalves de Alvarenga V, Souza de Oliveira L, Sanchez EF, Chávez-Olórtegui C, Varela LSdRN, Paiva ALB, et al. Venom from Loxosceles Spiders Collected in Southeastern and Northeastern Brazilian Regions Cause Hemotoxic Effects on Human Blood Components. Toxins. 2024; 16(12):532. https://doi.org/10.3390/toxins16120532
Chicago/Turabian StyleSilva-Magalhães, Rafaela, Ayla Mel Gomes dos Santos, Ana Luiza Silva-Araújo, Pamella Luize Peres-Damásio, Valéria Gonçalves de Alvarenga, Luciana Souza de Oliveira, Eladio Flores Sanchez, Carlos Chávez-Olórtegui, Luana Silveira da Rocha Nowicki Varela, Ana Luiza Bittencourt Paiva, and et al. 2024. "Venom from Loxosceles Spiders Collected in Southeastern and Northeastern Brazilian Regions Cause Hemotoxic Effects on Human Blood Components" Toxins 16, no. 12: 532. https://doi.org/10.3390/toxins16120532
APA StyleSilva-Magalhães, R., Gomes dos Santos, A. M., Silva-Araújo, A. L., Peres-Damásio, P. L., Gonçalves de Alvarenga, V., Souza de Oliveira, L., Sanchez, E. F., Chávez-Olórtegui, C., Varela, L. S. d. R. N., Paiva, A. L. B., & Guerra-Duarte, C. (2024). Venom from Loxosceles Spiders Collected in Southeastern and Northeastern Brazilian Regions Cause Hemotoxic Effects on Human Blood Components. Toxins, 16(12), 532. https://doi.org/10.3390/toxins16120532