Revealing the Bioactivities of Physalia physalis Venom Using Drosophila as a Model
"> Figure 1
<p>(<b>a</b>) Survival of flies treated with different doses of venom. (<b>b</b>) Dose-dependent responses at 60 h. Doses are presented in μg/fly/day, and values correspond to the mean ± SEM. (<b>c</b>) Negative geotaxis assay comparing venom-treated flies to control flies. *** Highly significant difference (<span class="html-italic">p</span> < 0.001, Student’s <span class="html-italic">t</span>-test).</p> "> Figure 2
<p>(<b>a</b>) Heat map representing the detailed activity of each fly over 48 h, comparing treated and non-treated flies. The x-axis represents time in hours (0 to 48 h), and the y-axis lists the experimental replicates, where 1–7 are venom-treated flies, and 8–14 are controls. The color gradient indicates the level of activity, with darker shades representing less movement and lighter shades (blue) indicating higher activity levels. (<b>b</b>) Box plot representing the fraction of time the <span class="html-italic">Drosophila</span> spent moving for each group, <span class="html-italic">n</span> = 84. ** Indicate highly significant difference (<span class="html-italic">p</span> < 0.01, ANOVA).</p> "> Figure 3
<p>(<b>a</b>) Percentage of locomotor activity (<span class="html-italic">Y</span>-axis) over time (hours, <span class="html-italic">X</span>-axis), with the blue line indicating non-treated flies and the red line representing treated flies. Shaded areas denote standard error. (<b>b</b>) Food intake between treated and non-treated flies, represented in µL per fly. * Indicate significant differences (<span class="html-italic">p</span> < 0.05) and ** highly significant differences (<span class="html-italic">p</span> < 0.01), as determined by ANOVA.</p> "> Figure 4
<p>(<b>a</b>) The heat map represents the activity of each fly over a 1 h period. Each bar represents the time each fly spent on the light side of the tube. Individuals treated with venom are enclosed in a red frame. (<b>b</b>) Box plot represents the light-side preference for treated and non-treated flies. (<b>c</b>) Heat avoidance across various temperatures during 3 min incubations. The <span class="html-italic">Y</span>-axis represents the relative number of incapacitated flies compared with the control, with 1.0 corresponding to 100 percent. (<b>d</b>) Comparison of heat avoidance behavior at 44 °C between treated and non-treated flies over 3 min (<span class="html-italic">n</span> = 323). The <span class="html-italic">Y</span>-axis represents the relative level as a fraction of control, where 1.0 is equal to 100 percent. ** Highly significant difference <span class="html-italic">p</span> < 0.01, *** highly significant difference <span class="html-italic">p</span> < 0.001 (Student’s <span class="html-italic">t</span>-test, ANOVA).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Venom Causes Dose- and Time-Dependent Toxicity in the Drosophila Model
2.2. Venom Induces Movement Alterations
2.3. Venom Induces Alterations in Circadian Rhythm
2.4. Venom Alters the Perception of Temperature and Light
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Collecting and Fixing
5.2. Biological Materials
5.3. Venom Extraction
5.4. Dose-Dependent Response
5.5. Negative Geotaxis Assay
5.6. Real-Time Locomotion Assay
5.7. Food Consumption
5.8. Nociception Study
5.9. Light–Dark Preference Assay
5.10. Data Analysis and Statistic
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bachouche, S.; Ghribi, T.; Rouidi, S.; Etsouri, M.; Belkacem, Y.; Selmani, R.; Djellali, M.; Aissa, R.H.; Grimes, S. The First Recorded Occurrences and the Distribution of Physalia physalis (Hydrozoa: Physaliidae) in Algerian Waters. Ocean Sci. J. 2022, 57, 411–419. [Google Scholar] [CrossRef]
- Iosilevskii, G.; Weihs, D. Hydrodynamics of sailing of the Portuguese man-of-war Physalia physalis. J. R. Soc. Interface 2009, 6, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Araya, J.F.; Aliaga, J.A.; Araya, M.E. On the distribution of Physalia physalis (Hydrozoa: Physaliidae) in Chile. Mar. Biodivers. 2016, 46, 731–735. [Google Scholar] [CrossRef]
- Munro, C.; Vue, Z.; Behringer, R.R.; Dunn, C.W. Morphology and development of the Portuguese man of war, Physalia physalis. Sci. Rep. 2019, 9, 15522. [Google Scholar] [CrossRef] [PubMed]
- Karabulut, A.; McClain, M.; Rubinstein, B.; Sabin, K.Z.; McKinney, S.A.; Gibson, M.C. The architecture and operating mechanism of a cnidarian stinging organelle. Nat. Commun. 2022, 13, 3494. [Google Scholar] [CrossRef]
- Santhanam, R. Venomology of Marine Cnidarians. In Biology and Ecology of Venomous Marine Cnidarians; Kumaravel, K., Anil, A.C., Eds.; Springer: Singapore, 2020; pp. 141–158. [Google Scholar] [CrossRef]
- Mariottini, G.L.; Bonello, G.; Giacco, E.; Pane, L. Neurotoxic and neuroactive compounds from Cnidaria: Five decades of research….and more. Cent. Nerv. Syst. Agents Med. Chem. 2015, 15, 74–80. [Google Scholar] [CrossRef]
- Kaufman, M.B. Portuguese Man-of-War Envenomation. Pediatr. Emerg. Care 1992, 8, 27–28. [Google Scholar] [CrossRef]
- Barish, R.A.; Arnold, T. Cnidaria (Coelenterates, Such as Jellyfish and Sea Anemones) Stings [Chapter]. MSD Manual Professional Edition. n.d. Available online: https://www.merckmanuals.com/ (accessed on 26 June 2024).
- Labadie, M.; Aldabe, B.; Ong, N.; Joncquiert-Latarjet, A.; Groult, V.; Poulard, A.; Coudreuse, M.; Cordier, L.; Rolland, P.; Chanseau, P.; et al. Portuguese man-of-war (Physalia physalis) envenomation on the Aquitaine Coast of France: An emerging health risk. Clin. Toxicol. 2012, 50, 567–570. [Google Scholar] [CrossRef]
- Diaz-Garcia, C.M.; Fuentes-Silva, D.; Sanchez-Soto, C.; Dominguez-Perez, D.; Garcia-Delgado, N.; Varela, C.; Mendoza-Hernandez, G.; Rodriguez-Romero, A.; Castaneda, O.; Hiriart, M. Toxins from Physalia physalis (Cnidaria) Raise the Intracellular Ca2+ of Beta-Cells and Promote Insulin Secretion. Curr. Med. Chem. 2012, 19, 5414–5423. [Google Scholar] [CrossRef]
- Edwards, L.; Luo, E.; Hall, R.; Gonzalez, R.R.; Hessinger, D.A. The Effect of Portuguese Man-of-war (Physalia physalis) Venom on Calcium, Sodium and Potassium Fluxes of Cultured Embryonic Chick Heart Cells. Toxins 2000, 38, 323–335. [Google Scholar] [CrossRef]
- Menéndez, R.; Mas, R.; Garateix, A.; Garcia, M.; Chavez, M. Effects of a High Molecular Weight Polypeptidic Toxin from Physalia Physalis (Portuguese Man-of-War) on Cholinergic Responses. Camp. Biochem. Physiol. 1990, 95C, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Mas, R.; Menéndez, R.; Garateix, A.; Garcia, M.; Chávez, M. Effects of a high molecular weight toxin from Physalia physalis on glutamate responses. Neuroscience 1989, 33, 269–273. [Google Scholar] [CrossRef]
- Batista, A.S.M. Internship Report and Monography Entitled Poison of Physalia physalis; Faculdade de Farmácia da Universidade de Coimbra: Coimbra, Portugal, 2021. [Google Scholar]
- Manjunatha Kini, R. Excitement ahead: Structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 2003, 42, 827–840. [Google Scholar] [CrossRef]
- Louati, H.; Krayem, N.; Fendri, A.; Aissa, I.; Sellami, M.; Bezzine, S.; Gargouri, Y. A thermoactive secreted phospholipase A2 purified from the venom glands of Scorpio maurus: Relation between the kinetic properties and the hemolytic activity. Toxicon 2013, 72, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Tamkun, M.M.; Hessinger, D.A. Isolation and partial characterization of a hemolytic and toxic protein from the nematocyst venom of the Portuguese Man-of-War. Physalia physalis. Biochim. Biophys. Acta 1981, 667, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.; Peixe, L.; Gomes, N.C.M.; Calado, R. Cnidarians as a Source of New Marine Bioactive Compounds—An Overview of the Last Decade and Future Steps for Bioprospecting. Mar. Drugs 2011, 9, 1860–1886. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.Y.; Absalom, N.; Biggs, K.; King, G.F.; Ma, L. Venom-derived Modulators of Epilepsy-Related Ion Channels. Biochem. Pharmacol. 2020, 181, 114043. [Google Scholar] [CrossRef]
- Beeton, C.; Pennington, M.W.; Norton, R.S. Analogs of the Sea Anemone Potassium Channel Blocker ShK for the Treatment of Autoimmune Diseases. Inflamm. Allergy—Drug Targets 2011, 10, 313–321. [Google Scholar] [CrossRef]
- Safavi-Hemami, H.; Brogan, S.E.; Olivera, B.M. Pain therapeutics from cone snail venoms: From Ziconotide to novel non-opioid pathways. J. Proteom. 2019, 190, 12–20. [Google Scholar] [CrossRef]
- Nawarskas, J.J.; Anderson, J.R. Bivalirudin: A New Approach to Anticoagulation. Heart Dis. 2001, 3, 131–137. [Google Scholar] [CrossRef]
- Triplitt, C.; Chiquette, E. Exenatide: From the Gila monster to the pharmacy. J. Am. Pharm. Assoc. 2006, 46, 44–52, quiz 53–55. [Google Scholar] [CrossRef] [PubMed]
- Greener, M. The next generation of venom-based drugs. Prescriber 2020, 31, 28–32. [Google Scholar] [CrossRef]
- Pennington, M.W.; Czerwinski, A.; Norton, R.S. Peptide therapeutics from venom: Current status and potential. Bioorganic Med. Chem. 2018, 26, 2738–2758. [Google Scholar] [CrossRef] [PubMed]
- Kiani, A.K.; Pheby, D.; Henehan, G.; Brown, R.; Sieving, P.; Sykora, P.; Bertelli, M. Ethical considerations regarding animal experimentation. J. Prev. Med. Hyg. 2022, 63 (Suppl. 3), E255–E266. [Google Scholar] [CrossRef]
- Eriksson, A.; Anand, P.; Gorson, J.; Grijuc, C.; Hadelia, E.; Stewart, J.C.; Holford, M.; Claridge-Chang, A. Using Drosophila behavioral assays to characterize terebrid venom-peptide bioactivity. Sci. Rep. 2018, 8, 15276. [Google Scholar] [CrossRef]
- Panchal, K.; Tiwari, A.K. Drosophila melanogaster: A potential model organism for identification of pharmacological properties of plants/plant-derived components. Biomed. Pharmacother. 2017, 89, 1331–1345. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Yamamoto, S. Role of Drosophila in Human Disease Research 2.0. Int. J. Mol. Sci. 2022, 23, 4203. [Google Scholar] [CrossRef]
- Akins, J.M.; Schroeder, J.A.; Brower, D.L.; Aposhian, H.V. Evaluation of Drosophila melanogaster as an alternative animal for studying the neurotoxicity of heavy metals. Biometals 1992, 5, 111–120. [Google Scholar] [CrossRef]
- Guo, S.; Herzig, V.; King, G.F. Dipteran Toxicity Assays for Determining the Oral Insecticidal Activity of Venoms and Toxins. Toxins 2018, 10, 297–303. [Google Scholar] [CrossRef]
- Lane, C.E.; Dodge, E. The Toxicity of Physalia Nematocysts. Biol. Bull. 1958, 115, 219–226. [Google Scholar] [CrossRef]
- Liao, Q.; Feng, Y.; Yang, B.; Lee, S.M.-Y. Cnidarian peptide neurotoxins: A new source of various ion channel modulators or blockers against central nervous system diseases. Drug Discov. Today 2019, 24, 189–197. [Google Scholar] [CrossRef]
- Edwards, L.; Hessinger, D.A. Portuguese Man-of-war (Physalia physalis) venom induces calcium influx into cells by permeabilizing plasma membranes. Toxicon 2000, 38, 1015–1028. [Google Scholar] [CrossRef]
- Larsen, J.B.; Lane, C.E. Some effects of Physalia physalis toxin on the cardiovascular system of the rat. Toxicon 1966, 4, 199–203. [Google Scholar] [CrossRef]
- Messerli, S.M.; Greenberg, R.M. Cnidarian toxins acting on voltage-gated ion channels. Mar. Drugs 2006, 4, 70–81. [Google Scholar] [CrossRef]
- Jouiaei, M.; Sunagar, K.; Gross, A.F.; Scheib, H.; Alewood, P.F.; Moran, Y.; Fry, B.G. Evolution of an ancient venom: Recognition of a novel family of cnidarian toxins and the common evolutionary origin of sodium and potassium neurotoxins in sea anemone. Mol. Biol. Evol. 2015, 32, 1598–1610. [Google Scholar] [CrossRef]
- Collaço, R.C.O.; Hyslop, S.; Dorce, V.A.C.; Antunes, E.; Rowan, E.G. Scorpion venom increases acetylcholine release by prolonging the duration of somatic nerve action potentials. Neuropharmacology 2019, 153, 41–52. [Google Scholar] [CrossRef]
- Finol-Urdaneta, R.K.; Belovanovic, A.; Micic-Vicovac, M.; Kinsella, G.K.; McArthur, J.R.; Al-Sabi, A. Marine toxins targeting Kv1 channels: Pharmacological tools and therapeutic scaffolds. Mar. Drugs 2020, 18, 173. [Google Scholar] [CrossRef]
- Sokabe, T.; Tominaga, M. A temperature-sensitive TRP ion channel, Painless, functions as a noxious heat sensor in fruit flies. Commun. Integr. Biol. 2009, 2, 170–173. [Google Scholar] [CrossRef]
- Galante, P.; Campos, G.A.A.; Moser, J.C.G.; Martins, D.B.; Cabrera, M.P.d.S.; Rangel, M.; Coelho, L.C.; Simon, K.S.; Amado, V.M.; Muller, J.d.A.I.; et al. Exploring the therapeutic potential of an antinociceptive and anti-inflammatory peptide from wasp venom. Sci. Rep. 2023, 13, 12491. [Google Scholar] [CrossRef]
- Zhu, K.-Z.; Liu, Y.-L.; Gu, J.-H.; Qin, Z.-H. Antinociceptive and anti-inflammatory effects of orally administrated denatured Naja naja atra venom on murine rheumatoid arthritis models. Evid.-Based Compl. Altern. Med. 2013, 2013, 616241. [Google Scholar] [CrossRef]
- Jiang, W.J.; Liang, Y.X.; Han, L.P.; Qiu, P.X.; Yuan, J.; Zhao, S.J. Purification and characterization of a novel antinociceptive toxin from Cobra venom (Naja naja atra). Toxicon 2008, 52, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Wang, M.; Wu, W.; Luo, Q.; Jiang, L.; Tao, H.; Deng, M. Spider venom peptides as potential drug candidates due to their anticancer and antinociceptive activities. J. Venom Anim. Toxins Incl. Trop. Dis. 2019, 25, e146318. [Google Scholar] [CrossRef] [PubMed]
- Malmberg, A.B.; Gilbert, H.; McCabe, R.T.; Basbaum, A.I. Powerful antinociceptive effects of the cone snail venom-derived subtype-selective NMDA receptor antagonists conantokins G and T. Pain 2003, 101, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Terlau, H. Toxins from cone snails: Properties, applications and biotechnological production. Appl. Microbiol. Biotechnol. 2008, 79, 1–9. [Google Scholar] [CrossRef]
- Trevisan, G.; Oliveira, S.M. Animal venom peptides cause antinociceptive effects by voltage-gated calcium channels activity blockage. Curr. Neuropharmacol. 2022, 20, 1579–1599. [Google Scholar] [CrossRef]
- Wilcox, C.L.; Yanagihara, A.A. Heated Debates: Hot-Water Immersion or Ice Packs as First Aid for Cnidarian Envenomations? Toxins 2016, 8, 97. [Google Scholar] [CrossRef]
- Bowra, J.; Gillet, M.; Morgan, J.; Swinburn, E. Randomised crossover trial comparing hot showers and ice packs in the treatment of Physalia envenomation. Emerg. Med. 2002, 14, A22. [Google Scholar]
- Harvey, A.L. Presynaptic effects of toxins. In International Review of Neurobiology; Smythies, J.R., Bradley, R.J., Eds.; Academic Press: Cambridge, MA, USA, 1990; Volume 32, pp. 201–239. [Google Scholar] [CrossRef]
- Guérineau, N.C.; Monteil, A.; Lory, P. Sodium background currents in endocrine/neuroendocrine cells: Towards unraveling channel identity and contribution in hormone secretion. Front. Neuroendocrinol. 2021, 63, 100947. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://gelavista.ipma.pt/en/ (accessed on 1 June 2022).
- Toubarro, D.; Tomkielska, Z.; Silva, L.; Borges, M.; Simões, N. A Study of Nematocyst Discharge of Physalia physalis and Venom Composition. Biol. Life Sci. Forum 2023, 24, 2. [Google Scholar] [CrossRef]
- Coulom, H.; Birman, S. Chronic Exposure to Rotenone Models Sporadic Parkinson’s Disease in Drosophila melanogaster. J. Neurosci. 2004, 24, 10993–10998. [Google Scholar] [CrossRef]
- Feany, M.; Bender, W. A Drosophila model of Parkinson’s disease. Nature 2000, 404, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Geissmann, Q.; Garcia Rodriguez, L.; Beckwith, E.J.; French, A.S.; Jamasb, A.R.; Gilestro, G.F. Ethoscopes: An open platform for high-throughput ethomics. PLoS Biol. 2017, 15, e2003026. [Google Scholar] [CrossRef] [PubMed]
- Neely, G.G.; Keene, A.C.; Duchek, P.; Chang, E.C.; Wang, Q.P.; Aksoy, Y.A.; Rosenzweig, M.; Costigan, M.; Woolf, C.J.; Garrity, P.A.; et al. TrpA1 Regulates Thermal Nociception in Drosophila. PLoS ONE 2011, 6, e24343. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomkielska, Z.; Frias, J.; Simões, N.; de Bastos, B.P.; Fidalgo, J.; Casas, A.; Almeida, H.; Toubarro, D. Revealing the Bioactivities of Physalia physalis Venom Using Drosophila as a Model. Toxins 2024, 16, 491. https://doi.org/10.3390/toxins16110491
Tomkielska Z, Frias J, Simões N, de Bastos BP, Fidalgo J, Casas A, Almeida H, Toubarro D. Revealing the Bioactivities of Physalia physalis Venom Using Drosophila as a Model. Toxins. 2024; 16(11):491. https://doi.org/10.3390/toxins16110491
Chicago/Turabian StyleTomkielska, Zuzanna, Jorge Frias, Nelson Simões, Bernardo P. de Bastos, Javier Fidalgo, Ana Casas, Hugo Almeida, and Duarte Toubarro. 2024. "Revealing the Bioactivities of Physalia physalis Venom Using Drosophila as a Model" Toxins 16, no. 11: 491. https://doi.org/10.3390/toxins16110491
APA StyleTomkielska, Z., Frias, J., Simões, N., de Bastos, B. P., Fidalgo, J., Casas, A., Almeida, H., & Toubarro, D. (2024). Revealing the Bioactivities of Physalia physalis Venom Using Drosophila as a Model. Toxins, 16(11), 491. https://doi.org/10.3390/toxins16110491