The High-Efficiency Degradation of Multiple Mycotoxins by Lac-W Laccase in the Presence of Mediators
<p>Mycotoxin degradations by LMSs. (<b>A</b>) AFB<sub>1</sub> degradation by LMSs. (<b>B</b>) ZEN, DON, T-2 toxin, and FB<sub>1</sub> degradation by LMSs. (<b>C</b>) OTA degradation by LMSs. Reaction condition: room temperature, initial mycotoxins 1 µg/mL, 1 U Lac-W and 1 mM or 10 mM mediator in 1 mL of Tris-HCl buffer (100 mM, pH 8.0) for 1 h at static condition. CON: controlled test, no mediator was added to the reaction system. Each reaction was repeated three times.</p> "> Figure 2
<p>Effects of culture conditions on Lac-W-AS-mediated ZEN degradation. (<b>A</b>) Effect of pH on ZEN degradation. (<b>B</b>) Effect of temperature on ZEN degradation. (<b>C</b>) Effect of concentration of Lac-W and AS on ZEN degradation. (<b>D</b>) Effect of ions on ZEN degradation. The Lac-W was incubated with different ions at room temperature for 10 min, followed by ZEN. Reaction conditions: initial ZEN 1 µg/mL, culture conditions in static condition, pH 2.0–9.0, 20–80 °C, concentration of Lac-W or AS were 0.1–1 U/mL or 0.1–10 mM, and incubation time 1 h. The temperature, Lac-W/AS concentration, and metal ion assays were performed under optimal conditions derived from the pH, temperature, and Lac-W/AS reactions, respectively. Three independent replicates were performed for each assay. Each reaction was repeated three times.</p> "> Figure 3
<p>The inhibition rate of ZEN, Lac-W, AS, and ZEN’s degradation products against <span class="html-italic">Vibrio fischeri</span>. Each reaction was repeated six times.</p> "> Figure 4
<p>Mass spectra analysis of the ZEN degradation by Lac-W-AS. (<b>A</b>) Total ion chromatogram of ZEN (retention time of 5.16 min). (<b>B</b>) Total ion chromatogram of the ZEN degradation product (retention time of 3.62 min). (<b>C</b>) The mass spectra analysis of ZEN (C<sub>18</sub>H<sub>22</sub>O<sub>5</sub>; [M-H]<sup>−</sup> with <span class="html-italic">m</span>/<span class="html-italic">z</span> 317.2715). (<b>D</b>) The mass spectra analysis of the ZEN degradation product by Lac-W (C<sub>18</sub>H<sub>22</sub>O<sub>6</sub>; [M-H]<sup>−</sup> with <span class="html-italic">m</span>/<span class="html-italic">z</span> 333.1376). Mass spectrum parameters: ESI ion source, negative ion mode, and full scanning range 100–1500 <span class="html-italic">m</span>/<span class="html-italic">z</span>. The ion transfer tube temperature was set to 325 °C, and the vaporizer temperature was 350 °C. Orbitrap had a resolution of 120,000. The metabolite analysis software was Compound Discovery 3.0.</p> "> Figure 5
<p>Determination of the redox potential of Lav-W and Lav-W-AS using linear sweep voltammetry.</p> "> Figure 6
<p>Mycotoxin degradation by Lac-W-AS-ABTS. Dark blue indicated individual mycotoxin degradation by Lac-W-AS-ABTS. Reaction conditions: room temperature, 1 µg/mL initial mycotoxins, 0.5 U Lac-W, 0.5 mM AS, and 0.5 mM ABTS in 1 mL of citrate–phosphate buffer (100 mM, pH 7.0) for 1 h at static condition. Medium blue indicated simultaneous mycotoxin degradation by Lac-W-AS-ABTS. Reaction conditions: 1 µg/mL each of initial mycotoxins, 3 U Lac-W, 3 mM AS, and 3 mM ABTS in 6 mL of buffer. Light blue indicated mycotoxin degradation in corn husk by Lac-W-AS-ABTS. Reaction conditions: 2 g corn husk, 2 U Lac-W, 2 mM AS, and 2 mM ABTS in 50 mL of buffer. Each reaction was repeated three times.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Mycotoxins Degradation by LMSs
2.1.1. AFB1 Degradation by LMSs
2.1.2. ZEN Degradation by LMSs
2.1.3. Degradation of DON, T-2 Toxin, FB1, and OTA by LMSs
2.2. The Effects of Various Conditions on ZEN Degradation by Lac-W-AS
2.3. Cytotoxicity Assay of ZEN Degradation Products
2.4. ZEN Degradation Product by Lac-W-AS
2.5. Determination of the Redox Potential of Lac-W and Lac-W-AS
2.6. Independent and Simultaneous Degradation of Mycotoxins by Lac-W-AS-ABTS
2.7. Mycotoxin Degradation in Corn Husk by Lac-W-AS-ABTS
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemicals, Recombined Bacteria Strain, and Mycotoxins Standard
5.2. Mycotoxins Degradation by LMS
5.3. Mycotoxin Degradation in Corn Husk
5.4. Evaluation of Mycotoxin Degradation Rates by UHPLC-MS/MS
5.5. Luminescence Inhibition Assays
5.6. Evaluation of ZEN Degradation Product by LMS
5.7. Linear Sweep Voltammetry
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Deng, Y.; Wang, Y.; Nepovimova, E.; Wu, Q.; Kuca, K. Mycotoxins have a potential of inducing cell senescence: A new understanding of mycotoxin immunotoxicity. Environ. Toxicol. Pharmacol. 2023, 101, 104188. [Google Scholar] [CrossRef] [PubMed]
- Stuhldreier, F.; Schmitt, L.; Lenz, T.; Hinxlage, I.; Zimmermann, M.; Wollnitzke, P.; Schliehe-Diecks, J.; Liu, Y.; Jäger, P.; Geyh, S.; et al. The mycotoxin viriditoxin induces leukemia- and lymphoma-specific apoptosis by targeting mitochondrial metabolism. Cell Death Dis. 2022, 13, 938. [Google Scholar] [CrossRef] [PubMed]
- Johns, L.E.; Bebber, D.P.; Gurr, S.J.; Brown, N.A. Emerging health threat and cost of Fusarium mycotoxins in European wheat. Nat. Food 2022, 3, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Song, G.; Lim, W. Effects of mycotoxin-contaminated feed on farm animals. J. Hazard. Mater. 2020, 389, 122087. [Google Scholar] [CrossRef] [PubMed]
- Raj, J.; Farkaš, H.; Jakovčević, Z.; Medina, A.; Magan, N.; Čepela, R.; Vasiljević, M. Comparison of multiple mycotoxins in harvested maize samples in three years (2018–2020) in four continents. Food Addit. Contam. Part A 2022, 39, 599–608. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide contamination of food-crops with mycotoxins: Validity of the widely cited ‘FAO estimate’ of 25. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef]
- Juraschek, L.M.; Kappenberg, A.; Amelung, W. Mycotoxins in soil and environment. Sci. Total Environ. 2022, 814, 152425. [Google Scholar] [CrossRef]
- Feng, C.; Bai, H.; Chang, X.; Wu, Z.; Dong, W.; Ma, Q.; Yang, J. Aflatoxin B1-induced early developmental hepatotoxicity in larvae zebrafish. Chemosphere 2023, 340, 139940. [Google Scholar] [CrossRef]
- Jia, B.; Lin, H.; Yu, S.; Liu, N.; Yu, D.; Wu, A. Mycotoxin deoxynivalenol-induced intestinal flora disorders, dysfunction and organ damage in broilers and pigs. J. Hazard Mater. 2023, 451, 131172. [Google Scholar] [CrossRef]
- Liu, L.; Xie, M.; Wei, D. Biological Detoxification of Mycotoxins: Current Status and Future Advances. Int. J. Mol. Sci. 2022, 23, 1064. [Google Scholar] [CrossRef]
- Mao, J.; Zhou, Y.; Lv, G.; Zhou, R. Simultaneous Detoxification of Aflatoxin B1, Zearalenone and Deoxynivalenol by Modified Montmorillonites. Molecules 2022, 27, 315. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Shi, J.; Xie, B.; He, Y.; Qin, Y.; Wang, D.; Shi, H.; Ke, Y.; Sun, Q. Detoxification of aflatoxin B1 in corn by chlorine dioxide gas. Food Chem. 2020, 328, 127121. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Arroyo, A.; Plaza-Vinuesa, L.; Rivas, B.L.; Mancheño, J.M.; Muñoz, R. The salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans DSM 6986T is a bifunctional enzyme that inactivates the mycotoxin ochratoxin A by a novel amidohydrolase activity. Int. J. Biol. Macromol. 2023, 237, 124230. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Ouyang, B.; Zhang, Y.; Zhang, W.; Xu, W.; Mu, W. Recent developments of mycotoxin-degrading enzymes: Identification, preparation and application. Crit. Rev. Food Sci. Nutr. 2024, 64, 10089–10104. [Google Scholar] [CrossRef] [PubMed]
- Adegoke, T.V.; Yang, B.; Tian, X.; Yang, S.; Gao, Y.; Ma, J.; Wang, G.; Si, P.; Li, R.; Xing, F. Simultaneous degradation of aflatoxin B1 and zearalenone by Porin and Peroxiredoxin enzymes cloned from Acinetobacter nosocomialis Y1. J. Hazard. Mater. 2023, 459, 132105. [Google Scholar] [CrossRef]
- Zaccaria, M.; Dawson, W.; Russel Kish, D.; Reverberi, M.; Bonaccorsi di Patti, M.C.; Domin, M.; Cristiglio, V.; Chan, B.; Dellafiora, L.; Gabel, F.; et al. Experimental-theoretical study of laccase as a detoxifier of aflatoxins. Sci. Rep. 2023, 13, 860. [Google Scholar] [CrossRef]
- Fang, Y.; Zhang, Z.; Xu, W.; Zhang, W.; Guang, C.; Mu, W. Zearalenone lactonase: Characteristics, modification, and application. Appl. Microbiol. Biotechnol. 2022, 106, 6877–6886. [Google Scholar] [CrossRef]
- Li, D.; Liang, G.; Mu, P.; Lin, J.; Huang, J.; Guo, C.; Li, Y.; Lin, R.; Jiang, J.; Wu, J.; et al. Improvement of catalytic activity of sorbose dehydrogenase for deoxynivalenol degradation by rational design. Food Chem. 2023, 423, 136274. [Google Scholar] [CrossRef]
- Qin, X.; Xin, Y.; Su, X.; Wang, X.; Wang, Y.; Zhang, J.; Tu, T.; Yao, B.; Luo, H.; Huang, H. Efficient Degradation of Zearalenone by Dye-Decolorizing Peroxidase from Streptomyces thermocarboxydus Combining Catalytic Properties of Manganese Peroxidase and Laccase. Toxins 2021, 13, 602. [Google Scholar] [CrossRef]
- Wang, X.; Qin, X.; Hao, Z.; Luo, H.; Yao, B.; Su, X. Degradation of Four Major Mycotoxins by Eight Manganese Peroxidases in Presence of a Dicarboxylic Acid. Toxins 2019, 11, 566. [Google Scholar] [CrossRef]
- de Oliveira Garcia, S.; Sibaja, K.V.M.; Nogueira, W.V.; Feltrin, A.C.P.; Pinheiro, D.F.A.; Cerqueira, M.B.R.; Badiale Furlong, E.; Garda-Buffon, J. Peroxidase as a simultaneous degradation agent of ochratoxin A and zearalenone applied to model solution and beer. Food Res. Int. 2020, 131, 109039. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Wang, Z.; Jiang, S.; Yu, H.; Zhang, S.; Zhang, X. Recent environmental applications of and development prospects for immobilized laccase: A review. Biotechnol. Genet Eng. Rev. 2020, 36, 81–131. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.D.; Tiwari, A.; Anisha, G.S.; Chen, C.W.; Singh, A.; Haldar, D.; Patel, A.K.; Singhania, R.R. Laccase: A potential biocatalyst for pollutant degradation. Environ. Pollut. 2023, 319, 120999. [Google Scholar] [CrossRef] [PubMed]
- Xiong, D.; Wen, J.; Lu, G.; Li, T.; Long, M. Isolation, Purification, and Characterization of a Laccase-Degrading Aflatoxin B1 from Bacillus amyloliquefaciens B10. Toxins 2022, 14, 250. [Google Scholar] [CrossRef]
- Bian, L.; Zheng, M.; Chang, T.; Zhou, J.; Zhang, C. Degradation of Aflatoxin B1 by recombinant laccase extracellular produced from Escherichia coli. Ecotoxicol. Environ. Saf. 2022, 244, 114062. [Google Scholar] [CrossRef]
- Wang, X.; Meng, F.; Zhang, B.; Xia, Y. Elimination of tetracyclines in seawater by laccase-mediator system. Chemosphere 2023, 333, 138916. [Google Scholar] [CrossRef]
- Gigli, V.; Piccinino, D.; Avitabile, D.; Antiochia, R.; Capecchi, E.; Saladino, R. Laccase Mediator Cocktail System as a Sustainable Skin Whitening Agent for Deep Eumelanin Decolorization. Int. J. Mol. Sci. 2022, 23, 6238. [Google Scholar] [CrossRef]
- Song, Y.; Wang, Y.; Guo, Y.; Qiao, Y.; Ma, Q.; Ji, C.; Zhao, L. Degradation of zearalenone and aflatoxin B1 by Lac2 from Pleurotus pulmonarius in the presence of mediators. Toxicon 2021, 201, 1–8. [Google Scholar] [CrossRef]
- Loi, M.; De Leonardis, S.; Ciasca, B.; Paciolla, C.; Mulè, G.; Haidukowski, M. Aflatoxin B1 Degradation by Ery4 Laccase: From In Vitro to Contaminated Corn. Toxins 2023, 15, 310. [Google Scholar] [CrossRef]
- Wang, X.; Bai, Y.; Huang, H.; Tu, T.; Wang, Y.; Wang, Y.; Luo, H.; Yao, B.; Su, X. Degradation of Aflatoxin B1 and Zearalenone by Bacterial and Fungal Laccases in Presence of Structurally Defined Chemicals and Complex Natural Mediators. Toxins 2019, 11, 609. [Google Scholar] [CrossRef]
- Shanakhat, H.; McCormick, S.P.; Busman, M.; Rich, J.O.; Bakker, M.G. Modification of Deoxynivalenol by a Fungal Laccase Paired with Redox Mediator TEMPO. Toxins 2022, 14, 548. [Google Scholar] [CrossRef]
- Hao, W.B.; Gu, X.; Yu, X.; Zhao, Y.; Li, C.; Jia, M.; Du, X.D. Laccase Lac-W detoxifies aflatoxin B1 and degrades five other major mycotoxins in the absence of redox mediators. Environ. Pollut. 2023, 338, 122581. [Google Scholar] [CrossRef]
- Loi, M.; Quintieri, L.; Fanelli, F.; Caputo, L.; Mulè, G. Application of a recombinant laccase-chlorogenic acid system in protein crosslink and antioxidant properties of the curd. Food Res. Int. 2018, 106, 763–770. [Google Scholar] [CrossRef]
- Loi, M.; Fanelli, F.; Zucca, P.; Liuzzi, V.C.; Quintieri, L.; Cimmarusti, M.T.; Monaci, L.; Haidukowski, M.; Logrieco, A.F.; Sanjust, E.; et al. Aflatoxin B1 and M1 Degradation by Lac2 from Pleurotus pulmonarius and Redox Mediators. Toxins 2016, 8, 245. [Google Scholar] [CrossRef]
- Sun, Z.; Zhou, Y.; Hu, Y.; Jiang, N.; Hu, S.; Li, L.; Li, T. Identification of Wheat LACCASEs in Response to Fusarium graminearum as Potential Deoxynivalenol Trappers. Front. Plant Sci. 2022, 13, 832800. [Google Scholar] [CrossRef]
- Garda-Buffon, J.; Kupski, L.; Adiale-Furlong, E. Deoxynivalenol (don) degradation and peroxidase enzyme activity in submerged fermentation. Food Sci. Technol. Int. 2011, 31, 198–203. [Google Scholar] [CrossRef]
- Janik, E.; Niemcewicz, M.; Podogrocki, M.; Ceremuga, M.; Stela, M.; Bijak, M. T-2 Toxin-The Most Toxic Trichothecene Mycotoxin: Metabolism, Toxicity, and Decontamination Strategies. Molecules 2021, 26, 6868. [Google Scholar] [CrossRef]
- Heinl, S.; Hartinger, D.; Thamhesl, M.; Vekiru, E.; Krska, R.; Schatzmayr, G.; Moll, W.D.; Grabherr, R. Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes. J. Biotechnol. 2010, 145, 120–129. [Google Scholar] [CrossRef]
- Cho, S.M.; Jeong, S.E.; Lee, K.R.; Sudhani, H.P.; Kim, M.; Hong, S.Y.; Chung, S.H. Biodegradation of Ochratoxin A by Aspergillus tubingensis Isolated from Meju. J. Microbiol. Biotechnol. 2016, 26, 1687–1695. [Google Scholar] [CrossRef]
- Chen, W.; Li, C.; Zhang, B.; Zhou, Z.; Shen, Y.; Liao, X.; Yang, J.; Wang, Y.; Li, X.; Li, Y.; et al. Advances in Biodetoxification of Ochratoxin A-A Review of the Past Five Decades. Front. Microbiol. 2018, 9, 1386. [Google Scholar] [CrossRef]
- Guebitz, G.M. Oxidation of various kraft lignins with a bacterial laccase enzyme. Int. J. Mol. Sci. 2021, 22, 13161. [Google Scholar] [CrossRef]
- Fabbrini, M.; Galli, C.; Gentili, P. Comparing the catalytic efficiency of some mediators of laccase. J. Mol. Catal. B Enzym. 2002, 16, 231–240. [Google Scholar] [CrossRef]
- Pezzella, C.; Guarino, L.; Piscitelli, A. How to enjoy laccases. Cell Mol. Life Sci. 2015, 72, 923–940. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, M.; Yu, X.; Xu, K.; Gu, X.; Harmer, N.J.; Zhao, Y.; Xiang, Y.; Sheng, X.; Li, C.; Du, X.-D.; et al. The High-Efficiency Degradation of Multiple Mycotoxins by Lac-W Laccase in the Presence of Mediators. Toxins 2024, 16, 477. https://doi.org/10.3390/toxins16110477
Jia M, Yu X, Xu K, Gu X, Harmer NJ, Zhao Y, Xiang Y, Sheng X, Li C, Du X-D, et al. The High-Efficiency Degradation of Multiple Mycotoxins by Lac-W Laccase in the Presence of Mediators. Toxins. 2024; 16(11):477. https://doi.org/10.3390/toxins16110477
Chicago/Turabian StyleJia, Mengshuang, Xiaohu Yu, Kun Xu, Xiaodan Gu, Nicholas J. Harmer, Youbao Zhao, Yuqiang Xiang, Xia Sheng, Chenglong Li, Xiang-Dang Du, and et al. 2024. "The High-Efficiency Degradation of Multiple Mycotoxins by Lac-W Laccase in the Presence of Mediators" Toxins 16, no. 11: 477. https://doi.org/10.3390/toxins16110477
APA StyleJia, M., Yu, X., Xu, K., Gu, X., Harmer, N. J., Zhao, Y., Xiang, Y., Sheng, X., Li, C., Du, X. -D., Pan, J., & Hao, W. (2024). The High-Efficiency Degradation of Multiple Mycotoxins by Lac-W Laccase in the Presence of Mediators. Toxins, 16(11), 477. https://doi.org/10.3390/toxins16110477