Botulinum Toxin Effects on Freezing of Gait in Parkinson’s Disease: A Systematic Review
Abstract
:1. Introduction
2. Clinical Features of FOG
3. Botulinum Toxin in Parkinson’s Disease
4. Botulinum Toxin for Freezing of Gait
Authors | Date | Study | Disease | Disease Duration (Mean ys) | Number of Patients | Mean Age | Clinical Evaluation | Type of FOG | Procedure | Type of Toxin | Total Dosage (I.U.) | Sites | Effect (Y/N) | Duration of Effect | Adverse Effect | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Giladi N et al. [10] | 2001 | OL | 8 PD, 1 VP, I pure FOG | 13.9 | 10 | 70.4 | SCGIG scale | On and off | EMG guidance | BoNT-A | 100–300 | mono/bilateral ELA and SG, TP | Y | 2–12 weeks | n/s |
2 | Fernandez HH et al. [78] | 2004 | DB, PC | PD | 10 | 9 (5 ctr) | 74 | UPDRS II-III, VAS, CGIS, mWebster Step-ST, videotape | n/s | clinical identification | BoNT-B | 5000 | monolateral SG | N | dry mouth (2), increased festination (1) | |
3 | Wieler M et al. [79] | 2005 | R, DB, PC, CO | PD | 12 | 12 | 67 | FOG-Q, H&Y, UPDRS, TUG, PDQ-39 | n/s | EMG guidance | BoNT-A | 200–300 | bilateral SG | N | n/s | |
4 | Gurevich T et al. [61] | 2007 | P, DB, PC, CO | PD | 10.4 | 11 | 69.4 | FOG-Q, UPDRS, ADL, SCGIC | Off | EMG guidance | BoNT-A | 300 (150 per leg) | bilateral SG | N | leg weakness (3/6), increased falls (2/6) | |
5 | Vastik et al. [80] | 2016 | OL | PD | 5–15 | 11 | 71.2 | BOLD fMRI, FOG-Q, TUG, CGSI | n/s | EMG guidance | BoNT-A | 100 (50 per leg) | bilateral TFL | Y | n/s | n/s |
6 | Neshige R [81] | 2022 | OL | PD | n/a | 5 | 74.4 | UPDRS, FOG-Q, TUG | n/s | not specified | BoNT-A | n/s | bilateral PM | Y | From 1 to 6 months | n/s |
5. Conclusions
6. Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.S.; Gao, C.; Tan, Y.Y.; Chen, S.D. Prevalence of freezing of gait in Parkinson’s disease: A systematic review and meta-analysis. J. Neurol. 2021, 268, 4138–4150. [Google Scholar] [CrossRef] [PubMed]
- Lilleeng, B.; Gjerstad, M.; Baardsen, R.; Dalen, I.; Larsen, J.P. Motor symptoms after deep brain stimulation of the subthalamic nucleus. Acta Neurol. Scand. 2015, 131, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Giladi, N.; Tal, J.; Azulay, T.; Rascol, O.; Brooks, D.J.; Melamed, E.; Oertel, W.; Poewe, W.H.; Stocchi, F.; Tolosa, E. Validation of the freezing of gait questionnaire in patients with Parkinson’s disease. Mov. Disord. 2009, 24, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Macht, M.; Kaussner, Y.; Moller, J.C.; Stiasny-Kolster, K.; Eggert, K.M.; Kruger, H.P.; Ellgring, H. Predictors of freezing in Parkinson’s disease: A survey of 6,620 patients. Mov. Disord. 2007, 22, 953–956. [Google Scholar] [CrossRef]
- Kim, R.; Lee, J.; Kim, Y.; Kim, A.; Jang, M.; Kim, H.J.; Jeon, B.; Kang, U.J.; Fahn, S. Presynaptic striatal dopaminergic depletion predicts the later development of freezing of gait in de novo Parkinson’s disease: An analysis of the PPMI cohort. Park. Relat. Disord. 2018, 51, 49–54. [Google Scholar] [CrossRef]
- Kim, R.; Lee, J.; Kim, H.J.; Kim, A.; Jang, M.; Jeon, B.; Kang, U.J. CSF beta-amyloid(42) and risk of freezing of gait in early Parkinson disease. Neurology 2019, 92, e40–e47. [Google Scholar] [CrossRef]
- Djaldetti, R.; Rigbi, A.; Greenbaum, L.; Reiner, J.; Lorberboym, M. Can early dopamine transporter imaging serve as a predictor of Parkinson’s disease progression and late motor complications? J. Neurol. Sci. 2018, 90, 255–260. [Google Scholar] [CrossRef]
- Banks, S.J.; Bayram, E.; Shan, G.; LaBelle, D.R.; Bluett, B. Non-motor predictors of freezing of gait in Parkinson’s disease. Gait Posture 2019, 68, 311–316. [Google Scholar] [CrossRef]
- Forsaa, E.B.; Larsen, J.P.; Wentzel-Larsen, T.; Alves, G. A 12-year population-based study of freezing of gait in Parkinson’s disease. Park. Relat. Disord. 2015, 21, 254–258. [Google Scholar] [CrossRef]
- Giladi, N.; McDermott, M.P.; Fahn, S.; Przedborski, S.; Jankovic, J.; Stern, M.; Tanner, C.; Parkinson Study Group. Freezing of gait in PD: Prospective assessment in the DATATOP cohort. Neurology 2001, 56, 1712–1721. [Google Scholar] [CrossRef]
- Ehgoetz Martens, K.A.; Lukasik, E.L.; Georgiades, M.J.; Gilat, M.; Hall, J.M.; Walton, C.C.; Lewis, S.J.G. Predicting the onset of freezing of gait: A longitudinal study. Mov. Disord. 2018, 33, 128–135. [Google Scholar] [CrossRef] [PubMed]
- Tosserams, A.; Mazaheri, M.; Vart, P.; Bloem, B.R.; Nonnekes, J. Sex and freezing of gait in Parkinson’s disease: A systematic review and meta-analysis. J. Neurol. 2021, 268, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yin, X.; Ouyang, Z.; Chen, J.; Zhou, S.; Zhang, C.; Pan, X.; Wang, S.; Yang, J.; Feng, Y.; et al. A prospective study of freezing of gait with early Parkinson disease in Chinese patients. Medicine 2016, 95, e4056. [Google Scholar] [CrossRef] [PubMed]
- Ou, R.; Wei, Q.; Cao, B.; Song, W.; Hou, Y.; Liu, H.; Yuan, X.; Zhao, B.; Wu, Y.; Shang, H. Predictors of freezing of gait in Chinese patients with Parkinson’s disease. Brain Behav. 2018, 8, e00931. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wan, Y.; Song, L.; Wu, N.; Zhang, Z.; Liu, Z.; Gan, J. Longitudinal Prediction of Freezing of Gait in Parkinson’s Disease: A Prospective Cohort Study. Front. Neurol. 2021, 12, 758580. [Google Scholar] [CrossRef]
- Hall, J.M.; Shine, J.M.; O’Callaghan, C.; Walton, C.C.; Gilat, M.; Naismith, S.L.; Lewis, S.J. Freezing of Gait and its Associations in the Early and Advanced Clinical Motor Stages of Parkinson’s Disease: A Cross-Sectional Study. J. Park. Dis. 2015, 5, 881–891. [Google Scholar] [CrossRef]
- Koehler, P.J.; Nonnekes, J.; Bloem, B.R. Freezing of gait before the introduction of levodopa. Lancet Neurol. 2021, 20, 97. [Google Scholar] [CrossRef]
- Nonnekes, J.; Bereau, M.; Bloem, B.R. Freezing of Gait and Its Levodopa Paradox. JAMA Neurol. 2020, 77, 287–288. [Google Scholar] [CrossRef]
- Jansen, J.A.F.; Capato, T.T.C.; Darweesh, S.K.L.; Barbosa, E.R.; Donders, R.; Bloem, B.R.; Nonnekes, J. Exploring the levodopa-paradox of freezing of gait in dopaminergic medication-naive Parkinson’s disease populations. NPJ Park. Dis. 2023, 9, 130. [Google Scholar] [CrossRef]
- Herman, T.; Shema-Shiratzky, S.; Arie, L.; Giladi, N.; Hausdorff, J.M. Depressive symptoms may increase the risk of the future development of freezing of gait in patients with Parkinson’s disease: Findings from a 5-year prospective study. Park. Relat. Disord. 2019, 60, 98–104. [Google Scholar] [CrossRef]
- Giladi, N.; Nieuwboer, A. Understanding and treating freezing of gait in parkinsonism, proposed working definition, and setting the stage. Mov. Disord. 2008, 23 (Suppl. S2), S423–S425. [Google Scholar] [CrossRef] [PubMed]
- Giladi, N.; Kao, R.; Fahn, S. Freezing phenomenon in patients with parkinsonian syndromes. Mov. Disord. 1997, 12, 302–305. [Google Scholar] [CrossRef] [PubMed]
- Coria, F.; del Puig Cozar-Santiago, M. Rasagiline improves freezing in a patient with primary progressive freezing gait. Mov. Disord. 2008, 23, 449–451. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.E.; Yun, J.Y.; Yang, H.J.; Kim, H.J.; Kim, M.K.; Wee, W.R.; Jeon, B.S. Amantadine induced corneal edema in a patient with primary progressive freezing of gait. J. Mov. Disord. 2013, 6, 34–36. [Google Scholar] [CrossRef] [PubMed]
- Zúñiga, C.; Lester, J.; Cersósimo, M.G.; Díaz, S.; Micheli, F.E. Treatment of primary progressive freezing of gait with high doses of selegiline. Clin. Neuropharmacol. 2006, 29, 20–21. [Google Scholar] [CrossRef]
- Factor, S.A.; Jennings, D.L.; Molho, E.S.; Marek, K.L. The natural history of the syndrome of primary progressive freezing gait. Arch. Neurol. 2002, 59, 1778–1783. [Google Scholar] [CrossRef]
- Factor, S.A.; Higgins, D.S.; Qian, J. Primary progressive freezing gait: A syndrome with many causes. Neurology 2006, 66, 411–414. [Google Scholar] [CrossRef]
- Redgrave, P.; Rodriguez, M.; Smith, Y.; Rodriguez-Oroz, M.C.; Lehericy, S.; Bergman, H.; Agid, Y.; DeLong, M.R.; Obeso, J.A. Goal-directed and habitual control in the basal ganglia: Implications for Parkinson’s disease. Nat. Rev. Neurosci. 2010, 11, 760–772. [Google Scholar] [CrossRef]
- Hallett, M. The intrinsic and extrinsic aspects of freezing of gait. Mov. Disord. 2008, 23 (Suppl. S2), S439–S443. [Google Scholar] [CrossRef]
- Giladi, N. Freezing of gait. Clinical overview. Adv. Neurol. 2001, 87, 191–197. [Google Scholar]
- Vandenbossche, J.; Deroost, N.; Soetens, E.; Spildooren, J.; Vercruysse, S.; Nieuwboer, A.; Kerckhofs, E. Freezing of gait in Parkinson disease is associated with impaired conflict resolution. Neurorehabil. Neural Repair. 2011, 25, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Bloem, B.R.; Horak, F.B.; Lewis, S.J.G.; Nieuwboer, A.; Nonnekes, J. Clinical and methodological challenges for assessing freezing of gait: Future perspectives. Mov. Disord. 2019, 34, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Nonnekes, J.; Snijders, A.H.; Nutt, J.G.; Deuschl, G.; Giladi, N.; Bloem, B.R. Freezing of gait: A practical approach to management. Lancet Neurol. 2015, 14, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Ehgoetz Martens, K.A.; Ellard, C.G.; Almeida, Q.J. Does anxiety cause freezing of gait in Parkinson’s disease? PLoS ONE 2014, 9, e106561. [Google Scholar] [CrossRef]
- Yao, Z.; Shao, Y.; Han, X. Freezing of gait is associated with cognitive impairment in patients with Parkinson disease. Neurosci. Lett. 2017, 656, 126–130. [Google Scholar] [CrossRef]
- Morris, R.; Smulders, K.; Peterson, D.S.; Mancini, M.; Carlson-Kuhta, P.; Nutt, J.G.; Horak, F.B. Cognitive function in people with and without freezing of gait in Parkinson’s disease. NPJ Park. Dis. 2020, 6, 9. [Google Scholar] [CrossRef]
- Taximaimaiti, R.; Wang, X.P. Comparing the Clinical and Neuropsychological Characteristics of Parkinson’s Disease With and Without Freezing of Gait. Front. Neurosci. 2021, 15, 660340. [Google Scholar] [CrossRef]
- Schaafsma, J.D.; Balash, Y.; Gurevich, T.; Bartels, A.L.; Hausdorff, J.M.; Giladi, N. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur. J. Neurol. 2003, 10, 391–398. [Google Scholar] [CrossRef]
- Ehgoetz Martens, K.A.; Shine, J.M.; Walton, C.C.; Georgiades, M.J.; Gilat, M.; Hall, J.M.; Muller, A.J.; Szeto, J.Y.Y.; Lewis, S.J.G. Evidence for subtypes of freezing of gait in Parkinson’s disease. Mov. Disord. 2018, 33, 1174–1178. [Google Scholar] [CrossRef]
- Nieuwboer, A.; Dom, R.; De Weerdt, W.; Desloovere, K.; Janssens, L.; Stijn, V. Electromyographic profiles of gait prior to onset of freezing episodes in patients with Parkinson’s disease. Brain 2004, 127 Pt 7, 1650–1660. [Google Scholar] [CrossRef]
- Nantel, J.; de Solages, C.; Bronte-Stewart, H. Repetitive stepping in place identifies and measures freezing episodes in subjects with Parkinson’s disease. Gait Posture 2011, 34, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Hausdorff, J.M.; Schaafsma, J.D.; Balash, Y.; Bartels, A.L.; Gurevich, T.; Giladi, N. Impaired regulation of stride variability in Parkinson’s disease subjects with freezing of gait. Exp. Brain Res. 2003, 149, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Delval, A.; Snijders, A.H.; Weerdesteyn, V.; Duysens, J.E.; Defebvre, L.; Giladi, N.; Bloem, B.R. Objective detection of subtle freezing of gait episodes in Parkinson’s disease. Mov. Disord. 2010, 25, 1684–1693. [Google Scholar] [CrossRef] [PubMed]
- Zach, H.; Janssen, A.M.; Snijders, A.H.; Delval, A.; Ferraye, M.U.; Auff, E.; Weerdesteyn, V.; Bloem, B.R.; Nonnekes, J. Identifying freezing of gait in Parkinson’s disease during freezing provoking tasks using waist-mounted accelerometry. Park. Relat. Disord. 2015, 21, 1362–1366. [Google Scholar] [CrossRef]
- Horak, F.; King, L.; Mancini, M. Role of body-worn movement monitor technology for balance and gait rehabilitation. Phys. Ther. 2015, 95, 461–470. [Google Scholar] [CrossRef]
- Silva de Lima, A.L.; Evers, L.J.W.; Hahn, T.; Bataille, L.; Hamilton, J.L.; Little, M.A.; Okuma, Y.; Bloem, B.R.; Faber, M.J. Freezing of gait and fall detection in Parkinson’s disease using wearable sensors: A systematic review. J. Neurol. 2017, 264, 1642–1654. [Google Scholar] [CrossRef]
- Jankovic, J. Botulinum toxin: State of the art. Mov. Disord. 2017, 32, 1131–1138. [Google Scholar] [CrossRef]
- Mittal, S.O.; Machado, D.; Richardson, D.; Dubey, D.; Jabbari, B. Botulinum toxin in Parkinson disease tremor: A randomized, double-blind, placebo-controlled study with a customized injection approach. Mayo Clin. Proc. 2017, 92, 1359–1367. [Google Scholar] [CrossRef]
- Jabbari, B.; Comtesse, S.M. Botulinum Toxin Treatment of Motor Disorders in Parkinson Disease—A Systematic Review. Toxins 2023, 15, 81. [Google Scholar] [CrossRef]
- Slouha, E.; Ibrahim, F.; Esposito, S.; Mursuli, O.; Rezazadah, A.; Clunes, L.A.; Kollias, T.F. Botulinum Toxin for the Management of Parkinson’s Disease: A Systematic Review. Cureus 2024, 16, e53309. [Google Scholar] [CrossRef]
- Todo, H.; Yamasaki, H.; Ogawa, G.; Nishida, K.; Futamura, N.; Funakawa, I. Injection of onabotulinum toxin A into the bilateral external oblique muscle attenuated camptocormia: A prospective open-label study in six patients with Parkinson’s disease. Neurol. Ther. 2018, 7, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Caravaca, M.T.; Cáceres-Redondo, M.T.; Huertas-Fernández, I.; Vargas-González, L.; Carrillo, F.; Carballo, M.; Mir, P. The use of botulinum toxin in the treatment of sialorrhea in parkinsonian disorders. Neurol. Sci. 2015, 36, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Møller, E.; Karlsborg, M.; Bardow, A.; Lykkeaa, J.; Nissen, F.H.; Bakke, M. Treatment of severe drooling with botulinum toxin in amyotrophic lateral sclerosis and Parkinson’s disease: Efficacy and possible mechanisms. Acta Odontol. Scand. 2011, 69, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Lagalla, G.; Millevolte, M.; Capecci, M.; Provinciali, L.; Ceravolo, M.G. Long-lasting benefits of botulinum toxin type B in Parkinson’s disease-related drooling. J. Neurol. 2009, 256, 563–567. [Google Scholar] [CrossRef]
- Tiigimäe-Saar, J.; Tamme, T.; Rosenthal, M.; Kadastik-Eerme, L.; Taba, P. Saliva changes in Parkinson’s disease patients after injection of Botulinum neurotoxin type A. Neurol. Sci. 2018, 39, 871–877. [Google Scholar] [CrossRef]
- Giannantoni, A.; Conte, A.; Proietti, S.; Giovannozzi, S.; Rossi, A.; Fabbrini, G.; Porena, M.; Berardelli, A. Botulinum toxin type A in patients with Parkinson’s disease and refractory overactive bladder. J. Urol. 2011, 186, 960–964. [Google Scholar] [CrossRef]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum neurotoxins: Biology, pharmacology, and toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef]
- Grippe, T.; Chen, R. Botulinum toxin in the management of parkinsonian disorders. Toxicon 2023, 232, 107209. [Google Scholar] [CrossRef]
- Giladi, N.; Gurevich, T.; Shabtai, H.; Paleacu, D.; Simon, E.S. The effect of botulinum toxin injections to the calf muscles on freezing of gait in parkinsonism: A pilot study. J. Neurol. 2001, 248, 572–576. [Google Scholar] [CrossRef]
- Giladi, N.; Honigman, S. Botulinum Toxin Injections to One Leg Alleviate Freezing of Gait in a Patient with Parkinson’s Disease. Mov. Disord. 1997, 12, 1085–1109. [Google Scholar] [CrossRef]
- Gurevich, T.; Peretz, C.; Moore, O.; Weizmann, N.; Giladi, N. The effect of injecting botulinum toxin type a into the calf muscles on freezing of gait in Parkinson’s disease: A double blind placebo-controlled pilot study. Mov. Disord. 2007, 22, 880–883. [Google Scholar] [CrossRef] [PubMed]
- Samotus, O.; Chen, R.; Jog, M. Changes in Cortical Excitability and Parkinson Tremor After Botulinum Toxin Therapy. Neurology 2021, 97, e1413–e1424. [Google Scholar] [CrossRef] [PubMed]
- Matak, I. Evidence for central antispastic effect of botulinum toxin type A. Br. J. Pharmacol. 2020, 177, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Cutrona, C.; Marchet, F.; Costanzo, M.; De Bartolo, M.I.; Leodori, G.; Ferrazzano, G.; Conte, A.; Fabbrini, G.; Berardelli, A.; Belvisi, D. Exploring the Central Mechanisms of Botulinum Toxin in Parkinson’s Disease: A Systematic Review from Animal Models to Human Evidence. Toxins 2023, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Park, H.J. Botulinum Toxin for the Treatment of Neuropathic Pain. Toxins 2017, 9, 260. [Google Scholar] [CrossRef]
- Matak, I.; Bölcskei, K.; Bach-Rojecky, L.; Helyes, Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins 2019, 11, 459. [Google Scholar] [CrossRef]
- Val, M.; Delcanho, R.; Ferrari, M.; Guarda Nardini, L.; Manfredini, D. Is Botulinum Toxin Effective in Treating Orofacial Neuropathic Pain Disorders? A Systematic Review. Toxins 2023, 15, 541. [Google Scholar] [CrossRef]
- Spagna, A.; Attal, N. Botulinum toxin A and neuropathic pain: An update. Toxicon 2023, 232, 107208. [Google Scholar] [CrossRef]
- Kim, D.W.; Lee, S.K.; Ahnn, J. Botulinum Toxin as a Pain Killer: Players and Actions in Antinociception. Toxins 2015, 7, 2435–2453. [Google Scholar] [CrossRef]
- Zhang, Y.; Lian, Y.; Zhang, H.; Xie, N.; Chen, Y. CGRP Plasma Levels Decrease in Classical Trigeminal Neuralgia Patients Treated with Botulinum Toxin Type A: A Pilot Study. Pain Med. 2020, 21, 1611–1615. [Google Scholar] [CrossRef]
- Choi, J.E.; Werbel, T.; Wang, Z.; Wu, C.C.; Yaksh, T.L.; Di Nardo, A. Botulinum toxin blocks mast cells and prevents rosacea like inflammation. J. Dermatol. Sci. 2019, 93, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, T.U.; Eraldemir, F.C.; Gürel, B.; Yavuz, Ö.; Acar, E.; İşken, T.; Yılmaz, H.; Utkan, N.Z. Intraductal botulinum toxin injection suppressed the inflammation in experimental acute pancreatitis. Ulus. Travma Acil Cerrahi Derg. 2022, 28, 1659–1666. [Google Scholar] [PubMed]
- Ham, H.J.; Yeo, I.J.; Jeon, S.H.; Lim, J.H.; Yoo, S.S.; Son, D.J.; Jang, S.S.; Lee, H.; Shin, S.J.; Han, S.B.; et al. Botulinum Toxin A Ameliorates Neuroinflammation in the MPTP and 6-OHDA-Induced Parkinson’s Disease Models. Biomol. Ther. 2022, 30, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Popescu, M.N.; Beiu, C.; Iliescu, M.G.; Mihai, M.M.; Popa, L.G.; Stănescu, A.M.A.; Berteanu, M. Botulinum Toxin Use for Modulating Neuroimmune Cutaneous Activity in Psoriasis. Medicina 2022, 58, 813. [Google Scholar] [CrossRef] [PubMed]
- Santos-García, D.; de Deus Fonticoba, T.; Suárez Castro, E.; Aneiros Díaz, A.; Paz González, J.M.; Feal Panceiras, M.J.; García Sancho, C.; Jesús, S.; Mir, P.; Aguilar, M.; et al. High ultrasensitive serum C-reactive protein may be related to freezing of gait in Parkinson’s disease patients. J. Neural Transm. 2019, 126, 1599–1608. [Google Scholar] [CrossRef]
- Fietzek, U.M.; Nene, D.; Schramm, A.; Appel-Cresswell, S.; Košutzká, Z.; Walter, U.; Wissel, J.; Berweck, S.; Chouinard, S.; Bäumer, T. The Role of Ultrasound for the Personalized Botulinum Toxin Treatment of Cervical Dystonia. Toxins 2021, 13, 365. [Google Scholar] [CrossRef]
- Kaymak, B.; Kara, M.; On, A.Y.; Özçakar, L. A Novel Approach for Ultrasound-Guided Botulinum Toxin Injections: Botulis-MUS Projects. Am. J. Phys. Med. Rehabil. 2017, 96, e31. [Google Scholar] [CrossRef]
- Fernandez, H.H.; Lannon, M.C.; Trieschmann, M.E.; Friedman, J.H. Botulinum toxin type B for gait freezing in Parkinson’s disease. Med. Sci. Monit. 2004, 10, CR282–CR284. [Google Scholar]
- Wieler, M.; Camicioli, R.; Jones, C.A.; Wayne Martin, W.R. Botulinum toxin injections do not improve freezing of gait in Parkinson disease. Neurology 2005, 65, 626–628. [Google Scholar] [CrossRef]
- Vaštik, M.; Hok, P.; Hluštik, P.; Otruba, P.; Tudos, Z.; Kaňovsky, P. Botulinum toxin treatment of freezing of gait in Parkinson’s disease patients as reflected in functional magnetic resonance imaging of leg movement. Neuroendocrinol. Lett. 2016, 37, 147–153. [Google Scholar]
- Neshige, R. A Pilot Study of the Botulinum Toxin Injection in the Psoas Major Muscles for Freezing of Gait in Parkinson’s Disease Patients. Neurol. Curr. Res. 2022, 2, 1016. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tambasco, N.; Nigro, P.; Mechelli, A.; Duranti, M.; Parnetti, L. Botulinum Toxin Effects on Freezing of Gait in Parkinson’s Disease: A Systematic Review. Toxins 2024, 16, 474. https://doi.org/10.3390/toxins16110474
Tambasco N, Nigro P, Mechelli A, Duranti M, Parnetti L. Botulinum Toxin Effects on Freezing of Gait in Parkinson’s Disease: A Systematic Review. Toxins. 2024; 16(11):474. https://doi.org/10.3390/toxins16110474
Chicago/Turabian StyleTambasco, Nicola, Pasquale Nigro, Alessandro Mechelli, Michele Duranti, and Lucilla Parnetti. 2024. "Botulinum Toxin Effects on Freezing of Gait in Parkinson’s Disease: A Systematic Review" Toxins 16, no. 11: 474. https://doi.org/10.3390/toxins16110474
APA StyleTambasco, N., Nigro, P., Mechelli, A., Duranti, M., & Parnetti, L. (2024). Botulinum Toxin Effects on Freezing of Gait in Parkinson’s Disease: A Systematic Review. Toxins, 16(11), 474. https://doi.org/10.3390/toxins16110474