Development of Acid Hydrolysis-Based UPLC–MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products
<p>Optimization of the extraction conditions (1000 μg/kg, <span class="html-italic">n</span> = 5). (<b>A</b>) Recoveries of <span class="html-italic">Alternaria</span> toxins from chili paste, eggplant, and tomato by extraction with acetonitrile. (<b>B</b>) Optimization of the hydrochloric acid concentration at 80 °C for 15 min in eggplant. (<b>C</b>) Optimization of the heating time with 0.1 mol/L hydrochloric acid at 80 °C in eggplant. (<b>D</b>) Optimization of the heating time with 0.5 mol/L hydrochloric acid at 80 °C in eggplant. (<b>E</b>) Optimization of the heating time with 1 mol/L hydrochloric acid at 80 °C in eggplant. (<b>F</b>) Optimization of the heating temperatures with 0.5 mol/L hydrochloric acid for 30 min in eggplant.</p> "> Figure 2
<p>Optimization of the extraction and SPE columns in eggplant (1000 μg/kg, <span class="html-italic">n</span> = 3). (<b>A</b>) Optimization of the extraction volume. (<b>B</b>) Selection of the SPE column.</p> "> Figure 3
<p>Chromatograms of <span class="html-italic">Alternaria</span> toxins in the mixed standard solution. The concentration is 100 μg/L.</p> "> Figure 4
<p>Matrix effects of solanaceous vegetables and their products.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of Extraction
2.1.1. Validation via Reported Methods
2.1.2. Optimization of Extraction Conditions
2.2. Optimization of Clean-Up Conditions
2.3. Validation Method
2.4. Method Application
3. Conclusions
4. Materials and Methods
4.1. Chemicals, Reagents, and Materials
4.2. Sample Preparation
4.3. Apparatus and UPLC–MS/MS Conditions
4.4. Method Validation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dong, H.; Xian, Y.; Xiao, K.; Wu, Y.; Zhu, L.; He, J. Development and comparison of single-step solid phase extraction and QuEChERS clean-up for the analysis of 7 mycotoxins in fruits and vegetables during storage by UHPLC-MS/MS. Food Chem. 2019, 274, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Carrasco, Y.; Molto, J.C.; Manes, J.; Berrada, H. Development of a GC-MS/MS strategy to determine 15 mycotoxins and metabolites in human urine. Talanta 2014, 128, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Hessel-Pras, S.; Kieshauer, J.; Roenn, G.; Luckert, C.; Braeuning, A.; Lampen, A. In vitro characterization of hepatic toxicity of Alternaria toxins. Mycotoxin Res. 2019, 35, 157–168. [Google Scholar] [CrossRef]
- Chen, A.; Mao, X.; Sun, Q.; Wei, Z.; Li, J.; You, Y.; Zhao, J.; Jiang, G.; Wu, Y.; Wang, L.; et al. Alternaria Mycotoxins: An Overview of Toxicity, Metabolism, and Analysis in Food. J. Agric. Food Chem. 2021, 69, 7817–7830. [Google Scholar] [CrossRef] [PubMed]
- Xing, L.; Zou, L.; Luo, R.; Wang, Y. Determination of five Alternaria toxins in wolfberry using modified QuEChERS and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2020, 311, 125975. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, D.; Yang, X.; Zhang, L.; Yang, M. Detection of seven Alternaria toxins in edible and medicinal herbs using ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. X 2022, 13, 100186. [Google Scholar] [CrossRef]
- Qiao, X.; Zhang, J.; Yang, Y.; Yin, J.; Li, H.; Xing, Y.; Shao, B. Development of a simple and rapid LC-MS/MS method for the simultaneous quantification of five Alternaria mycotoxins in human urine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1144, 122096. [Google Scholar] [CrossRef]
- Van de Perre, E.; Deschuyffeleer, N.; Jacxsens, L.; Vekeman, F.; Van Der Hauwaert, W.; Asam, S.; Rychlik, M.; Devlieghere, F.; De Meulenaer, B. Screening of moulds and mycotoxins in tomatoes, bell peppers, onions, soft red fruits and derived tomato products. Food Control 2014, 37, 165–170. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, N.; Xian, H.; Wei, D.; Shi, L.; Feng, X. A single-step solid phase extraction for the simultaneous determination of 8 mycotoxins in fruits by ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 2016, 1429, 22–29. [Google Scholar] [CrossRef]
- Guo, W.; Fan, K.; Nie, D.; Meng, J.; Huang, Q.; Yang, J.; Shen, Y.; Tangni, E.K.; Zhao, Z.; Wu, Y.; et al. Development of a QuEChERS-Based UHPLC-MS/MS Method for Simultaneous Determination of Six Alternaria Toxins in Grapes. Toxins 2019, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Noser, J.; Schneider, P.; Rother, M.; Schmutz, H. Determination of six Alternaria toxins with UPLC-MS/MS and their occurrence in tomatoes and tomato products from the Swiss market. Mycotoxin Res. 2011, 27, 265–271. [Google Scholar] [CrossRef]
- Zwickel, T.; Klaffke, H.; Richards, K.; Rychlik, M. Development of a high performance liquid chromatography tandem mass spectrometry based analysis for the simultaneous quantification of various Alternaria toxins in wine, vegetable juices and fruit juices. J. Chromatogr. A 2016, 1455, 74–85. [Google Scholar] [CrossRef]
- Fan, C.; Cao, X.; Liu, M.; Wang, W. Determination of Alternaria mycotoxins in wine and juice using ionic liquid modified countercurrent chromatography as a pretreatment method followed by high-performance liquid chromatography. J. Chromatogr. A 2016, 1436, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Walravens, J.; Mikula, H.; Rychlik, M.; Asam, S.; Ediage, E.N.; Di Mavungu, J.D.; Van Landschoot, A.; Vanhaecke, L.; De Saeger, S. Development and validation of an ultra-high-performance liquid chromatography tandem mass spectrometric method for the simultaneous determination of free and conjugated Alternaria toxins in cereal-based foodstuffs. J. Chromatogr. A 2014, 1372, 91–101. [Google Scholar] [CrossRef]
- Ji, X.; Xiao, Y.; Wang, W.; Lyu, W.; Wang, X.; Li, Y.; Deng, T.; Yang, H. Mycotoxins in cereal-based infant foods marketed in China: Occurrence and risk assessment. Food Control 2022, 138, 108998. [Google Scholar] [CrossRef]
- Wei, D.; Wang, Y.; Jiang, D.; Feng, X.; Li, J.; Wang, M. Survey of Alternaria Toxins and Other Mycotoxins in Dried Fruits in China. Toxins 2017, 9, 200. [Google Scholar] [CrossRef] [Green Version]
- López, P.; Venema, D.; de Rijk, T.; de Kok, A.; Scholten, J.M.; Mol, H.G.J.; de Nijs, M. Occurrence of Alternaria toxins in food products in The Netherlands. Food Control 2016, 60, 196–204. [Google Scholar] [CrossRef]
- Hickert, S.; Bergmann, M.; Ersen, S.; Cramer, B.; Humpf, H.U. Survey of Alternaria toxin contamination in food from the German market, using a rapid HPLC-MS/MS approach. Mycotoxin Res. 2016, 32, 7–18. [Google Scholar] [CrossRef] [Green Version]
- De Berardis, S.; De Paola, E.L.; Montevecchi, G.; Garbini, D.; Masino, F.; Antonelli, A.; Melucci, D. Determination of four Alternaria alternata mycotoxins by QuEChERS approach coupled with liquid chromatography-tandem mass spectrometry in tomato-based and fruit-based products. Food Res. Int. 2018, 106, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Qiao, X.; Yin, J.; Yang, Y.; Zhang, J.; Shao, B.; Li, H.; Chen, H. Determination of Alternaria Mycotoxins in Fresh Sweet Cherries and Cherry-Based Products: Method Validation and Occurrence. J. Agric. Food Chem. 2018, 66, 11846–11853. [Google Scholar] [CrossRef]
- Aichinger, G.; Kruger, F.; Puntscher, H.; Preindl, K.; Warth, B.; Marko, D. Naturally occurring mixtures of Alternaria toxins: Anti-estrogenic and genotoxic effects in vitro. Arch. Toxicol. 2019, 93, 3021–3031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prelle, A.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. A new method for detection of five alternaria toxins in food matrices based on LC-APCI-MS. Food Chem. 2013, 140, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Tolgyesi, A.; Stroka, J.; Tamosiunas, V.; Zwickel, T. Simultaneous analysis of Alternaria toxins and citrinin in tomato: An optimised method using liquid chromatography-tandem mass spectrometry. Food Addit. Contam. Part A 2015, 32, 1512–1522. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; Nie, D.; Tang, H.; Rao, Q.; Qu, M.; Wang, W.; Han, L.; Song, W.; Han, Z. Analysis of amicarbazone and its two metabolites in grains and soybeans by liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2015, 38, 2245–2252. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Tölgyesi, Á.; Bouten, K.; Cordeiro, F.; Stroka, J. Determination of Alternaria Toxins in Food by SPE and LC-IDMS: Development and In-House Validation of a Candidate Method for Standardisation. Separations 2022, 9, 70. [Google Scholar] [CrossRef]
- Wu, L.-h.; Zhou, C.; Long, G.-y.; Yang, X.-b.; Wei, Z.-y.; Liao, Y.-j.; Yang, H.; Hu, C.-x. Fitness of fall armyworm, Spodoptera frugiperda to three solanaceous vegetables. J. Integr. Agric. 2021, 20, 755–763. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, J.; Sun, L.; Yuan, Q.; Cheng, G.; Argyropoulos, D.S. Extraction and characterization of lignin from corncob residue after acid-catalyzed steam explosion pretreatment. Ind. Crops Prod. 2019, 133, 241–249. [Google Scholar] [CrossRef]
- Xiao, L.; Sha, W.; Tao, C.; Hou, C.; Xiao, G.; Ren, J. Effect on purine releasement of Lentinus edodes by different food processing techniques. Food Chem. X 2022, 13, 100260. [Google Scholar] [CrossRef]
- He, Q.; Liang, J.; Zhao, Y.; Yuan, Y.; Wang, Z.; Gao, Z.; Wei, J.; Yue, T. Enzymatic degradation of mycotoxin patulin by an extracellular lipase from Ralstonia and its application in apple juice. Food Control 2022, 136, 108870. [Google Scholar] [CrossRef]
- Asam, S.; Lichtenegger, M.; Muzik, K.; Liu, Y.; Frank, O.; Hofmann, T.; Rychlik, M. Development of analytical methods for the determination of tenuazonic acid analogues in food commodities. J. Chromatogr. A 2013, 1289, 27–36. [Google Scholar] [CrossRef]
- European Commission. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed (SANTE/12682/2019). Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/AqcGuidance_SANTE_2019_12682.pdf (accessed on 1 March 2022).
- Maldonado Haro, M.L.; Cabrera, G.; Fernández Pinto, V.; Patriarca, A. Alternaria toxins in tomato products from the Argentinean market. Food Control 2023, 147, 109607. [Google Scholar] [CrossRef]
- López, P.; Venema, D.; Mol, H.; Spanjer, M.; de Stoppelaar, J.; Pfeiffer, E.; de Nijs, M. Alternaria toxins and conjugates in selected foods in the Netherlands. Food Control 2016, 69, 153–159. [Google Scholar] [CrossRef]
- Ji, X.; Xiao, Y.; Jin, C.; Wang, W.; Lyu, W.; Tang, B.; Yang, H. Alternaria mycotoxins in food commodities marketed through e-commerce stores in China: Occurrence and risk assessment. Food Control 2022, 140, 109125. [Google Scholar] [CrossRef]
- Kecojević, I.; Đekić, S.; Lazović, M.; Mrkajić, D.; Baošić, R.; Lolić, A. Evaluation of LC-MS/MS methodology for determination of 179 multi-class pesticides in cabbage and rice by modified QuEChERS extraction. Food Control 2021, 123, 107693. [Google Scholar] [CrossRef]
- Tang, H.; Ma, L.; Huang, J.; Li, Y.; Liu, Z.; Meng, D.; Wen, G.; Dong, M.; Wang, W.; Zhao, L. Residue behavior and dietary risk assessment of six pesticides in pak choi using QuEChERS method coupled with UPLC-MS/MS. Ecotoxicol. Environ. Saf. 2021, 213, 112022. [Google Scholar] [CrossRef] [PubMed]
Compound | Matrix | Linear Range (μg/L) | Calibration Curve | Correlation Coefficient (R2) | LOD (μg/kg) | Average Recovery Rate (%) (RSD (%)) (n = 6) | ||
---|---|---|---|---|---|---|---|---|
2 μg/kg | 10 μg/kg | 1000 μg/kg | ||||||
ALS | Chili paste | 1–1000 | y = 4802x + 14064 | 1.000 | 0.5 | 77.2 (5.7) | 76.0 (2.6) | 82.8 (2.8) |
Eggplant | 1–1000 | y = 4548x + 39771 | 0.999 | 0.5 | 75.2 (3.4) | 81.0 (8.2) | 75.6 (3.0) | |
Ketchup | 1–1000 | y = 5456x + 26143 | 1.000 | 0.5 | 75.6 (3.6) | 72.0 (2.8) | 80.0 (6.4) | |
Pepper | 1–1000 | y = 3766x + 21551 | 1.000 | 0.5 | 72.4 (2.3) | 76.0 (4.5) | 81.6 (4.6) | |
Tomato | 1–1000 | y = 5304x + 47966 | 0.999 | 0.5 | 76.8 (3.4) | 76.6 (3.5) | 82.8 (3.4) | |
ALT | Chili paste | 1–1000 | y = 1400x + 5590 | 1.000 | 0.5 | 100.4 (15.5) | 96.2 (7.5) | 91.2 (3.5) |
Eggplant | 1–1000 | y = 1963x − 1128 | 0.999 | 0.5 | 85.4 (6.7) | 85.8 (5.5) | 91.2 (4.9) | |
Ketchup | 1–1000 | y = 1780x + 1184 | 1.000 | 0.5 | 97.4 (13.0) | 82.6 (5.4) | 98.0 (12.5) | |
Pepper | 1–1000 | y = 1219x + 6487 | 1.000 | 0.5 | 96.4 (13.0) | 91.0 (4.2) | 92.6 (6.6) | |
Tomato | 1–1000 | y = 1329x + 9554 | 1.000 | 0.5 | 103.6 (11.6) | 89.0 (4.3) | 90.8 (5.9) | |
AME | Chili paste | 5–1000 | y = 290x + 2029 | 0.999 | 2 | 93.0 (3.1) a | 87.8 (12.8) | 92.6 (8.0) |
Eggplant | 5–1000 | y = 541x + 5632 | 0.999 | 2 | 105.2 (13.7) a | 91.0 (1.3) | 89.8 (4.1) | |
Ketchup | 5–1000 | y = 627x + 6041 | 0.999 | 2 | 85.4 (10.1) a | 86.2 (3.3) | 92.8 (10.8) | |
Pepper | 5–1000 | y = 484x + 1091 | 1.000 | 2 | 103.2 (12.2) a | 93.2 (6.3) | 89.2 (2.9) | |
Tomato | 5–1000 | y = 607x + 13240 | 0.998 | 2 | 87.6 (14.2) a | 96.6 (3.2) | 96.0 (2.4) | |
AOH | Chili paste | 5–1000 | y = 840x + 6452 | 1.000 | 2 | 86.0 (14.1) | 93.8 (7.2) | 92.2 (3.5) |
Eggplant | 1–1000 | y = 1291x + 9660 | 1.000 | 0.5 | 86.8 (5.3) | 101.4 (2.6) | 95.2 (3.6) | |
Ketchup | 1–1000 | y = 1559x + 11605 | 0.998 | 0.5 | 107.4 (4.7) | 89.2 (6.6) | 95.8 (10.8) | |
Pepper | 1–1000 | y = 875x + 8618 | 1.000 | 0.5 | 85.4 (14.8) | 92.6 (5.3) | 92.4 (4.2) | |
Tomato | 1–1000 | y = 1056x + 12184 | 0.999 | 0.5 | 84.2 (15.1) | 89.8 (7.1) | 93.0 (3.8) | |
TeA | Chili paste | 0.5–1000 | y = 9007x + 59591 | 1.000 | 0.2 | 73.2 (3.5) | 75.4 (4.8) | 78.6 (3.6) |
Eggplant | 0.1–1000 | y = 12988x + 70681 | 1.000 | 0.05 | 74.8 (2.4) | 77.2 (2.8) | 76.8 (6.4) | |
Ketchup | 0.1–1000 | y = 13465x + 36066 | 1.000 | 0.05 | 75.4 (4.5) | 76.2 (3.3) | 82.0 (4.6) | |
Pepper | 0.5–1000 | y = 10670x + 22379 | 1.000 | 0.2 | 72.6 (3.3) | 75.2 (1.5) | 77.8 (3.7) | |
Tomato | 0.5–1000 | y = 10876x + 70959 | 1.000 | 0.2 | 75.8 (2.9) | 75.8 (3.4) | 81.8 (7.7) | |
TEN | Chili paste | 0.1–1000 | y = 12846x + 23279 | 1.000 | 0.05 | 87.6 (8.2) | 80.6 (5.5) | 96.0 (2.4) |
Eggplant | 0.1–1000 | y = 14980x + 31438 | 1.000 | 0.05 | 86.8 (1.5) | 84.0 (2.4) | 93.6 (3.8) | |
Ketchup | 0.1–1000 | y = 15575x + 12590 | 1.000 | 0.05 | 94.0 (11.2) | 78.2 (4.2) | 96.0 (10.7) | |
Pepper | 0.1–1000 | y = 12366x + 25385 | 1.000 | 0.05 | 90.2 (2.1) | 94.6 (4.1) | 93.4 (3.5) | |
Tomato | 0.1–1000 | y = 14814x + 26054 | 1.000 | 0.05 | 94.4 (10.6) | 92.2 (5.9) | 92.4 (3.9) |
Matrix | Npos/N | Nqual | Nquant | Avgquan (μg/kg) | Minquan (μg/kg) | Maxquan (μg/kg) |
---|---|---|---|---|---|---|
Chili paste (N = 33) | ||||||
ALS | 0/33 | 0 | 0 | - | - | - |
ALT | 0/33 | 0 | 0 | - | - | - |
AME | 0/33 | 0 | 0 | - | - | - |
AOH | 0/33 | 0 | 0 | - | - | - |
TeA | 4/33 | 0 | 4 | 12.1 | 3.44 | 19.3 |
TEN | 2/33 | 2 | 0 | - | - | |
Eggplant (N = 244) | ||||||
ALS | 0/244 | 0 | 0 | - | - | - |
ALT | 0/244 | 0 | 0 | - | - | - |
AME | 0/244 | 0 | 0 | - | - | - |
AOH | 0/244 | 0 | 0 | - | - | - |
TeA | 2/244 | 0 | 2 | 128 | 41.8 | 214 |
TEN | 4/244 | 2 | 2 | 4.27 | 2.10 | 6.44 |
Ketchup (N = 23) | ||||||
ALS | 0/23 | 0 | 0 | - | - | - |
ALT | 0/23 | 0 | 0 | - | - | - |
AME | 2/23 | 0 | 2 | 12.3 | 11.9 | 12.6 |
AOH | 3/23 | 0 | 3 | 8.06 | 5.75 | 10.3 |
TeA | 14/23 | 0 | 14 | 85.1 | 5.61 | 337 |
TEN | 3/23 | 2 | 1 | 2.81 | 2.81 | 2.81 |
Pepper (N = 450) | ||||||
ALS | 0/450 | 0 | 0 | - | - | - |
ALT | 2/450 | 0 | 2 | 18.2 | 16.3 | 20.0 |
AME | 0/450 | 0 | 0 | - | - | - |
AOH | 0/450 | 0 | 0 | - | - | - |
TeA | 6/450 | 0 | 6 | 157 | 7.29 | 806 |
TEN | 5/450 | 2 | 3 | 8.07 | 2.28 | 13.1 |
Tomato (N = 189) | ||||||
ALS | 0/189 | 0 | 0 | - | - | - |
ALT | 1/189 | 0 | 1 | 5.29 | 5.29 | 5.29 |
AME | 0/189 | 0 | 0 | - | - | - |
AOH | 0/189 | 0 | 0 | - | - | - |
TeA | 0/189 | 0 | 0 | - | - | - |
TEN | 6/189 | 4 | 2 | 4.58 | 2.72 | 6.43 |
Compound | Structure | Retention Time (min) | Precursor Ion (m/z) | Product Ion (m/z) | Q1 Pre Bias (v) | CE (v) | Q3 Pre Bias (v) |
---|---|---|---|---|---|---|---|
ALS | 1.77 | 288.80 | 230.10 * 245.10 | 21.0 21.0 | 21 15 | 15.0 11.0 | |
ALT | 1.73 | 293.00 | 257.10 * 275.10 | −15.0 −15.0 | −16.0 −9.0 | −30.0 −19.0 | |
AME | 1.95 | 273.00 | 128.10 * 258.00 | −15.0 −15.0 | −46.0 −27.0 | −25.0 −18.0 | |
AOH | 1.80 | 259.00 | 185.10 * 213.10 | −14.0 −14.0 | −32.0 −26.0 | −12.0 −22.0 | |
TeA | 1.80 | 198.10 | 125.00 * 153.10 | −11.0 −11.0 | −17.0 −14.0 | −24.0 −16.0 | |
TEN | 2.12 | 415.20 | 199.20 * 312.20 | −13.0 −12.0 | −15.0 −23.0 | −12.0 −12.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Han, W.; Fei, S.; Li, Y.; Huang, J.; Dong, M.; Wang, L.; Wang, W.; Zhang, Y. Development of Acid Hydrolysis-Based UPLC–MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products. Toxins 2023, 15, 201. https://doi.org/10.3390/toxins15030201
Tang H, Han W, Fei S, Li Y, Huang J, Dong M, Wang L, Wang W, Zhang Y. Development of Acid Hydrolysis-Based UPLC–MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products. Toxins. 2023; 15(3):201. https://doi.org/10.3390/toxins15030201
Chicago/Turabian StyleTang, Hongxia, Wei Han, Shaoxiang Fei, Yubo Li, Jiaqing Huang, Maofeng Dong, Lei Wang, Weimin Wang, and Ying Zhang. 2023. "Development of Acid Hydrolysis-Based UPLC–MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products" Toxins 15, no. 3: 201. https://doi.org/10.3390/toxins15030201
APA StyleTang, H., Han, W., Fei, S., Li, Y., Huang, J., Dong, M., Wang, L., Wang, W., & Zhang, Y. (2023). Development of Acid Hydrolysis-Based UPLC–MS/MS Method for Determination of Alternaria Toxins and Its Application in the Occurrence Assessment in Solanaceous Vegetables and Their Products. Toxins, 15(3), 201. https://doi.org/10.3390/toxins15030201