Algorithms to Improve the Prediction of Postprandial Insulinaemia in Response to Common Foods
<p>Within-individual insulin responses to 1000 kJ portions of the reference food (glucose) compared to 1000 kJ portions of the test foods over 120 min.</p> "> Figure 2
<p>(<b>a</b>–<b>c</b>) The colour-coded profiles show the relationship between carbohydrate (g/1000 kJ), protein (g/1000 kJ) and fat (g/1000 kJ) and the <span class="html-italic">Food Insulin Index</span> (FII) values of common foods. The isolines for FII rise in elevation from dark blue to dark red. For each profile, the third macronutrient is held constant at the median level, that is 5 g of fat/1000 kJ (<a href="#nutrients-08-00210-f002" class="html-fig">Figure 2</a>a), 6 g of protein/1000 kJ (<a href="#nutrients-08-00210-f002" class="html-fig">Figure 2</a>B) and 36 g of carbohydrate/1000 kJ (<a href="#nutrients-08-00210-f002" class="html-fig">Figure 2</a>c).</p> "> Figure 3
<p>(<b>A</b>–<b>D</b>) Univariate correlations between the food insulin index and the total fat, saturated fat, polyunsaturated fat and monounsaturated fat for 1000 kJ portions of foods containing 10 g of available carbohydrate or less. <b>A</b> & <b>B</b>: <span class="html-italic">n</span> = 29 single foods; <b>C</b> & <b>D</b>: <span class="html-italic">n</span> = 27 single foods.</p> "> Figure 4
<p>(<b>A</b>–<b>G</b>) Univariate correlations between the food insulin index and alanine, glutamic acid, arginine, cystine + cysteine, leucine, isoleucine and valine for 1000 kJ portions of single foods containing at least 10 g of available carbohydrate (<b>A</b>–<b>G</b>: <span class="html-italic">n</span> = 12, <b>H</b>: <span class="html-italic">n</span> = 29).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. FII Testing
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
FII | Food Insulin Index |
GS | Glucose Score |
GI | Glycemic Index |
GL | Glycemic Load |
iAUC | incremental Area Under the Curve |
ISO | International Standard of Operation |
References
- McMillan-Price, J.; Petocz, P.; Atkinson, F.; O’Neill, K.; Samman, S.; Steinbeck, K.; Caterson, I.; Brand-Miller, J. Comparison of 4 diets of varying glycemic load on weight loss and cardiovascular risk reduction in overweight and obese young adults: A randomized controlled trial. Arch. Intern. Med. 2006, 166, 1466–1475. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Manson, J.; Liu, S. Glycemic index, glycemic load and risk of type 2 diabetes. Am. J. Clin. Nutr. 2002, 76, S272–S280. [Google Scholar]
- MacDonald, K.; Lowe, J.M.; Barker, D.; Mensch, M.; Attia, J. Effect of popular takeaway foods on blood glucose levels in type 1 diabetes mellitus patients on intensive insulin therapy. Int. J. Clin. Pract. 2009, 63, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Hermansen, K.; Rasmussen, O.; Arnfred, J.; Winther, E.; Schmitz, O. Glycemic effects of spaghetti and potato consumed as part of mixed meal on IDDM patients. Diabetes Care 1987, 10, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, N.H.; Wolever, T.M.S. Effect of carbohydrate source on post-prandial blood glucose in subjects with type 1 diabetes treated with insulin lispro. Diabetes Res. Clin. Pract. 2004, 65, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef] [PubMed]
- Haber, E.; Procopio, J.; Carvalho, C.; Carpinelli, A.; Newsholme, P.; Curi, R. New insights into fatty acid modulation of pancreatic B-cell function. Int. Rev. Cytol. 2006, 248, 1–41. [Google Scholar] [PubMed]
- Newsholme, P.; Krause, M. Nutritional regulation of insulin secretion: Implications for diabetes. Clin. Biochem. Rev. 2012, 33, 35–47. [Google Scholar] [PubMed]
- Newsholme, P.; Bender, K.; Kiely, A.; Brennan, L. Amino acid metabolism, insulin secretion and diabetes. Biochem. Soc. Trans. 2007, 35, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Torres, N.; Noriega, L.; Tovar, A.R. Nutrient modulation of insulin secretion. Vitam. Horm. 2009, 80, 217–244. [Google Scholar] [PubMed]
- Floyd, J.; Fajans, S.; Conn, J.; Knopf, R.; Rull, J. Insulin secretion in response to protein ingestion. J. Clin. Investig. 1966, 45, 1279–1486. [Google Scholar] [CrossRef] [PubMed]
- Fajans, S.; Floyd, J.; Pek, S.; Knopf, R.; Jacobson, M.; Conn, J. Effect of protein meals on plasma insulin in mildly diabetic patients. (Abstract #1). Diabetes 1968, 17, 297. [Google Scholar] [PubMed]
- Berger, S.; Vongaraya, M. Insulin response to ingested protein in diabetes. Diabetes 1966, 15, 303–306. [Google Scholar] [CrossRef] [PubMed]
- Krezowski, P.; Nuttall, F.; Gannon, M.; Bartosh, N. The effect of protein ingestion on the metabolic response to oral glucose in normal individuals. Am. J. Clin. Nutr. 1986, 44, 847–856. [Google Scholar] [PubMed]
- Bao, J.; Atkinson, F.; Petocz, P.; Brand-Miller, J. Prediction of postprandial glycemia and insulinemia in lean, young, healthy adults: Glycemic load compared with carbohydrate content alone. Am. J. Clin. Nutr. 2011, 93, 984–986. [Google Scholar] [CrossRef] [PubMed]
- Savage, D.; Petersen, K.; Shulman, G.I. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 2007, 87, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Smart, C.E.M.; Lopez, P.E.; Evans, M.; Jones, T.W.; McElduff, P.; O’Connell, S.M.; Davis, E.A.; King, B.R. Both Dietary Protein and Fat Increase Postprandial Glucose Excursions in Children With Type 1 Diabetes and the Effect Is Additive. Diabetes Care 2013, 36, 3897–3902. [Google Scholar] [CrossRef] [PubMed]
- Wolpert, H.A.; Smith, S.A.; Atakov-Castillo, A.; Steil, G.M. Dietary Fat Acutely Increases Glucose Concentrations and Insulin Requirements in Patients With Type 1 Diabetes: Implications for carbohydrate-based bolus dose calculation and intensive diabetes management. Diabetes Care 2013, 36, 810–816. [Google Scholar] [CrossRef] [PubMed]
- Gannon, M.C.; Nuttall, F.Q.; Neil, B.J.; Westphal, S.A. The insulin and glucose responses to meals of glucose plus various proteins in type II diabetic subjects. Metabolism 1988, 37, 1081–1088. [Google Scholar] [CrossRef]
- Gannon, M.C.; Ercan, N.; Westphal, S.A.; Nuttall, F.Q. Effect of added fat on plasma glucose and insulin response to ingested potato in individuals with NIDDM. Diabetes Care 1993, 16, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Gilbertson, H.R.; Gray, R.; Munns, D.; Howard, G.; Petocz, P.; Colagiuri, S.; Brand-Miller, J.C. Improving the Estimation of Mealtime Insulin Dose in Adults With Type 1 Diabetes: The Normal Insulin Demand for Dose Adjustment (NIDDA) study. Diabetes Care 2011, 34, 2146–2151. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.J.; Gray, R.; Munns, D.; Petocz, P.; Howard, G.; Colagiuri, S.; Brand-Miller, J.C. Estimating Insulin Demand for Protein-Containing Foods Using the Food Insulin Index. Eur. J. Clin. Nutr. 2014, 68, 1055–1059. [Google Scholar] [CrossRef] [PubMed]
- Bell, K. Clinical Application of the Food Insulin Index; University of Sydney: Sydney, Australia, 2014. [Google Scholar]
- Holt, S.H.A.; Brand-Miller, J.; Petocz, P. An insulin index of foods: The insulin demand generated by 1000-kJ portions of common foods. Am. J. Clin. Nutr. 1997, 66, 1264–1276. [Google Scholar] [PubMed]
- Food Standards Australia New Zealand. NUTTAB: Australian Food Composition Tables; Food Standards Australia New Zealand: Canberra, Australia, 2010. [Google Scholar]
- Wolever, T.; Bolognesi, C. Source and amount of carbohydrate affect postprandial glucose and insulin in normal subjects. J. Nutr. 1996, 126, 2798–2806. [Google Scholar] [PubMed]
- American Diabetes Association. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care 2013, 36, 3821–3842. [Google Scholar]
- Manco, M.; Calvani, M.; Mingrone, G. Effects of dietary fatty acids on insulin sensitivity and secretion. Diabetes Obes. Metab. 2004, 6, 402–413. [Google Scholar] [CrossRef] [PubMed]
- Gatti, E.; Noe, D.; Pazzucconi, F.; Gianfranceschi, G.; Porrini, M.; Testolin, G.; Sirtori, C.R. Differential effect of unsaturated oils and butter on blood glucose and insulin response to carbohydrate in normal volunteers. Eur. J. Clin. Nutr. 1992, 46, 161–166. [Google Scholar] [PubMed]
- Thomsen, C.; Rasmussen, O.; Lousen, T.; Holst, J.J.; Fenselau, S.; Schrezenmeir, J.; Hermansen, K. Differential effects of saturated and monounsaturated fatty acids on postprandial lipemia and incretin responses in healthy subjects. Am. J. Clin. Nutr. 1999, 69, 1135–1143. [Google Scholar] [PubMed]
- Averous, J.; Bruhat, A.; Mordier, S.; Fafournoux, P. Recent advances in the understanding of amino acid regulation of gene expression. J. Nutr. 2003, 133, 2040S–2045S. [Google Scholar] [PubMed]
- Wolever, T.M.S.; Mullan, Y.M. Sugars and fat have different effects on postprandial glucose responses in normal and type 1 diabetic subjects. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 719–725. [Google Scholar] [CrossRef] [PubMed]
Variable Predicting FII | Contribution (%) | p Value |
---|---|---|
Glucose Score | 85.1 | <0.0001 |
Sugar | 6.9 | <0.0001 |
Protein | 6.7 | <0.0001 |
Fat | 1.3 | 0.053 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bell, K.J.; Petocz, P.; Colagiuri, S.; Brand-Miller, J.C. Algorithms to Improve the Prediction of Postprandial Insulinaemia in Response to Common Foods. Nutrients 2016, 8, 210. https://doi.org/10.3390/nu8040210
Bell KJ, Petocz P, Colagiuri S, Brand-Miller JC. Algorithms to Improve the Prediction of Postprandial Insulinaemia in Response to Common Foods. Nutrients. 2016; 8(4):210. https://doi.org/10.3390/nu8040210
Chicago/Turabian StyleBell, Kirstine J., Peter Petocz, Stephen Colagiuri, and Jennie C. Brand-Miller. 2016. "Algorithms to Improve the Prediction of Postprandial Insulinaemia in Response to Common Foods" Nutrients 8, no. 4: 210. https://doi.org/10.3390/nu8040210
APA StyleBell, K. J., Petocz, P., Colagiuri, S., & Brand-Miller, J. C. (2016). Algorithms to Improve the Prediction of Postprandial Insulinaemia in Response to Common Foods. Nutrients, 8(4), 210. https://doi.org/10.3390/nu8040210