The Joint Role of Thyroid Function and Iodine Status on Risk of Preterm Birth and Small for Gestational Age: A Population-Based Nested Case-Control Study of Finnish Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Case and Control Ascertainment
2.3. Measurement of Iodide, Thyroglobulin, and Thyroid-Stimulating Hormone
2.4. Statistical Analysis
3. Results
3.1. Descriptive Characteristics
3.2. Serum Iodine, Thyroid Hormones, and Preterm Birth
3.3. Serum Iodide, Thyroid Hormones, and Small for Gestational Age
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Zimmermann, M.B.; Jooste, P.L.; Pandav, C.S. Iodine-deficiency disorders. Lancet 2008, 372, 1251–1262. [Google Scholar] [CrossRef]
- Maraka, S.; Ospina, N.M.S.; O’Keeffe, D.T.; Espinosa De Ycaza, A.E.; Gionfriddo, M.R.; Erwin, P.J.; Coddington, C.C., 3rd; Stan, M.N.; Murad, M.H.; Montori, V.M. Subclinical Hypothyroidism in Pregnancy: A Systematic Review and Meta-Analysis. Thyroid 2016, 26, 580–590. [Google Scholar] [CrossRef]
- Nystrom, H.F.; Brantsaeter, A.L.; Erlund, I.; Gunnarsdottir, I.; Hulthen, L.; Laurberg, P.; Mattisson, I.; Rasmussen, L.B.; Virtanen, S.; Meltzer, H.M. Iodine status in the Nordic countries-past and present. Food Nutr. Res. 2016, 60, 31969. [Google Scholar] [CrossRef]
- Leung, A.M.; Pearce, E.N.; Braverman, L.E. Iodine nutrition in pregnancy and lactation. Endocrin. Metab. Clin. 2011, 40, 765–777. [Google Scholar] [CrossRef]
- Mills, J.L.; Ali, M.; Buck Louis, G.M.; Kannan, K.; Weck, J.; Wan, Y.; Maisog, J.; Giannakou, A.; Sundaram, R. Pregnancy Loss and Iodine Status: The LIFE Prospective Cohort Study. Nutrients 2019, 11, 534. [Google Scholar] [CrossRef]
- Granfors, M.; Andersson, M.; Stinca, S.; Åkerud, H.; Skalkidou, A.; Sundström Poromaa, I.; Wikström, A.-K.; Filipsson Nyström, H. Iodine deficiency in a study population of pregnant women in Sweden. Acta. Obstet. Gynecol. Scand. 2015, 94, 1168–1174. [Google Scholar] [CrossRef]
- Alvarez-Pedrerol, M.; Guxens, M.; Mendez, M.; Canet, Y.; Martorell, R.; Espada, M.; Plana, E.; Rebagliato, M.; Sunyer, J. Iodine levels and thyroid hormones in healthy pregnant women and birth weight of their offspring. Eur. J. Endocrinol. 2009, 160, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Leon, G.; Murcia, M.; Rebagliato, M.; Alvarez-Pedrerol, M.; Castilla, A.M.; Basterrechea, M.; Iniguez, C.; Fernandez-Somoano, A.; Blarduni, E.; Foradada, C.M.; et al. Maternal thyroid dysfunction during gestation, preterm delivery, and birthweight. The Infancia y Medio Ambiente Cohort, Spain. Paediatr. Perinat. Epidemiol. 2015, 29, 113–122. [Google Scholar] [CrossRef]
- Charoenratana, C.; Leelapat, P.; Traisrisilp, K.; Tongsong, T. Maternal iodine insufficiency and adverse pregnancy outcomes. Matern. Child Nutr. 2016, 12, 680–687. [Google Scholar] [CrossRef]
- Torlinska, B.; Bath, S.C.; Janjua, A.; Boelaert, K.; Chan, S.Y. Iodine Status during Pregnancy in a Region of Mild-to-Moderate Iodine Deficiency is not Associated with Adverse Obstetric Outcomes; Results from the Avon Longitudinal Study of Parents and Children (ALSPAC). Nutrients 2018, 10, 291. [Google Scholar] [CrossRef]
- Chen, R.; Li, Q.; Cui, W.; Wang, X.; Gao, Q.; Zhong, C.; Sun, G.; Chen, X.; Xiong, G.; Yang, X.; et al. Maternal Iodine Insufficiency and Excess Are Associated with Adverse Effects on Fetal Growth: A Prospective Cohort Study in Wuhan, China. J. Nutr. 2018, 148, 1814–1820. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, Y.; Liu, H.; Zheng, H.; Li, X.; Zhu, L.; Wang, Z. Associations of maternal iodine status and thyroid function with adverse pregnancy outcomes in Henan Province of China. J. Trace Elem. Med. Biol. 2018, 47, 104–110. [Google Scholar] [CrossRef]
- Snart, C.J.P.; Keeble, C.; Taylor, E.; Cade, J.E.; Stewart, P.M.; Zimmermann, M.; Reid, S.; Threapleton, D.E.; Poston, L.; Myers, J.E.; et al. Maternal Iodine Status and Associations with Birth Outcomes in Three Major Cities in the United Kingdom. Nutrients 2019, 11, 411. [Google Scholar] [CrossRef]
- Rasmussen, L.B.; Ovesen, L.; Christiansen, E. Day-to-day and within-day variation in urinary iodine excretion. Eur. J. Clin. Nutr. 1999, 53, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Als, C.; Helbling, A.; Peter, K.; Haldimann, M.; Zimmerli, B.; Gerber, H. Urinary iodine concentration follows a circadian rhythm: A study with 3023 spot urine samples in adults and children. J. Clin. Endocrinol. Metab. 2000, 85, 1367–1369. [Google Scholar] [CrossRef]
- Pan, Z.; Cui, T.; Chen, W.; Gao, S.; Pearce, E.N.; Wang, W.; Chen, Y.; Guo, W.; Tan, L.; Shen, J.; et al. Serum iodine concentration in pregnant women and its association with urinary iodine concentration and thyroid function. Clin. Endocrinol. 2019, 90, 711–718. [Google Scholar] [CrossRef]
- Yu, S.; Yin, Y.; Cheng, Q.; Han, J.; Cheng, X.; Guo, Y.; Sun, D.; Xie, S.; Qiu, L. Validation of a simple inductively coupled plasma mass spectrometry method for detecting urine and serum iodine and evaluation of iodine status of pregnant women in Beijing. Scand. J. Clin. Lab. Inv. 2018, 78, 501–507. [Google Scholar] [CrossRef]
- Michalke, B.; Witte, H. Characterization of a rapid and reliable method for iodide biomonitoring in serum and urine based on ion chromatography-ICP-mass spectrometry. J. Trace Elem. Med. Biol. 2015, 29, 63–68. [Google Scholar] [CrossRef]
- Cui, T.; Wang, W.; Chen, W.; Pan, Z.; Gao, S.; Tan, L.; Pearce, E.N.; Zimmermann, M.B.; Shen, J.; Zhang, W. Serum Iodine Is Correlated with Iodine Intake and Thyroid Function in School-Age Children from a Sufficient-to-Excessive Iodine Intake Area. J. Nutr. 2019, 149, 1012–1018. [Google Scholar] [CrossRef]
- Bell, G.A.; Mannisto, T.; Liu, A.; Kannan, K.; Yeung, E.H.; Kim, U.J.; Suvanto, E.; Surcel, H.M.; Gissler, M.; Mills, J.L. The joint role of thyroid function and iodine concentration on gestational diabetes risk in a population-based study. Acta. Obstet. Gynecol. Scand. 2019, 98, 500–506. [Google Scholar] [CrossRef]
- Roti, E.; Gardini, E.; Minelli, R.; Bianconi, L.; Flisi, M. Thyroid function evaluation by different commercially available free thyroid hormone measurement kits in term pregnant women and their newborns. J. Endocrinol. Invest. 1991, 14, 1–9. [Google Scholar] [CrossRef]
- Männistö, T.; Surcel, H.-M.; Ruokonen, A.; Vääräsmäki, M.; Pouta, A.; Bloigu, A.; Järvelin, M.-R.; Hartikainen, A.-L.; Suvanto, E. Early Pregnancy Reference Intervals of Thyroid Hormone Concentrations in a Thyroid Antibody-Negative Pregnant Population. Thyroid 2011, 21, 291–298. [Google Scholar] [CrossRef]
- Shrier, I.; Platt, R.W. Reducing bias through directed acyclic graphs. BMC. Med. Res. Methodol. 2008, 8, 70. [Google Scholar] [CrossRef]
- Stinca, S.; Andersson, M.; Weibel, S.; Herter-Aeberli, I.; Fingerhut, R.; Gowachirapant, S.; Hess, S.Y.; Jaiswal, N.; Jukić, T.; Kusic, Z.; et al. Dried Blood Spot Thyroglobulin as a Biomarker of Iodine Status in Pregnant Women. J. Clin. Endocrinol. Metab. 2016, 102, 23–32. [Google Scholar] [CrossRef]
- Knudsen, N.; Bülow, I.; Jørgensen, T.; Perrild, H.; Ovesen, L.; Laurberg, P. Serum Tg—A Sensitive Marker of Thyroid Abnormalities and Iodine Deficiency in Epidemiological Studies. J. Clin. Endocrinol. Metab. 2001, 86, 3599–3603. [Google Scholar] [CrossRef]
- Vejbjerg, P.; Knudsen, N.; Perrild, H.; Laurberg, P.; Carlé, A.; Pedersen, I.B.; Rasmussen, L.B.; Ovesen, L.; Jørgensen, T. Thyroglobulin as a marker of iodine nutrition status in the general population. Eur. J. Endocrinol. 2009, 161, 475. [Google Scholar] [CrossRef]
- Mannisto, T.; Mendola, P.; Grewal, J.; Xie, Y.; Chen, Z.; Laughon, S.K. Thyroid diseases and adverse pregnancy outcomes in a contemporary US cohort. J. Clin. Endocrinol. Metab. 2013, 98, 2725–2733. [Google Scholar] [CrossRef]
- Casey, B.M.; Dashe, J.S.; Wells, C.E.; McIntire, D.D.; Byrd, W.; Leveno, K.J.; Cunningham, F.G. Subclinical hypothyroidism and pregnancy outcomes. Obstet. Gynecol. 2005, 105, 239–245. [Google Scholar] [CrossRef]
- Casey, B.M.; Thom, E.A.; Peaceman, A.M.; Varner, M.W.; Sorokin, Y.; Hirtz, D.G.; Reddy, U.M.; Wapner, R.J.; Thorp, J.M.; Saade, G.; et al. Treatment of Subclinical Hypothyroidism or Hypothyroxinemia in Pregnancy. N. Eng. J. Med. 2017, 376, 815–825. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, M.B.; Aeberli, I.; Andersson, M.; Assey, V.; Yorg, J.A.; Jooste, P.; Jukic, T.; Kartono, D.; Kusic, Z.; Pretell, E.; et al. Thyroglobulin is a sensitive measure of both deficient and excess iodine intakes in children and indicates no adverse effects on thyroid function in the UIC range of 100-299 mug/L: A UNICEF/ICCIDD study group report. J. Clin. Endocrinol. Metab. 2013, 98, 1271–1280. [Google Scholar] [CrossRef]
- Ertek, S.; Cicero, A.F.; Caglar, O.; Erdogan, G. Relationship between serum zinc levels, thyroid hormones and thyroid volume following successful iodine supplementation. Hormones (Athens) 2010, 9, 263–268. [Google Scholar] [CrossRef]
- Khatiwada, S.; Lamsal, M.; Gelal, B.; Gautam, S.; Nepal, A.K.; Brodie, D.; Baral, N. Anemia, Iron Deficiency and Iodine Deficiency among Nepalese School Children. Ind. J. Pediatr. 2016, 83, 617–621. [Google Scholar] [CrossRef]
- Pearce, E.N.; Lazarus, J.H.; Moreno-Reyes, R.; Zimmermann, M.B. Consequences of iodine deficiency and excess in pregnant women: An overview of current knowns and unknowns. Am. J. Clin. Nutr. 2016, 104 (Suppl. 3), 918s–923s. [Google Scholar] [CrossRef]
- Markou, K.; Georgopoulos, N.; Kyriazopoulou, V.; Vagenakis, A.G. Iodine-Induced hypothyroidism. Thyroid 2001, 11, 501–510. [Google Scholar] [CrossRef]
- Konig, F.; Andersson, M.; Hotz, K.; Aeberli, I.; Zimmermann, M.B. Ten repeat collections for urinary iodine from spot samples or 24-h samples are needed to reliably estimate individual iodine status in women. J. Nutr. 2011, 141, 2049–2054. [Google Scholar] [CrossRef]
Preterm Birth | Small for Gestational Age | |||||
---|---|---|---|---|---|---|
Characteristic 1 | Controls (n = 242) | Cases (n = 208) | P-value 2 | Controls (n = 241) | Cases (n = 209) | P-value 2 |
Maternal age (years) | 29.5 (5.3) | 29.8 (5.5) | 0.49 | 29.5 (5.3) | 29.7 (5.6) | 0.70 |
Body mass index (kg/m2) | 24.6 (4.4) | 25.3 (6.0) | 0.75 | 24.8 (4.9) | 23.6 (5.1) | <0.001 |
Gravidity | 1.4 (1.8) | 1.4 (1.8) | 0.80 | 1.4 (1.8) | 1.3 (2.2) | 0.03 |
Parity | 1.1 (1.6) | 0.9 (1.4) | 0.19 | 1.1 (1.6) | 0.8 (1.5) | 0.01 |
Gestational age at screening (weeks) | 10.9 (2.9) | 10.8 (3.0) | 0.89 | 10.9 (2.9) | 11.4 (4.0) | 0.12 |
Gestational age at birth (weeks) | 39.7 (1.1) | 34.1 (2.7) | <0.01 | 39.6 (1.5) | 38.4 (2.9) | <0.001 |
Iodide (ng/mL) | 28.1 (28.5) | 32.8 (31.1) | 0.02 | 28.2 (28.3) | 27.7 (28.2) | 0.82 |
Thyroglobulin (ng/mL) | 29.6 (29.5) | 31.5 (63.3) | 0.36 | 29.9 (29.6) | 27.9 (32.9) | 0.05 |
Thyroid stimulating hormone (mIU/L) | 1.2 (0.8) | 1.3 (2.4) | 0.25 | 1.2 (0.85) | 1.4 (2.15) | 0.68 |
Nulliparous | 105 (43.4) | 108 (51.9) | 0.07 | 103 (42.7) | 120 (57.4) | <0.01 |
Smoking status | 0.33 | 0.03 | ||||
Nonsmoker | 200 (82.6) | 164 (78.8) | 199 (82.6) | 155 (74.2) | ||
Smoker | 37 (15.3) | 35 (16.8) | 37 (15.4) | 52 (24.9) | ||
Unknown | 5 (2.1) | 9 (4.3) | 5 (2.1) | 2 (1.0) | ||
Socioeconomic status | 0.32 | 0.11 | ||||
Blue-collar | 30 (12.4) | 31 (14.9) | 31 (12.9) | 30 (14.4) | ||
Lower white-collar | 64 (26.4) | 60 (28.8) | 62 (25.7) | 50 (23.9) | ||
Upper white-collar | 28 (11.6) | 29 (13.9) | 28 (11.6) | 34 (16.3) | ||
Entrepreneur | 10 (4.1) | 4 (1.9) | 10 (4.2) | 3 (1.4) | ||
Student | 25 (10.3) | 12 (5.8) | 24 (10.0) | 10 (4.8) | ||
Other/unknown | 85 (35.1) | 72 (34.6) | 86 (35.7) | 82 (39.2) | ||
Diagnosed thyroid disease | 0 (0) | 7 (3.4) | <0.01 | 0 (0) | 1 (0.5) | 0.28 |
Chronic hypertension | 3 (1.2) | 10 (4.8) | 0.024 | 3 (1.2) | 4 (1.9) | 0.71 |
Preeclampsia | 3 (1.2) | 30 (14.4) | <0.01 | 4 (1.7) | 16 (7.7) | <0.01 |
Gestational hypertension | 6 (2.5) | 11 (5.3) | 0.12 | 6 (2.5) | 11 (5.3) | 0.14 |
Type I or type II diabetes | 1 (0.4) | 13 (6.3) | <0.01 | 2 (0.8) | 0 (0) | 0.50 |
Gestational diabetes | 22 (9.1) | 38 (18.3) | 0.02 | 23 (9.5) | 23 (11.0) | 0.64 |
Marital status | 0.41 | 0.15 | ||||
Married or cohabiting | 215 (88.8) | 176 (84.6) | 211 (87.6) | 177 (84.7) | ||
Single or widowed | 26 (10.7) | 31 (14.9) | 30 (12.5) | 29 (13.9) | ||
Unknown | 1 (0.4) | 1 (0.5) | 0 (0) | 3 (1.4) |
Biomarker | Cases: Controls | Median | Unadjusted OR (95% CI) | Adjusted 3 OR (95% CI) |
---|---|---|---|---|
Iodide (ng/mL) | ||||
Quartile (Q)1 | 38:60 | 3.4 | 0.75 (0.46–1.22) | 0.76 (0.46–1.26) |
Q2 + Q3 | 102:121 | 20.3 | 1 (referent) | 1 (referent) |
Q4 | 68:61 | 59.3 | 1.32 (0.86–2.04) | 1.22 (0.78–1.93) |
Log(iodide) | 208:242 | 1.22 (1.04–1.42) | 1.19 (1.02–1.40) | |
Log(iodide) 4 | 132:210 | 1.29 (1.07–1.57) | 1.29 (1.06–1.58) | |
Thyroglobulin (ng/mL) | ||||
Q1 | 59:59 | 7.7 | 1 (referent) | 1 (referent) |
Q2 | 55:60 | 17.4 | 0.91 (0.55–1.53) | 0.83 (0.49–1.41) |
Q3 | 37:60 | 26.7 | 0.62 (0.36–1.07) | 0.59 (0.34–1.04) |
Q4 | 57:60 | 52.1 | 0.95 (0.57–1.58) | 0.88 (0.51–1.50) |
Log(thyroglobulin) | 208:239 | 0.91 (0.76–1.08) | 0.87 (0.73–1.05) | |
TSH (mIU/L) | ||||
Low | 5:11 | 0.04 | 0.51 (0.18–1.50) | 0.57 (0.19–1.70) |
Normal | 196:217 | 1.04 | 1 (referent) | 1 (referent) |
High | 7:11 | 3.5 | 1.14 (0.32–3.95) | 1.17 (0.31–4.38) |
Log(TSH) | 208:239 | 0.99 (0.82–1.20) | 0.97 (0.80–1.19) |
Biomarker | Cases: Controls | Median | Unadjusted OR (95% CI) | Adjusted 3 OR (95% CI) |
---|---|---|---|---|
Iodide (ng/mL) | ||||
Quartile (Q)1 | 52:60 | 3.3 | 1.05 (0.85–1.14) | 1.01 (0.68–1.79) |
Q2 + Q3 | 99:120 | 19.3 | 1 (referent) | 1 (referent) |
Q4 | 58:61 | 59.3 | 1.15 (0.74–1.80) | 1.28 (0.79–2.08) |
Log(iodide) | 209:241 | 0.99 (0.85–1.14) | 1.01 (0.86–1.18) | |
Log(iodide) 4 | 162:206 | 0.91 (0.77–1.07) | 0.91 (0.76–1.09) | |
Thyroglobulin (ng/mL) | ||||
Q1 | 75:58 | 8.3 | 1 (referent) | 1 (referent) |
Q2 | 50:61 | 17.7 | 0.63 (0.38–1.05) | 0.52 (0.30–0.89) |
Q3 | 36:59 | 28.2 | 0.47 (0.27–0.81) | 0.41 (0.23–0.72) |
Q4 | 45:60 | 52.3 | 0.58 (0.35–0.97) | 0.45 (0.25–0.79) |
Log(thyroglobulin) | 206:238 | 0.84 (0.71–0.99) | 0.78 (0.65–0.94) | |
TSH (mIU/L) | ||||
Low | 10:11 | 0.04 | 1.04 (0.43–2.50) | 1.11 (0.44–2.79) |
Normal | 193:221 | 1.4 | 1 (referent) | 1 (referent) |
High | 5:6 | 4.1 | 0.95 (0.29–3.18) | 0.56 (0.14–2.22) |
Log(TSH) | 208:238 | 1.05 (0.88–1.26) | 1.04 (0.86–1.26) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Purdue-Smithe, A.C.; Männistö, T.; Bell, G.A.; Mumford, S.L.; Liu, A.; Kannan, K.; Kim, U.-J.; Suvanto, E.; Surcel, H.-M.; Gissler, M.; et al. The Joint Role of Thyroid Function and Iodine Status on Risk of Preterm Birth and Small for Gestational Age: A Population-Based Nested Case-Control Study of Finnish Women. Nutrients 2019, 11, 2573. https://doi.org/10.3390/nu11112573
Purdue-Smithe AC, Männistö T, Bell GA, Mumford SL, Liu A, Kannan K, Kim U-J, Suvanto E, Surcel H-M, Gissler M, et al. The Joint Role of Thyroid Function and Iodine Status on Risk of Preterm Birth and Small for Gestational Age: A Population-Based Nested Case-Control Study of Finnish Women. Nutrients. 2019; 11(11):2573. https://doi.org/10.3390/nu11112573
Chicago/Turabian StylePurdue-Smithe, Alexandra C., Tuija Männistö, Griffith A. Bell, Sunni L. Mumford, Aiyi Liu, Kurunthachalam Kannan, Un-Jung Kim, Eila Suvanto, Heljä-Marja Surcel, Mika Gissler, and et al. 2019. "The Joint Role of Thyroid Function and Iodine Status on Risk of Preterm Birth and Small for Gestational Age: A Population-Based Nested Case-Control Study of Finnish Women" Nutrients 11, no. 11: 2573. https://doi.org/10.3390/nu11112573
APA StylePurdue-Smithe, A. C., Männistö, T., Bell, G. A., Mumford, S. L., Liu, A., Kannan, K., Kim, U.-J., Suvanto, E., Surcel, H.-M., Gissler, M., & Mills, J. L. (2019). The Joint Role of Thyroid Function and Iodine Status on Risk of Preterm Birth and Small for Gestational Age: A Population-Based Nested Case-Control Study of Finnish Women. Nutrients, 11(11), 2573. https://doi.org/10.3390/nu11112573