Thyroid Stimulatory Activity of Houttuynia cordata Thunb. Ethanolic Extract in 6-Propyl-Thiouracil-Induced Hypothyroid and STZ Induced Diabetes Rats: In Vivo and In Silico Studies
<p>Bioactive compounds from <span class="html-italic">H. cordata</span> ethanolic extract showed 3D and 2D representation of the interaction of levothyroxine (T4), triiodothyronine (T3), eupatilin, luteolin, isochlorogenic acid C, shikimic acid, quercetin, quercitrin, epicatechin, vitexin, apigenin, rutin, salidroside, kaempferol 7-neohesperidoside, datiscin, afzelin, diosmin, guaijaverin, hyperin, quinic acid, and vanillic acid with thyroid hormone receptor protein (3GWS).</p> "> Figure 2
<p>Radar of bioavailability from <span class="html-italic">H. cordata</span> ethanolic extract compounds. The pink zone representing ideal lipophilicity, flexibility, polarity, solubility, molecular size, and saturation.</p> "> Figure 3
<p>BOILED-EGG model representing the passive gastrointestinal absorption (GIA) and brain penetration of compounds identified from <span class="html-italic">H. cordata</span> ethanolic extract. The white region indicates the probability of high GIA, while the yellow region denotes the probability of blood-brain barrier penetration. Molecules that are neither absorbed nor BBB permeant are depicted as out of range. The blue dot represents substrates of P-glycoprotein (Pgp+), whereas the red dot represents non-substrates of P-glycoprotein (Pgp-).</p> "> Figure 4
<p>Effect of <span class="html-italic">H. cordata</span> ethanolic extract on thyroid hormones among healthy, diabetic, and treated hypothyroid rats. Subfigures label (<b>A</b>–<b>D</b>) represent T3, T4, ratios of T4/T3, and TSH levels respectively. Values are expressed as mean ± SD, (n = 8). HC (Healthy control); HHCEE (Healthy treated group); HTC (Hypothyroid control); DHTC (Diabetic coupled with hypothyroid control group); HTD (Hypothyroid drug group); HTHCEE (Hypothyroid treated group); DC (Diabetic control); DHCEE (Diabetic treated group); DD (Diabetic drug group); * <span class="html-italic">p</span> <0.05, ** <span class="html-italic">p</span> <0.01, *** <span class="html-italic">p</span> <0.001, ns = non-significant.</p> "> Figure 5
<p>Percentage changes of thyroid hormones among healthy, diabetic, and hypothyroid rats. Here, HC (Healthy control); HHCEE (Healthy treated group); HTC (Hypothyroid control); DHTC (Diabetic coupled with hypothyroid control group); HTD (Hypothyroid drug group); HTHCEE (Hypothyroid treated group); DC (Diabetic control); DHCEE (Diabetic treated group); DD (Diabetic drug group).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Collection and Preparation of H. cordata Extract
2.2. Chemicals and Reagents
2.3. In Silico Analysis
2.4. Animals
2.5. Diet for the Animals
2.6. Experimental Design
- Group 1: Untreated healthy control rats (HC)
- Group 2: Untreated hypothyroid control rats (0.05% 6-propyl-2-thiouracil was given in drinking water for 4 weeks) (HTC)
- Group 3: Untreated diabetic control rats (65 mg/kg b.w. streptozotocin injected intraperitoneally) (DC)
- Group 4: Untreated diabetic with hypothyroid control rats (DHTC)
- Group 5: Healthy rats treated with HCEE (500 mg/kg/day in 1 mL water) (HHCEE)
- Group 6: Hypothyroid rats treated with HCEE (500 mg/kg/day in 1 mL water) (HTHCEE)
- Group 7: Hypothyroid rats treated with levothyroxine (50 mg/kg b.w./day in 1 mL water) (HTD)
- Group 8: Diabetic rats treated with HCEE (500 mg/kg/day in 1 mL water) (DHCEE)
- Group 9: Diabetic rats treated with glibenclamide (5 mg/kg/day in 1 mL water) (DD)
2.7. Induction of Hypothyroidism and Diabetes in Rats
2.8. Blood Collection and Biochemical Parameters Determination
2.9. Statistical Analysis
3. Results
3.1. Molecular Docking
3.1.1. TRβ1 (PDB:3GWS)
3.1.2. The ADMET Study
3.2. Effect of H. cordata Ethanolic Extract on Serum Thyroid Hormones (T3, T4 and TSH)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hage, M.; Zantout, M.S.; Azar, S.T. Thyroid disorders and diabetes mellitus. J. Thyroid Res. 2011, 2011, 439463. [Google Scholar] [CrossRef] [PubMed]
- Biondi, B.; Kahaly, G.J.; Robertson, R.P. Thyroid dysfunction and diabetes mellitus: Two closely associated disorders. Endocr. Rev. 2019, 40, 789–824. [Google Scholar] [CrossRef]
- Brenta, G. Why can insulin resistance be a natural consequence of thyroid dysfunction? J. Thyroid Res. 2011, 2011, 152850. [Google Scholar] [CrossRef]
- Wang, C. The Relationship between Type 2 Diabetes Mellitus and Related Thyroid Diseases. J. Diabetes Res. 2013, 2013, 390534. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kar, A.; Mahar, D.; Biswas, S.; Chakraborty, D.; Efferth, T.; Panda, S. Phytochemical profiling of polyphenols and thyroid stimulatory activity of Ficus religiosa leaf extract in 6-propyl-thiouracil-induced hypothyroid rats. J. Ethnopharmacol. 2023, 313, 116479. [Google Scholar] [CrossRef]
- Taylor, P.N.; Albrecht, D.; Scholz, A.; Gutierrez-Buey, G.; Lazarus, J.H.; Dayan, C.M.; Okosieme, O.E. Global epidemiology of hyperthyroidism and hypothyroidism. Nat. Rev. Endocrinol. 2018, 14, 301–316. [Google Scholar] [CrossRef] [PubMed]
- Chaker, L.; Bianco, A.C.; Jonklaas, J.; Peeters, R.P. Hypothyroidism and hypertension: Fact or myth?–Authors’ reply. Lancet 2018, 391, 30. [Google Scholar] [CrossRef]
- Eom, Y.S.; Wilson, J.R.; Bernet, V.J. Links between thyroid disorders and glucose homeostasis. Diabetes Metab. J. 2022, 46, 239. [Google Scholar] [CrossRef]
- Ashwini, S.; Bobby, Z.; Joseph, M. Mild hypothyroidism improves glucose tolerance in experimental type 2 diabetes. Chem.-Biol. Interact. 2015, 235, 47–55. [Google Scholar] [CrossRef]
- Petrulea, M.; Muresan, A.; Duncea, I. Oxidative stress and antioxidant status in hypo-and hyperthyroidism. Antioxid. Enzym. 2012, 8, 197–236. [Google Scholar] [CrossRef]
- Macvanin, M.T.; Gluvic, Z.; Zafirovic, S.; Gao, X.; Essack, M.; Isenovic, E.R. The protective role of nutritional antioxidants against oxidative stress in thyroid disorders. Front. Endocrinol. 2023, 13, 1092837. [Google Scholar] [CrossRef] [PubMed]
- Marwaha, R.K.; Tandon, N.; Garg, M.K.; Kanwar, R.; Sastry, A.; Narang, A.; Bhadra, K. Dyslipidemia in subclinical hypothyroidism in an Indian population. Clin. Biochem. 2011, 44, 1214–1217. [Google Scholar] [CrossRef]
- Peppa, M.; Betsi, G.; Dimitriadis, G. Lipid abnormalities and cardiometabolic risk in patients with overt and subclinical thyroid disease. J. Lipids 2011, 2011, 575840. [Google Scholar] [CrossRef]
- Monzani, F.; Di Bello, V.; Caraccio, N.; Bertini, A.; Giorgi, D.; Giusti, C.; Ferrannini, E. Effect of levothyroxine on cardiac function and structure in subclinical hypothyroidism: A double blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 2001, 86, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.S.; Salauddin, H.M.; Rahman, M.; Muhsin, M.M.; Rouf, S.M. Nutritional composition and antidiabetic effect of germinated endosperm (Borassus flabellifer), tuber (Amorphophallus paeoniifolius) and their combined impact on rats. Biochem. Biophys. Rep. 2021, 25, 100917. [Google Scholar] [CrossRef]
- Pistollato, F.; Masias, M.; Agudo, P.; Giampieri, F.; Battino, M. Effects of phytochemicals on thyroid function and their possible role in thyroid disease. Ann. N. Y. Acad. Sci. 2019, 1443, 3–19. [Google Scholar] [CrossRef]
- Marini, H.; Polito, F.; Adamo, E.B.; Bitto, A.; Squadrito, F.; Benvenga, S. Update on genistein and thyroid: An overall message of safety. Front. Endocrinol. 2012, 3, 94. [Google Scholar] [CrossRef]
- Wei, P.; Luo, Q.; Hou, Y.; Zhao, F.; Li, F.; Meng, Q. Houttuynia Cordata Thunb.: A comprehensive review of traditional applications, phytochemistry, pharmacology and safety. Phytomedicine 2023, 123, 155195. [Google Scholar] [CrossRef] [PubMed]
- Laldinsangi, C. The therapeutic potential of Houttuynia cordata: A current review. Heliyon 2022, 24, e10386. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Koppula, S. Houttuynia cordata attenuates lipid accumulation via activation of AMP-activated protein kinase signaling pathway in HepG2 cells. Am. J. Chin. Med. 2014, 42, 651–664. [Google Scholar] [CrossRef]
- Sakuludomkan, W.; Yeewa, R.; Subhawa, S.; Khanaree, C.; Bonness, A.I.; Chewonarin, T. Effects of fermented Houttuynia cordata thunb. on diabetic rats induced by a high-fat diet with streptozotocin and on insulin resistance in 3T3-L1 adipocytes. J. Nutr. Metab. 2021, 2021, 6936025. [Google Scholar] [CrossRef] [PubMed]
- Ashwini, S.; Bobby, Z.; Sridhar, M.G.; Cleetus, C.C. Insulin plant (Costus pictus) extract restores thyroid hormone levels in experimental hypothyroidism. Pharmacogn. Res. 2017, 9, 51. [Google Scholar] [CrossRef]
- Alakurtti, S.; Makela, T.; Koskimies, S.; Yli-Kauhaluoma, J. Pharmacological properties of the ubiquitous natural product betulin. Eur. J. Pharm. Sci. 2006, 29, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kahksha; Alam, O.; Al-Keridis, L.A.; Khan, J.; Naaz, S.; Alam, A.; Ashraf, S.A.; Alshammari, N.; Adnan, M.; Beg, M.A. Evaluation of Antidiabetic Effect of PKeolin in STZ Induced Diabetic Rats: Molecular Docking, Molecular Dynamics, In Vitro and In Vivo Studies. J. Funct. Biomater. 2023, 14, 126. [Google Scholar] [CrossRef]
- Rahman, S.S.; Chowdhury, S.N.; Salauddin, M.; Hosen, Z.; Karim, M.R.; Rouf, S.M. Comparative studies on nutrient content and antidiabetic effects of sugar palm (Borassus flabellifer) fruit pulp & endosperm on rats. Endocr. Metab. Sci. 2021, 5, 100113. [Google Scholar] [CrossRef]
- Pan, T.; Zhong, M.; Zhong, X.; Zhang, Y.; Zhu, D. Levothyroxine replacement therapy with Vitamin E supplementation prevents oxidative stress and cognitive deficit in experimental hypothyroidism. Endocrine 2013, 43, 434–439. [Google Scholar] [CrossRef]
- Cheserek, M.J.; Wu, G.R.; Ntazinda, A.; Shi, Y.H.; Shen, L.Y.; Le, G.W. Association Between Thyroid Hormones, Lipids and Oxidative Stress Markers in Subclinical Hypothyroidism. J. Med. Biochem. 2015, 34, 323–331. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Latifi, E.; Mohammadpour, A.A.; Fathi, B.; Nourani, H. Antidiabetic and antihyperlipidemic effects of ethanolic Ferula assa-foetida oleo-gum-resin extract in streptozotocin-induced diabetic wistar rats. Biomed. Pharmacother. 2019, 110, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.S.; Reja, M.M.; Islam, M.R.; Islam, M.M.; Rouf, S.M.; Rahman, M.H. Proximate nutrient analysis of elephant apple (Dillenia indica) fruit and its hypoglycemic, and hypolipidemic potentials in alloxan-induced diabetic rats. Food Humanit. 2023, 1, 1355–1361. [Google Scholar] [CrossRef]
- Mohammadi, M.M.; Saeb, M.; Nazifi, S. Experimental hypothyroidism in adult male rats: The effects of Artemisia dracunculus aqueous extract on serum thyroid hormones, lipid profile, leptin, adiponectin, and antioxidant factors. Comp. Clin. Pathol. 2020, 29, 485–494. [Google Scholar] [CrossRef]
- Lazcano, I.; Hernández-Puga, G.; Robles, J.P.; Orozco, A. Alternative ligands for thyroid hormone receptors. Mol. Cell. Endocrinol. 2019, 493, 110448. [Google Scholar] [CrossRef]
- Rahman, S.S.; Klamrak, A.; Nopkuesuk, N.; Nabnueangsap, J.; Janpan, P.; Choowongkomon, K.; Daduang, J.; Daduang, S. Impacts of Plu kaow (Houttuynia cordata Thunb.) Ethanolic Extract on Diabetes and Dyslipidemia in STZ Induced Diabetic Rats: Phytochemical Profiling, Cheminformatics Analyses, and Molecular Docking Studies. Antioxidants 2024, 13, 1064. [Google Scholar] [CrossRef]
- Dev, N.; Sankar, J.; Vinay, M.V. Functions of Thyroid Hormones. In Thyroid Disord; Imam, S., Ahmad, S., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Pokharkar, O.; Lakshmanan, H.; Zyryanov, G.V.; Tsurkan, M.V. Antiviral Potential of Antillogorgia americana and elisabethae Natural Products against nsp16–nsp10 Complex, nsp13, and nsp14 Proteins of SARS-CoV-2: An In Silico Investigation. Microbiol. Res. 2023, 14, 993–1019. [Google Scholar] [CrossRef]
- Roskoski, R., Jr. Rule of five violations among the FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res. 2023, 191, 106774. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Pakyntein, C.L.; Thabah, D.; Rai, A.K.; Syiem, D. Identification of phytoconstituents from Houttuynia cordata Thunb. as dipeptidyl peptidase-IV and sodium glucose cotransporter 2 inhibitors guided by molecular docking. Phytomedicine Plus 2024, 4, 100590. [Google Scholar] [CrossRef]
- Newby, D.; Freitas, A.A.; Ghafourian, T. Decision tress to characterize the roles of permeability and solubility on the prediction of oral absorption. Eur. J. Med. Chem. 2015, 90, 751–765. [Google Scholar] [CrossRef]
- Mishra, S.; Dahima, R. In vitro ADME studies of TUG-891, a GPR-120 inhibitor using SWISS ADME predictor. J. Drug Deliv. Ther. 2019, 9, 366–369. [Google Scholar] [CrossRef]
- Kar, A.; Panda, S.; Singh, M.; Biswas, S. Regulation of PTU-induced hypothyroidism in rats by caffeic acid primarily by activating thyrotropin receptors and by inhibiting oxidative stress. Phytomedicine Plus 2022, 2, 100298. [Google Scholar] [CrossRef]
- Mondal, S.; Raja, K.; Schweizer, U.; Mugesh, G. Chemistry and biology in the biosynthesis and action of thyroid hormones. Angew. Chem. Int. Ed. 2016, 55, 7606–7630. [Google Scholar] [CrossRef]
- Paul Friedman, K.; Watt, E.D.; Hornung, M.W.; Hedge, J.M.; Judson, R.S.; Crofton, K.M.; Houck, K.A.; Simmons, S.O. Tiered high-throughput screening approach to identify thyroperoxidase inhibitors within the ToxCast phase I and II chemical libraries. Toxicol. Sci. 2016, 151, 160–180. [Google Scholar] [CrossRef]
- Shingnaisui, K.; Dey, T.; Manna, P.; Kalita, J. Therapeutic potentials of Houttuynia cordata Thunb. against inflammation and oxidative stress: A review. J. Ethnopharmacol. 2018, 220, 35–43. [Google Scholar] [CrossRef]
- Singh, S.; Panda, V.; Sudhamani, S.; Dande, P. Protective effect of a polyherbal bioactive fraction in propylthiouracil-induced thyroid toxicity in ratsby modulation of the hypothalamic–pituitary–thyroid and hypothalamic–pituitary–adrenal axes. Toxicol. Rep. 2020, 7, 730–742. [Google Scholar] [CrossRef] [PubMed]
- Takada, Y.; Aggarwal, B.B. Betulinic acid suppresses carcinogen-induced NF-κB activation through inhibition of IκBα kinase and p65 phosphorylation: Abrogation of cyclooxygenase-2 and matrix metalloprotease-9. J. Immunol. 2003, 171, 3278–3286. [Google Scholar] [CrossRef]
- Afzal, M.; Kazmi, I.; Semwal, S.; Al-Abbasi, F.A.; Anwar, F. Therapeutic exploration of betulinic acid in chemically induced hypothyroidism. Mol. Cell Biochem. 2014, 386, 27–34. [Google Scholar] [CrossRef]
- Chun, J.M.; Nho, K.J.; Kim, H.S.; Lee, A.Y.; Moon, B.C.; Kim, H.K. An ethyl acetate fraction derived from Houttuynia cordata extract inhibits the production of inflammatory markers by suppressing NF-кB and MAPK activation in lipopolysaccharide-stimulated RAW 264.7 macrophages. BMC Complement. Altern. Med. 2014, 14, 234. [Google Scholar] [CrossRef]
- Wang, Y.; Zhan, Y.; Ji, C.; Shi, C.; Han, J. Houttuynia cordata Thunb repairs steroid-induced avascular necrosis of the femoral head through regulating NF-κB signaling pathway. Toxicon 2023, 233, 107270. [Google Scholar] [CrossRef]
- Tajmiri, S.; Farhangi, M.A.; Dehghan, P. Nigella sativa treatment and serum concentrations of thyroid hormones, transforming growth factor β (TGF-β) and interleukin 23 (IL-23) in patients with Hashimoto’s Thyroiditis. Eur. J. Integr. Med. 2016, 8, 576–580. [Google Scholar] [CrossRef]
- Singh, A.; Gibert, Y.; Dwyer, K.M. The adenosine, adrenergic and opioid pathways in the regulation of insulin secretion, beta cell proliferation and regeneration. Pancreatology 2018, 18, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, O.M.; Gabar, M.A.; Ali, T.M. Impacts of the coexistence of diabetes and hypothyroidism on body weight gain, leptin and various metabolic aspects in albino rats. J. Diabetes Its Complicat. 2012, 26, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Cettour-Rose, P.; Theander-Carrillo, C.; Asensio, C.; Klein, M.; Visser, T.J.; Burger, A.G.; Rohner-Jeanrenaud, F. Hypothyroidism in rats decreases peripheral glucose utilisation, a defect partially corrected by central leptin infusion. Diabetologia 2005, 48, 624–633. [Google Scholar] [CrossRef]
Protein | PDB ID | Compounds | Chemical Bond Interaction (Å) | Core Amino Acid on Binding Site | |||
---|---|---|---|---|---|---|---|
Binding Energy (kcal/mol) | H-Bonds with Bond Distances (Å) ● Conventional H-Bond ● Carbon H-Bond ● π-Donor H-Bond | Charge ● π-Cation ● π-Anion ● Halogen (Cl, Br, I) | Hydrophobic Interactions ● Alkyl ● π-Sigma ● π-alkyl ● π-Sulfur ● π-π Stacked | ||||
TRβ1 | 3GWS | Isochlorogenic acid C | −10.0 | ● Gly344 (1.96), Arg316 (1.89), Arg320 (2.68), Ser314 (3.05) | ● Ala317 (4.69), Leu330 (4.24), ● Arg316 (3.78), Ala317 (5.27), Leu346 (4.90) ● Met442 (4.49) | Arg320, Arg282 (VdW), Asn331 (VdW) | |
Eupatilin | −9.2 | ● Arg282 (4.46, 5.83), Phe272 (5.16) ● Arg316 (3.93), Asn233 (5.52), Ala279 (4.08) ● Asn331 (5.37) | ● Leu330 (4.39), Ile276 (6.11) ● Met313 (4.69) ● Leu346 (5.24), His435 (6.97), Phe455 (6.69), Ile276 (5.60), Arg316 (4.08), Val283 (5.22) ● Ala317 (4.67, 6.31), Leu330 (5.29), Arg316 (6.27) | Arg282, Arg320, Asn331, His435 | |||
Luteolin | −9.1 | ● Gly344 (4.49), Leu346 (3.48) | ● Leu330 (4.48) ● Phe272 (4.52) ● Met442 (9.03) ● Ala317 (7.03), Met313 (5.80), Ile276 (5.90), Leu330 (5.90) | Asn331 | |||
Quercetin | −9.0 | ● Leu346 (3.63), Gly344 (4.17), Leu341 (4.11) | ● Leu330 (4.72) ● Phe272 (4.77) ● Ala317 (6.31), Ile276 (6.54), Met313 (5.32), Leu330 (6.16), Leu346 (5.15) ● Met442 (9.00) | Asn331 | |||
Quercitrin | −9.0 | ● His435 (4.56), Met313 (3.84), Asn331 (3.16) ● Ser314 (3.12) | ● Ile276 (5.06, 6.46) ● Ala279 (4.80), Ile276 (4.23) ● Ala317 (6.41), Ile353 (6.64), Leu341 (5.96), Leu330 (5.76), Leu346 (5.73, 4.65) | Arg282, Asn331, His435 | |||
Epicatechin | −8.8 | ● Gly344 (1.98), Asn331 (2.39) | ● Ala279 (4.87), Ile276 (5.33), Leu346 (4.99, 5.68), Phe272 (4.65) ● Phe455 (5.99), Phe272 (4.61) ● Leu380 (3.98) ● Met442 (4.90) | Asn331, Arg282 | |||
Apigenin | −8.8 | ● Met442 (4.77), Asn331 (4.21) ● Gly345 (3.57) | ● Leu330 (4.53) ● Ala317 (6.98), Met313 (5.71), Ile276 (5.89), Leu346 (5.46), Leu330 (5.94) ● Phe272 (4.44) | Arg282, Asn331 | |||
Rutin | −8.0 | ● Phe459 (6.12), Val458 (5.20), Pro384 (2.94, 4.51), Ala436 (3.66) | ● Leu440 (4.85) ● Ala436 (5.43), Pro384 (5.33) ● Phe272 (5.70) ● Arg383 | ||||
Salidroside | −8.0 | ● Gly344 (3.76), Ile275 (3.68) | ● Leu346 (4.82) | His435, Asn331 | |||
Kaempferol 7-neohesperidoside | −7.9 | ● Glu311 (4.92), Asp382 (3.93), Gly307 (3.51) ● Arg383 (3.75) | ● Arg429 (4.32) ● Pro384 (4.41, 4.78), Ile303 (4.52, 4.86) ● Lys306 | His435 | |||
Datiscin | −7.9 | ● Gly344 (4.00) Asn331 (3.91) Ser314 (3.18) ● His435 (5.79), Asn331 (5.46) | ● Phe269 (4.74), Phe451 (5.57), Met442 (6.04) ● Phe455 (5.16) ● Leu341 (6.86), Leu330 (5.28, 4.79), Ile353 (6.49), Met313 (3.77), Ala317 (4.55, 3.79, 5.57), Ala279 (6.29, 5.39), Arg316 (5.72) ● Arg320 | His435, Arg282, Arg320 | |||
Afzelin | −7.8 | ● Lys306 (3.93), Asp382 (3.71) ● Pro384 (4.95) | ● Arg383 (4.01, 5.32), Glu311 (7.64) | ● Met310 (4.91) ● Arg429 (6.11), Pro384 (4.69) | His435 | ||
Diosmin | −7.8 | ● Phe459 (4.11) | ● Arg383 (4.69), Glu311 (7.96, 7.96) | ● Arg429 (5.41), Met430 (5.75), Ala436 (4.04), Leu440 (4.47) ● Ala433 (5.42, 6.72), Arg429 (5.18) ● Lys306 | |||
Guaijaverin | −7.8 | ● Val458 (5.94) | ● Arg383 (4.19, 5.39) | ● Pro384 (4.64) ● Ala433 (5.32), Arg429 (6.29), Gly307 (4.73) | His435 | ||
Vitexin | −7.5 | ● Glu311 (5.22), Ile303 (4.28), Gly307 (3.77), Pro384 (3.37), Ala436 (2.78) ● Arg383 (3.81), Gly307 (3.69) | ● Glu460 (5.68, 6.64) | ● Ala436 (5.80), Pro384 (5.49) | - | ||
Hyperin | −6.2 | ● Gly344 (4.62), Asn331 (3.34), Ser314 (2.87) | ● Met442 (7.49) ● Phe272 (4.92), Phe455 (7.07) ● Leu346 (7.21), Ala279 (6.96), Ile276 (3.84, 4.39, 5.98), Leu330 (5.43), Ile275 (5.77) | Asn331 | |||
Shikimic acid | −6.2 | ● Arg320 (4.10, 4.34), Asn331 (4.10, 4.21), Thr329 (4.20) ● Met313 (3.93), Asn331 (4.87) | Arg282, Arg320, Asn331 | ||||
Quinic acid | −6.0 | ● Arg316 (4.91), Met313 (4.80) | ● Asn331, Arg282 | Arg282, Asn331, His435 | |||
Vanillic acid | −5.2 | ● Arg282 (4.58) ● Ala279 (3.87), Asn (4.83) | ● Val283 (5.25), Met313 (4.06) ● Ala279 (4.41), Ala317 (5.86), Arg316 (4.73), Leu330 (6.32) ● Met313 (4.79) | Arg282, Arg320, Asn331 | |||
Levothyroxine (T4) | −7.3 | ● Phe272 (4.92), Gly344 (4.80) | ● Leu330 (4.48), Leu346 (5.33) ● Phe459 (6.17), Phe455 (6.01), Met310 (4.56), His435 (5.67), Ile275 (6.08), Ile276 (5.37, 4.46), Leu330 (4.87, 5.25), Ile353 (4.92) ● Ile276 (4.78), Ala279 (5.46), Leu341 (5.62), Ala317 (5.25), Met313 (4.56, 5.65) ● Asn331, Arg282 | Arg282, Arg320, Asn331, His435 | |||
Triiodothyronine (T3) | −9.0 | ● Arg282 (4.91) ● Arg316 (3.96) | ● Phe272 (4.88), Gly344 (5.07) | ● Leu330 (4.79), Leu346 (5.33) ● Met310 (7.09) ● Ile276 (6.07), Ala317 (5.47), Met313 (4.28), Ala279 (5.26) ● Asn331 | Arg282, Arg320, Asn331, His435 |
Properties | Physicochemical Properties | Lipophilicity | Water Solubility | Pharmacokinetics | Druglikeness | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Molecular wt. (g/mol) | Rotatable Bond | H-Bond Acceptors | H-Bond Donors | TPSA (Ả2) | XlogP3 | WLogP | ESOL LogS | ESOL Class | Ali LogS | Ali Class | Silicos-IT LogS | Silicos-IT Class | GI Absorption | Blood Brain Barrier | Lipinski’s Violation | Bioavailability Score | |
Levothyroxin | 776.87 | 5 | 5 | 3 | 92.78 | 2.36 | 4.56 | −6.18 | PS | −3.95 | S | −6.79 | PS | High | No | Yes; 1 | 0.55 |
Triiodothyronine (T3) | 650.97 | 5 | 5 | 3 | 92.78 | 1.71 | 3.95 | −5.01 | MS | −3.27 | S | −6.03 | PS | High | No | Yes; 1 | 0.55 |
Eupatilin | 344.32 | 4 | 7 | 2 | 98.36 | 3.40 | 2.90 | −4.33 | MS | −5.14 | MS | −5.33 | MS | High | No | Yes; 0 | 0.55 |
Luteolin | 286.24 | 1 | 6 | 4 | 111.13 | 2.53 | 2.28 | −3.71 | S | −4.51 | MS | −3.82 | S | High | No | Yes; 0 | 0.55 |
Quercetin | 302.24 | 1 | 7 | 5 | 131.36 | 1.54 | 1.99 | −3.16 | S | −3.91 | S | −3.24 | S | High | No | Yes; 0 | 0.55 |
Quercitrin | 448.38 | 3 | 11 | 7 | 190.28 | 0.86 | 0.49 | −3.33 | S | −4.44 | MS | −2.08 | S | Low | No | No; 2 | 0.17 |
Epicatechin | 290.27 | 1 | 6 | 5 | 110.38 | 0.36 | 1.22 | −2.22 | S | −2.24 | S | −2.14 | S | High | No | Yes; 0 | 0.55 |
Apigenin | 270.24 | 1 | 5 | 3 | 90.90 | 3.02 | 2.58 | −3.94 | S | −4.59 | MS | −4.40 | MS | High | No | Yes; 0 | 0.55 |
Rutin | 610.52 | 6 | 16 | 10 | 269.43 | −0.33 | −1.69 | −3.30 | S | −4.87 | MS | −0.29 | S | Low | No | No; 3 | 0.17 |
Salidroside | 300.30 | 5 | 7 | 5 | 119.61 | −1.05 | −1.25 | −0.92 | VS | −0.97 | VS | −0.44 | S | High | No | Yes; 0 | 0.55 |
Isochlorogenic acid C | 516.45 | 9 | 12 | 7 | 211.28 | 1.52 | 0.81 | −3.65 | S | −5.57 | MS | −1.16 | S | Low | No | No; 3 | 0.11 |
Datiscin | 594.52 | 6 | 15 | 9 | 249.20 | −0.93 | −1.39 | −2.83 | S | −3.82 | S | −0.88 | S | Low | No | No; 3 | 0.17 |
Afzelin | 432.38 | 3 | 10 | 6 | 170.05 | 1.22 | 0.78 | −3.47 | S | −4.39 | MS | −2.67 | S | Low | No | Yes; 1 | 0.55 |
Diosmin | 608.54 | 7 | 15 | 8 | 238.20 | 0.14 | −1.09 | −3.51 | S | −4.70 | MS | −1.57 | S | Low | No | No; 3 | 0.17 |
Guaijaverin | 434.35 | 3 | 11 | 7 | 190.28 | 0.43 | 0.10 | −2.99 | S | −3.99 | S | −1.94 | S | Low | No | No; 2 | 0.17 |
Vitexin | 432.38 | 3 | 10 | 7 | 181.05 | 0.21 | −0.23 | −2.84 | S | −3.57 | S | −2.38 | S | Low | No | Yes; 1 | 0.55 |
Hyperin | 464.38 | 4 | 12 | 8 | 210.51 | 0.36 | −0.54 | −3.04 | S | −4.35 | MS | −1.51 | S | Low | No | No; 2 | 0.17 |
Shikimic acid | 174.15 | 1 | 5 | 4 | 97.99 | −1.72 | −1.52 | 0.23 | HS | 0.18 | HS | 1.75 | S | High | No | Yes; 0 | 0.56 |
Quinic acid | 192.17 | 1 | 6 | 5 | 118.22 | −2.37 | −2.32 | 0.53 | HS | 0.43 | HS | 2.08 | S | Low | No | Yes; 0 | 0.56 |
Vanillic acid | 168.15 | 2 | 4 | 2 | 66.76 | 1.43 | 1.10 | −2.02 | S | −2.44 | S | −1.32 | S | High | No | Yes; 0 | 0.85 |
Kaempferol 7-neohesperidoside | 594.52 | 6 | 15 | 9 | 249.20 | −0.31 | −1.39 | −3.22 | S | −4.46 | MS | −0.88 | S | Low | No | No; 3 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, S.S.; Klamrak, A.; Mahat, N.C.; Rahat, R.H.; Nopkuesuk, N.; Kamruzzaman, M.; Janpan, P.; Saengkun, Y.; Nabnueangsap, J.; Soonkum, T.; et al. Thyroid Stimulatory Activity of Houttuynia cordata Thunb. Ethanolic Extract in 6-Propyl-Thiouracil-Induced Hypothyroid and STZ Induced Diabetes Rats: In Vivo and In Silico Studies. Nutrients 2025, 17, 594. https://doi.org/10.3390/nu17030594
Rahman SS, Klamrak A, Mahat NC, Rahat RH, Nopkuesuk N, Kamruzzaman M, Janpan P, Saengkun Y, Nabnueangsap J, Soonkum T, et al. Thyroid Stimulatory Activity of Houttuynia cordata Thunb. Ethanolic Extract in 6-Propyl-Thiouracil-Induced Hypothyroid and STZ Induced Diabetes Rats: In Vivo and In Silico Studies. Nutrients. 2025; 17(3):594. https://doi.org/10.3390/nu17030594
Chicago/Turabian StyleRahman, Shaikh Shahinur, Anuwatchakij Klamrak, Nirmal Chandra Mahat, Rakibul Hasan Rahat, Napapuch Nopkuesuk, Md Kamruzzaman, Piyapon Janpan, Yutthakan Saengkun, Jaran Nabnueangsap, Thananya Soonkum, and et al. 2025. "Thyroid Stimulatory Activity of Houttuynia cordata Thunb. Ethanolic Extract in 6-Propyl-Thiouracil-Induced Hypothyroid and STZ Induced Diabetes Rats: In Vivo and In Silico Studies" Nutrients 17, no. 3: 594. https://doi.org/10.3390/nu17030594
APA StyleRahman, S. S., Klamrak, A., Mahat, N. C., Rahat, R. H., Nopkuesuk, N., Kamruzzaman, M., Janpan, P., Saengkun, Y., Nabnueangsap, J., Soonkum, T., Sangkudruea, P., Jangpromma, N., Kulchat, S., Patramanon, R., Chaveerach, A., Daduang, J., & Daduang, S. (2025). Thyroid Stimulatory Activity of Houttuynia cordata Thunb. Ethanolic Extract in 6-Propyl-Thiouracil-Induced Hypothyroid and STZ Induced Diabetes Rats: In Vivo and In Silico Studies. Nutrients, 17(3), 594. https://doi.org/10.3390/nu17030594