Molecular Mechanisms and Therapeutic Potential of Mulberry Fruit Extract in High-Fat Diet-Induced Male Reproductive Dysfunction: A Comprehensive Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Synthesis
3. Results and Discussion
3.1. Effects of High-Fat Diet on Male Reproductive Health
Finding Category | Specific Finding | Magnitude of Effect | Supporting Evidence | Method of Assessment | Primary Reference | Confirming Studies |
---|---|---|---|---|---|---|
Structural Changes | ||||||
Seminiferous Tubules | Diameter reduction | −24.8 ± 3.2% | Tissue atrophy | Histological analysis | Fan et al., 2015 [11] | Ghanayem et al., 2010 [26]; Palmer et al., 2012 [10] |
Epithelial disruption | Significant alteration | Junction dysfunction | Electron microscopy | Ghanayem et al., 2010 [26] | Fan et al., 2015 [11] | |
Blood–Testis Barrier | Increased permeability | 45.60% | Tight junction disruption | Tracer studies | Fan et al., 2015 [11] | Aitken et al., 2014 [32] |
Junction disruption | Significant damage | Protein expression loss | Western blot | Fan et al., 2015 [11] | Luo et al., 2020 [27] | |
Leydig Cells | Population decrease | −32.4 ± 4.1% | Cell death/dysfunction | Cell counting | Luo et al., 2020 [27] | Teerds et al., 2011 [15] |
Testosterone production | Significant reduction | Enzyme inhibition | Hormone assays | Teerds et al., 2011 [15] | Landry et al., 2013 [33] | |
Sperm membranes | Altered fatty acid composition in | Significant increase in saturated fatty acids | Membrane dysfunction | Lipid analysis | Skoracka et al. 2020 [9] | Palmer et al. 2012 [10] |
Sperm Parameters | ||||||
Sperm Concentration | Total count reduction | −42.3 ± 5.1% | Reduced production | Sperm analysis | Belloc et al., 2014 [30] | Sermondade et al., 2013 [29] |
Daily production | −38.6 ± 4.3% | Spermatogenic failure | Quantitative analysis | Salas-Huetos et al., 2021 [6] | Wang et al., 2024 [5] | |
Sperm Motility | Progressive motility decrease | −38.6 ± 4.3% | Energy deficit | CASA analysis | Sermondade et al., 2013 [29] | Belloc et al., 2014 [30] |
Velocity | Significant decrease | Mitochondrial dysfunction | Tracking analysis | Aitken et al., 2014 [32] | Rato et al., 2012 [12] | |
DNA Integrity | Fragmentation | 78.50% | Oxidative damage | SCSA/TUNEL | Aitken et al., 2014 [32] | Aitken & De Iuliis, 2010 [31] |
Chromatin quality | Significant decrease | Packaging defects | CMA3 staining | Ramaraju et al., 2018 [7] | Fullston et al., 2013 [28] | |
Molecular Changes | ||||||
Oxidative Stress | ROS production increase | 270% | Mitochondrial dysfunction | DHE fluorescence | Du Plessis et al., 2010 [14] | Aitken et al., 2014 [32] |
Lipid peroxidation | 245% | Membrane damage | MDA assay | Suleiman et al., 2020 [35] | Lim et al., 2013 [34] | |
Inflammatory Markers | TNF-α elevation | 280% | NF-κB activation | ELISA | Lim et al., 2013 [34] | Suleiman et al., 2020 [35] |
IL-6 increase | 240% | Inflammatory cascade | qPCR | Lim et al., 2013 [34] | Aitken et al., 2014 [32] | |
ATP Production | Energy deficit | −38% | Metabolic disruption | Luminescence | Rato et al., 2012 [12] | Luo et al., 2020 [27] |
Glucose Metabolism | Sertoli cell metabolic disruption | −42% glucose uptake | Insulin resistance | Uptake assay | Palmer et al., 2012 [10] | Skoracka et al. 2020 [9]; Rato et al., 2012 [12] |
Genetic/Epigenetic Changes | ||||||
Spermatogenesis Markers | BOULE, DAZ, DAZL decrease | Significant reduction | Gene expression | RT-PCR | Fullston et al., 2013 [28] | Donkin et al., 2016 [36] |
Epigenetic Profiles | DNA methylation changes | Substantial modification | Methylation patterns | Methylation analysis | Donkin et al., 2016 [36] | Fullston et al., 2013 [28] |
Transgenerational effects | Documented impact | Offspring analysis | Multi-generation study | Fullston et al., 2013 [28] | Donkin et al., 2016 [36] | |
Endocrine Effects | ||||||
HPG Axis | Dysfunction, Disrupted testosterone/estradiol ratio (Hormonal Balance) | Significant alteration (>35%) | Hormone signaling HPG axis dysregulation | Hormone assays | Teerds et al., 2011 [15] | Landry et al., 2013 [33]; Skoracka et al. 2020 [9] |
Leptin Signaling | Resistance development | Marked increase | Receptor function | Signaling assays | Landry et al., 2013 [33] | Teerds et al., 2011 [15] |
Estradiol Levels | Elevation | Significant increase | Hormone imbalance | RIA analysis | Teerds et al., 2011 [15] | Landry et al., 2013 [33] |
3.2. Phytochemical Composition of Mulberry Fruit and Glycemic Considerations
Component Category | Specific Compounds | Concentration/Activity | Biological Significance | Method of Detection | Primary References | Supporting References |
---|---|---|---|---|---|---|
Major Anthocyanins | ||||||
Cyanidin-3-Glucoside | Primary anthocyanin | 1.84–3.12 mg/g | Antioxidant activity, ROS scavenging | HPLC-MS | Yuan & Zhao, 2017 [22] | Memete et al., 2022 [41] |
Cyanidin-3-Rutinoside | Secondary anthocyanin | 0.95–1.86 mg/g | Anti-inflammatory activity | LC-MS/MS | Li et al., 2013 [38] | Wu et al., 2013 [39] |
Total Anthocyanins | Combined content | 2.92–5.35 mg/g | Primary antioxidant effects | Spectrophotometry | Yuan & Zhao, 2017 [22] | Kattil et al., 2024 [46] |
Flavonoids | ||||||
Quercetin | Major flavonoid | 0.45–0.92 mg/g | Anti-inflammatory | HPLC | Bao et al., 2016 [42] | Fatima et al., 2024 [19] |
Rutin | Glycoside form | 0.38–0.76 mg/g | Vascular protection | HPLC-UV | Bao et al., 2016 [42] | Lim et al., 2013 [34] |
Kaempferol | Minor flavonoid | 0.25–0.45 mg/g | Antioxidant | HPLC-MS | Fatima et al., 2024 [19] | Park et al., 2021 [44] |
Total Flavonoids | Combined content | 1.02–2.06 mg/g | Multiple effects | Spectrophotometry | Fatima et al., 2024 [19] | Memete et al., 2022 [41] |
Phenolic Compounds | ||||||
Chlorogenic Acid | Major phenolic | 1.24–2.15 mg/g | Metabolic regulation | HPLC | Bao et al., 2016 [42] | Yang et al., 2010 [45] |
Gallic Acid | Secondary phenolic | 0.86–1.45 mg/g | Antioxidant | HPLC-UV | Yang et al., 2010 [45] | Park et al., 2021 [44] |
Resveratrol | Stilbene | 0.15–0.35 mg/g | Anti-aging effects | LC-MS | Park et al., 2021 [44] | Özbalci et al., 2023 [37] |
Total Polyphenols | Combined content | 4.23–6.38 mg/g | Multiple effects | Folin-Ciocalteu | Maqsood et al., 2022 [23] | Kattil et al., 2024 [46] |
Other Bioactives | ||||||
1-deoxynojirimycin (DNJ) | Alkaloid | 0.12–0.24% | Glycemic control | HPLC-MS/MS | Vichasilp et al., 2012 [43] | Kobayashi et al., 2010 [47] |
Carotenoids | β-carotene | 0.08–0.15 mg/g | Antioxidant protection | HPLC | Park et al., 2021 [44] | Yang et al., 2010 [45] |
Lutein | 0.05–0.12 mg/g | Eye protection | HPLC | Park et al., 2021 [44] | Özbalci et al., 2023 [37] | |
Melatonin | Hormone | 0.005–0.015 mg/g | Oxidative stress protection | HPLC-MS | Özbalci et al., 2023 [37] | Park et al., 2021 [44] |
Antioxidant Activity | ||||||
DPPH Scavenging | Free radical neutralization | IC50 = 24.5 μg/mL | Direct antioxidant activity | Spectrophotometry | Yang et al., 2010 [45] | Liu et al., 2016 [48] |
ABTS Scavenging | Radical scavenging | IC50 = 31.2 μg/mL | Antioxidant capacity | Spectrophotometry | Liu et al., 2016 [48] | Yang et al., 2010 [45] |
Ferric Reducing Power | Metal chelation | 156.3 ± 12.4 μmol Fe2+/g | Ion chelation capacity | Spectrophotometry | Park et al., 2021 [44] | Bao et al., 2016 [42] |
Essential Nutrients | ||||||
Vitamins | Vitamin C | 0.85–1.25 mg/g | Antioxidant, reproductive function | HPLC | Yang et al., 2010 [45] | Özbalci et al., 2023 [37] |
Vitamin E | 0.15–0.28 mg/g | Membrane protection | HPLC | Yang et al., 2010 [45] | Kattil et al., 2024 [46] | |
B complex vitamins | Varied levels | Metabolic support | HPLC | Yang et al., 2010 [45] | Özbalci et al., 2023 [37] | |
Minerals | Iron | 25–45 μg/g | Hematopoiesis | AAS | Yang et al., 2010 [45] | Özbalci et al., 2023 [37] |
Zinc | 15–35 μg/g | Reproductive function | AAS | Yang et al., 2010 [45] | Kattil et al., 2024 [46] | |
Fatty Acids | Essential FAs | Varied composition | Membrane integrity | GC-MS | Özbalci et al., 2023 [37] | Maqsood et al., 2022 [23] |
3.3. Effects of Mulberry Fruit Extract on Testicular Morphology and Structure
Parameter | Improvement | Mechanism | Temporal Pattern | Method of Assessment | Primary References | Supporting References |
---|---|---|---|---|---|---|
Antioxidant Defense | ||||||
SOD Activity | 45% | Enhanced enzyme expression | Early response (14 d) | Enzyme activity assay | Fan et al., 2015 [11] | Abbas et al., 2024 [51] |
+52% protein levels | Translation increase | Progressive | Western blot | Inanc et al., 2022 [50] | Yang & Jo, 2018 [52] | |
Catalase Activity | 38% | Enzyme activation | Gradual improvement | Spectrophotometry | Du Plessis et al., 2010 [14] | Inanc et al., 2022 [50] |
GPx Activity | 35% | Increased synthesis | Sustained improvement | Kinetic assay | Liu et al., 2016 [48] | Yang & Jo, 2018 [52] |
Anti-Inflammatory Effects | ||||||
NF-κB Pathway | −42.3% activation | Pathway suppression | Rapid (7 d) | Western blot | Lim et al., 2013 [34] | Abbas et al., 2024 [51] |
TNF-α Levels | −64% | Cytokine reduction | Progressive decrease | ELISA | Yang et al., 2010 [45] | Inanc et al., 2022 [50] |
IL-6 Levels | −58% | Inflammation control | Sustained reduction | qPCR | Fan et al., 2015 [11] | Abbas et al., 2024 [51] |
Structural Recovery | ||||||
Seminiferous Tubules | 85% of normal | Tissue protection | Optimal at 28 d | Histomorphometry | Inanc et al., 2022 [50] | Fan et al., 2015 [11] |
+32% vs. HFD | Architecture maintenance | Progressive | Image analysis | Fan et al., 2015 [11] | Kianifard, 2015 [49] | |
Blood-Testis Barrier | 72.5% improvement | Junction preservation | Progressive recovery | Permeability assay | Fan et al., 2015 [11] | Kianifard, 2015 [49] |
+68% protein expression | Synthesis enhancement | Progressive | Western blot | Fan et al., 2015 [11] | Abbas et al., 2024 [51] | |
Leydig Cell Function | 78.5% restoration | Cell viability | Sustained improvement | Stereology | Luo et al., 2020 [27] | Inanc et al., 2022 [50] |
+65% vs. HFD | Steroidogenesis recovery | Progressive | Hormone assay | Inanc et al., 2022 [50] | Fan et al., 2015 [11] | |
Vascular Effects | ||||||
Microvasculature | Significant improvement | Enhanced perfusion | Progressive response | Microscopy | Abbas et al., 2024 [51] | Fan et al., 2015 [11] |
Interstitial Edema | −56% vs. HFD | Reduced inflammation | Early improvement | Histology | Abbas et al., 2024 [51] | Inanc et al., 2022 [50] |
Tissue Architecture | Notable preservation | Structural integrity | Optimal at 28 d | Histology | Fan et al., 2015 [11] | Kianifard, 2015 [49] |
Cellular Protection | ||||||
Sertoli Cells | Significant preservation | Functional maintenance | Sustained effect | IHC Analysis | Inanc et al., 2022 [50] | Fan et al., 2015 [11] |
Germ Cell Junction | Enhanced preservation | Junction stability | Progressive improvement | TEM Analysis | Fan et al., 2015 [11] | Abbas et al., 2024 [51] |
Basement Membrane | Maintained integrity | Structural support | Sustained protection | Histology | Fan et al., 2015 [11] | Inanc et al., 2022 [50] |
Oxidative Stress | ||||||
ROS Production | −65% vs. HFD | Direct scavenging | Rapid response | DHE Fluorescence | Yang & Jo, 2018 [52] | Abbas et al., 2024 [51] |
Mitochondrial Function | +67% mtDNA | Energy homeostasis | Progressive recovery | qPCR | Yang & Jo, 2018 [52] | Fan et al., 2015 [11] |
Lipid Peroxidation | −58% vs. HFD | Membrane protection | Sustained effect | TBARS Assay | Inanc et al., 2022 [50] | Abbas et al., 2024 [51] |
3.4. Impact of Mulberry Fruit Extract on Sperm Parameters and Function
3.5. Molecular Mechanisms of Mulberry Fruit Extract
Pathway/Mechanism | Specific Effect | Magnitude of Change | Downstream Impact | Method of Detection | Primary References | Supporting References |
---|---|---|---|---|---|---|
Inflammatory Regulation | ||||||
NF-κB Pathway | Phosphorylation reduction | −42.30% | Inflammatory suppression | Western blot | Lim et al., 2013 [34] | Fan et al., 2015 [11] |
TNF-α Expression | Cytokine suppression | −2.8 fold | Reduced inflammation | ELISA | Lim et al., 2013 [34] | Yuan & Zhao, 2017 [22] |
IL-6 Expression | Cytokine reduction | −2.4 fold | Tissue protection | qPCR | Lim et al., 2013 [34] | Fan et al., 2015 [11] |
MCP1 Levels | Chemokine decrease | −2.1 fold | Reduced infiltration | ELISA | Lim et al., 2013 [34] | Yuan & Zhao, 2017 [22] |
COX-2/iNOS | Expression reduction | Significant decrease | Inflammatory control | Western blot | Yuan & Zhao, 2017 [22] | Fan et al., 2015 [11] |
Metabolic Regulation | ||||||
AMPK Activation | Phosphorylation increase | 230% | Energy homeostasis | Western blot | Lee & Kim, 2020 [54] | Yang et al., 2010 [45] |
SIRT1 Expression | Protein upregulation | 180% | Metabolic regulation | qPCR, Western blot | Yang et al., 2010 [45] | Lee & Kim, 2020 [54] |
PGC-1α Activity | Enhanced activation | 210% | Mitochondrial function | ChIP assay | Yang et al., 2010 [45] | Aitken et al., 2014 [32] |
Glucose Metabolism | Uptake enhancement | +45% vs. HFD | Energy utilization | Glucose uptake assay | Lee & Kim, 2020 [54] | Yang et al., 2010 [45] |
Fatty Acid Oxidation | Pathway activation | +65% vs. HFD | Lipid metabolism | Metabolic flux analysis | Lee & Kim, 2020 [54] | Yang et al., 2010 [45] |
Antioxidant Defense | ||||||
SOD Activity | Enzyme enhancement | 45% | ROS neutralization | Activity assay | Du Plessis et al., 2010 [14] | Yuan & Zhao, 2017 [22] |
Catalase Activity | Enzyme increase | 38% | H₂O₂ degradation | Spectrophotometry | Du Plessis et al., 2010 [14] | Yuan & Zhao, 2017 [22] |
GPx Activity | Enzyme upregulation | 35% | Peroxide reduction | Kinetic assay | Du Plessis et al., 2010 [14] | Yuan & Zhao, 2017 [22] |
Nrf2 Pathway | Activity enhancement | 270% | Antioxidant response | ChIP-seq | Yuan & Zhao, 2017 [22] | Liu et al., 2016 [48] |
ARE Upregulation | Enhanced expression | 310% | Phase II enzyme induction | Reporter assay | Yuan & Zhao, 2017 [22] | Liu et al., 2016 [48] |
Mitochondrial Function | ||||||
mtDNA Copy Number | Quantity increase | 67% | Mitochondrial biogenesis | qPCR | Aitken et al., 2014 [32] | Yang et al., 2010 [45] |
ATP Production | Energy enhancement | 240% | Cellular energetics | Luminescence | Aitken et al., 2014 [32] | Lee & Kim, 2020 [54] |
Membrane Potential | Potential increase | 190% | Energy coupling | Flow cytometry | Aitken et al., 2014 [32] | Yang et al., 2010 [45] |
CPT-1β Expression | Gene upregulation | 230% | Fatty acid transport | RT-PCR | Aitken et al., 2014 [32] | Lee & Kim, 2020 [54] |
UCP3 Expression | Protein increase | 180% | Energy uncoupling | Western blot | Aitken et al., 2014 [32] | Yang et al., 2010 [45] |
Epigenetic Regulation | ||||||
miR-21 Expression | Decreased levels | −45% | Metabolic regulation | qPCR | Lee & Kim, 2020 [54] | Fullston et al., 2013 [28] |
miR-132 Expression | Reduced expression | −38% | Inflammatory control | qPCR | Lee & Kim, 2020 [54] | Donkin et al., 2016 [36] |
miR-143 Expression | Level reduction | −42% | Metabolic modulation | qPCR | Lee & Kim, 2020 [54] | Yuan & Zhao, 2017 [22] |
DNA Methylation | Pattern normalization | Significant restoration | Gene regulation | Methylation analysis | Fullston et al., 2013 [28] | Donkin et al., 2016 [36] |
Histone Modifications | Profile improvement | Notable restoration | Chromatin structure | ChIP-seq | Donkin et al., 2016 [36] | Lee & Kim, 2020 [54] |
3.5.1. NF-κB Signaling and Inflammatory Regulation
3.5.2. AMPK/SIRT1 Pathway Activation and Metabolic Regulation
3.5.3. Oxidative Stress and Antioxidant Defense
3.5.4. Mitochondrial Function and Bioenergetics
3.5.5. Epigenetic Regulation and Cell Signaling Integration
3.6. Limitations and Critical Evaluation of Current Evidence
3.7. Future Research Imperatives and Innovative Directions
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Obesity Day 2022: Accelerating Action to Stop Obesity. 2022. Available online: https://www.who.int/news/item/04-03-2022-world-obesity-day-2022-accelerating-action-to-stop-obesity (accessed on 28 December 2024).
- Bentham, J.; Di Cesare, M.; BIlano, V.; Boddy, L.M. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar]
- De Jonge, C.J.; Barratt, C.L.R.; Pacey, A.A. Counting the Hidden Costs of Male Reproductive Health. World J. Mens. Health 2022, 40, 344–345. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A unique view on male infertility around the globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef]
- Wang, T.; Wang, Q.; Fan, Z.; Xu, R.; Deng, X.; Li, Y.; Liang, S.; Lv, Z.; Huang, S.; Duan, Y.; et al. Association between central obesity and semen quality: A cross-sectional study in 4513 Chinese sperm donation volunteers. Andrology 2024, 12, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Salas-Huetos, A.; Maghsoumi-Norouzabad, L.; James, E.R.; Carrell, D.T.; Aston, K.I.; Jenkins, T.G.; Becerra-Tomás, N.; Javid, A.Z.; Abed, R.; Torres, P.J.; et al. Male adiposity, sperm parameters and reproductive hormones: An updated systematic review and collaborative meta-analysis. Obes. Rev. 2021, 22, e13082. [Google Scholar] [CrossRef]
- Ramaraju, G.A.; Teppala, S.; Prathigudupu, K.; Kalagara, M.; Thota, S.; Kota, M.; Cheemakurthi, R. Association between obesity and sperm quality. Andrologia 2018, 50, e12888. [Google Scholar] [CrossRef]
- Ameratunga, D.; Gebeh, A.K.; Amoako, A.A. Obesity and male infertility. Best Pract. Res. Clin. Obstet. Gynaecol. 2023, 90, 102393. [Google Scholar] [CrossRef]
- Skoracka, K.; Eder, P.; Lykowska-Szuber, L.; Dobrowolska, A.; Krela-Kazmierczak, I. Diet and Nutritional Factors in Male (In)fertility-Underestimated Factors. J. Clin. Med. 2020, 9, 1400. [Google Scholar] [CrossRef]
- Palmer, N.O.; Bakos, H.W.; Owens, J.A.; Setchell, B.P.; Lane, M. Diet and exercise in an obese mouse fed a high-fat diet improve metabolic health and reverse perturbed sperm function. Am. J. Physiol. Endocrinol. Metab. 2012, 302, E768–E780. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, Y.; Xue, K.; Gu, G.; Fan, W.; Xu, Y.; Ding, Z. Diet-induced obesity in male C57BL/6 mice decreases fertility as a consequence of disrupted blood-testis barrier. PLoS ONE 2015, 10, e0120775. [Google Scholar] [CrossRef]
- Rato, L.; Alves, M.G.; Socorro, S.; Duarte, A.I.; Cavaco, J.E.; Oliveira, P.F. Metabolic regulation is important for spermatogenesis. Nat. Rev. Urol. 2012, 9, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Adewoyin, M.; Ibrahim, M.; Roszaman, R.; Isa, M.L.M.; Alewi, N.A.M.; Rafa, A.A.A.; Anuar, M.N.N. Male Infertility: The Effect of Natural Antioxidants and Phytocompounds on Seminal Oxidative Stress. Diseases 2017, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Du Plessis, S.S.; Cabler, S.; McAlister, D.A.; Sabanegh, E.; Agarwal, A. The effect of obesity on sperm disorders and male infertility. Nat. Rev. Urol. 2010, 7, 153–161. [Google Scholar] [CrossRef]
- Teerds, K.J.; de Rooij, D.G.; Keijer, J. Functional relationship between obesity and male reproduction: From humans to animal models. Hum. Reprod. Update 2011, 17, 667–683. [Google Scholar] [CrossRef]
- Fullston, T.; Palmer, N.O.; Owens, J.A.; Mitchell, M.; Bakos, H.W.; Lane, M. Diet-induced paternal obesity in the absence of diabetes diminishes the reproductive health of two subsequent generations of mice. Hum. Reprod. 2012, 27, 1391–1400. [Google Scholar] [CrossRef]
- Leisegang, K.; Henkel, R.; Agarwal, A. Obesity and metabolic syndrome associated with systemic inflammation and the impact on the male reproductive system. Am. J. Reprod. Immunol. 2019, 82, e13178. [Google Scholar] [CrossRef]
- Craig, J.R.; Jenkins, T.G.; Carrell, D.T.; Hotaling, J.M. Obesity, male infertility, and the sperm epigenome. Fertil. Steril. 2017, 107, 848–859. [Google Scholar] [CrossRef]
- Fatima, M.; Dar, M.A.; Dhanavade, M.J.; Abbas, S.Z.; Bukhari, M.N.; Arsalan, A.; Liao, Y.; Wan, J.; Shah Syed Bukhari, J.; Ouyang, Z. Biosynthesis and Pharmacological Activities of the Bioactive Compounds of White Mulberry (Morus alba): Current Paradigms and Future Challenges. Biology 2024, 13, 506. [Google Scholar] [CrossRef]
- Hao, J.; Gao, Y.; Xue, J.; Yang, Y.; Yin, J.; Wu, T.; Zhang, M. Phytochemicals, Pharmacological Effects and Molecular Mechanisms of Mulberry. Foods 2022, 11, 1170. [Google Scholar] [CrossRef]
- Ramappa, V.K.; Srivastava, D.; Singh, P.; Kumar, U.; Kumar, D.; Gosipatala, S.B.; Saha, S.; Kumar, D.; Raj, R. Mulberries: A Promising Fruit for Phytochemicals, Nutraceuticals, and Biological Activities. Int. J. Fruit Sci. 2020, 20, S1254–S1279. [Google Scholar] [CrossRef]
- Yuan, Q.; Zhao, L. The Mulberry (Morus alba L.) Fruit-A Review of Characteristic Components and Health Benefits. J. Agric. Food Chem. 2017, 65, 10383–10394. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, M.; Anam Saeed, R.; Sahar, A.; Khan, M.I. Mulberry plant as a source of functional food with therapeutic and nutritional applications: A review. J. Food Biochem. 2022, 46, e14263. [Google Scholar] [CrossRef] [PubMed]
- Cals, J.W.L.; Kotz, D. Literature review in biomedical research: Useful search engines beyond PubMed. J. Clin. Epidemiol. 2016, 71, 115–117. [Google Scholar] [CrossRef] [PubMed]
- Masic, I.; Kurjak, A.; Chervenak, F. Review of Most Important Biomedical Databases for Searching of Biomedical Scientific Literature. Donald Sch. J. Ultrasound Obstet. Gynecol. 2012, 6, 343–361. [Google Scholar] [CrossRef]
- Ghanayem, B.I.; Bai, R.; Kissling, G.E.; Travlos, G.; Hoffler, U. Diet-induced obesity in male mice is associated with reduced fertility and potentiation of acrylamide-induced reproductive toxicity. Biol. Reprod. 2010, 82, 96–104. [Google Scholar] [CrossRef]
- Luo, D.; Zhang, M.; Su, X.; Liu, L.; Zhou, X.; Zhang, X.; Zheng, D.; Yu, C.; Guan, Q. High fat diet impairs spermatogenesis by regulating glucose and lipid metabolism in Sertoli cells. Life Sci. 2020, 257, 118028. [Google Scholar] [CrossRef]
- Fullston, T.; Ohlsson Teague, E.M.; Palmer, N.O.; DeBlasio, M.J.; Mitchell, M.; Corbett, M.; Print, C.G.; Owens, J.A.; Lane, M. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J. 2013, 27, 4226–4243. [Google Scholar] [CrossRef]
- Sermondade, N.; Faure, C.; Fezeu, L.; Shayeb, A.G.; Bonde, J.P.; Jensen, T.K.; Van Wely, M.; Cao, J.; Martini, A.C.; Eskandar, M.; et al. BMI in relation to sperm count: An updated systematic review and collaborative meta-analysis. Hum. Reprod. Update 2013, 19, 221–231. [Google Scholar] [CrossRef]
- Belloc, S.; Cohen-Bacrie, M.; Amar, E.; Izard, V.; Benkhalifa, M.; Dalleac, A.; de Mouzon, J. High body mass index has a deleterious effect on semen parameters except morphology: Results from a large cohort study. Fertil. Steril. 2014, 102, 1268–1273. [Google Scholar] [CrossRef]
- Aitken, R.J.; De Iuliis, G.N. On the possible origins of DNA damage in human spermatozoa. Mol. Hum. Reprod. 2010, 16, 3–13. [Google Scholar] [CrossRef]
- Aitken, R.J.; Smith, T.B.; Jobling, M.S.; Baker, M.A.; De Iuliis, G.N. Oxidative stress and male reproductive health. Asian J. Androl. 2014, 16, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Landry, D.; Cloutier, F.; Martin, L.J. Implications of leptin in neuroendocrine regulation of male reproduction. Reprod. Biol. 2013, 13, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.H.; Yang, S.J.; Kim, Y.; Lee, M.; Lim, Y. Combined treatment of mulberry leaf and fruit extract ameliorates obesity-related inflammation and oxidative stress in high fat diet-induced obese mice. J. Med. Food 2013, 16, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, J.B.; Nna, V.U.; Zakaria, Z.; Othman, Z.A.; Bakar, A.B.A.; Mohamed, M. Obesity-induced testicular oxidative stress, inflammation and apoptosis: Protective and therapeutic effects of orlistat. Reprod. Toxicol. 2020, 95, 113–122. [Google Scholar] [CrossRef]
- Donkin, I.; Versteyhe, S.; Ingerslev, L.R.; Qian, K.; Mechta, M.; Nordkap, L.; Mortensen, B.; Appel, E.V.; Jørgensen, N.; Kristiansen, V.B.; et al. Obesity and Bariatric Surgery Drive Epigenetic Variation of Spermatozoa in Humans. Cell Metab. 2016, 23, 369–378. [Google Scholar] [CrossRef]
- Özbalci, D.; Aydın, E.; Özkan, G. Phytochemical profile and pharmaceutical properties of mulberry fruits. Food Health 2023, 9, 69–86. [Google Scholar] [CrossRef]
- Li, X.; Ma, H.; Huang, H.; Li, D.; Yao, S. Natural anthocyanins from phytoresources and their chemical researches. Nat. Prod. Res. 2013, 27, 456–469. [Google Scholar] [CrossRef]
- Wu, T.; Qi, X.; Liu, Y.; Guo, J.; Zhu, R.; Chen, W.; Zheng, X.; Yu, T. Dietary supplementation with purified mulberry (Morus australis Poir) anthocyanins suppresses body weight gain in high-fat diet fed C57BL/6 mice. Food Chem 2013, 141, 482–487. [Google Scholar] [CrossRef]
- Yan, F.; Dai, G.; Zheng, X. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/AKT pathway in HepG2 cells and db/db mice. J. Nutr. Biochem. 2016, 36, 68–80. [Google Scholar] [CrossRef]
- Memete, A.R.; Timar, A.V.; Vuscan, A.N.; Miere, F.; Venter, A.C.; Vicas, S.I. Phytochemical Composition of Different Botanical Parts of Morus Species, Health Benefits and Application in Food Industry. Plants 2022, 11, 152. [Google Scholar] [CrossRef]
- Bao, T.; Xu, Y.; Gowd, V.; Zhao, J.; Xie, J.; Liang, W.; Chen, W. Systematic study on phytochemicals and antioxidant activity of some new and common mulberry cultivars in China. J. Funct. Foods 2016, 25, 537–547. [Google Scholar] [CrossRef]
- Vichasilp, C.; Nakagawa, K.; Sookwong, P.; Higuchi, O.; Kimura, F.; Miyazawa, T. A novel gelatin crosslinking method retards release of mulberry 1-deoxynojirimycin providing a prolonged hypoglycaemic effect. Food Chem. 2012, 134, 1823–1830. [Google Scholar] [CrossRef] [PubMed]
- Park, C.H.; Park, Y.E.; Yeo, H.J.; Yoon, J.S.; Park, S.Y.; Kim, J.K.; Park, S.U. Comparative Analysis of Secondary Metabolites and Metabolic Profiling between Diploid and Tetraploid Morus alba L. J. Agric. Food Chem. 2021, 69, 1300–1307. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Yang, L.; Zheng, H. Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats. Food Chem. Toxicol. 2010, 48, 2374–2379. [Google Scholar] [CrossRef] [PubMed]
- Kattil, A.; Hamid; Dash, K.K.; Shams, R.; Sharma, S. Nutritional composition, phytochemical extraction, and pharmacological potential of mulberry: A comprehensive review. Future Foods 2024, 9, 100295. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Miyazawa, M.; Kamei, A.; Abe, K.; Kojima, T. Ameliorative Effects of Mulberry (Morus alba L.) Leaves on Hyperlipidemia in Rats Fed a High-Fat Diet: Induction of Fatty Acid Oxidation, Inhibition of Lipogenesis, and Suppression of Oxidative Stress. Biosci. Biotechnol. Biochem. 2010, 74, 2385–2395. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Xie, C.; Luo, X.; Bao, Y.; Wu, B.; Hu, Y.; Zhong, Z.; Liu, C.; Li, M. Prevention Effects and Possible Molecular Mechanism of Mulberry Leaf Extract and its Formulation on Rats with Insulin-Insensitivity. PLoS ONE 2016, 11, e0152728. [Google Scholar] [CrossRef]
- Kianifard, D. Protective Effects of Morus Alba (M. alba) Extract on the Alteration of Testicular Tissue and Spermatogenesis in Adult Rats Treated with Monosodium Glutamate. Med. Sci. Int. Med. J. 2015, 4, 1959. [Google Scholar]
- Inanc, M.E.; Gungor, S.; Yeni, D.; Avdatek, F.; Ipek, V.; Turkmen, R.; Corum, O.; Karaca, H.; Ata, A. Protective role of the dried white mulberry extract on the reproductive damage and fertility in rats treated with carmustine. Food Chem. Toxicol. 2022, 163, 112979. [Google Scholar] [CrossRef]
- Abbas, T.; Ahmad, K.R.; Asmatullah; Akhtar, H.A.; Fatima, T. Ameliorative Activities of Morus and Jamun against Cr Induced Andro-Hepatic Anomalies. Eur. J. Nutr. Amp. Food Saf. 2024, 16, 66–78. [Google Scholar] [CrossRef]
- Yang, D.K.; Jo, D.-G. Mulberry Fruit Extract Ameliorates Nonalcoholic Fatty Liver Disease (NAFLD) through Inhibition of Mitochondrial Oxidative Stress in Rats. Evid. Based Complement. Altern. Med. Ecam 2018, 2018, 8165716. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Kim, Y. Mulberry Fruit Extract Ameliorates Adipogenesis via Increasing AMPK Activity and Downregulating MicroRNA-21/143 in 3T3-L1 Adipocytes. J. Med. Food 2020, 23, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Vigueras-Villaseñor, R.M.; Rojas-Castañeda, J.C.; Chávez-Saldaña, M.; Gutiérrez-Pérez, O.; García-Cruz, M.E.; Cuevas-Alpuche, O.; Reyes-Romero, M.M.; Zambrano, E. Alterations in the spermatic function generated by obesity in rats. Acta. Histochem. 2011, 113, 214–220. [Google Scholar] [CrossRef]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef]
- Wolfender, J.-L.; Nuzillard, J.-M.; van der Hooft, J.J.J.; Renault, J.-H.; Bertrand, S. Accelerating Metabolite Identification in Natural Product Research: Toward an Ideal Combination of Liquid Chromatography-High-Resolution Tandem Mass Spectrometry and NMR Profiling, in Silico Databases, and Chemometrics. Anal. Chem. 2019, 91, 704–742. [Google Scholar] [CrossRef]
- Agarwal, A.; Parekh, N.; Panner Selvam, M.K.; Henkel, R.; Shah, R.; Homa, S.T.; Ramasamy, R.; Ko, E.; Tremellen, K.; Esteves, S.; et al. Male Oxidative Stress Infertility (MOSI): Proposed Terminology and Clinical Practice Guidelines for Management of Idiopathic Male Infertility. World J. Mens Health 2019, 37, 296–312. [Google Scholar] [CrossRef]
- Fullston, T.; McPherson, N.O.; Owens, J.A.; Kang, W.X.; Sandeman, L.Y.; Lane, M. Paternal obesity induces metabolic and sperm disturbances in male offspring that are exacerbated by their exposure to an “obesogenic” diet. Physiol. Rep. 2015, 3, e12336. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adthapanyawanich, K.; Aitsarangkun Na Ayutthaya, K.; Kreungnium, S.; Mark, P.J.; Nakata, H.; Chen, W.; Chinda, K.; Amatyakul, P.; Tongpob, Y. Molecular Mechanisms and Therapeutic Potential of Mulberry Fruit Extract in High-Fat Diet-Induced Male Reproductive Dysfunction: A Comprehensive Review. Nutrients 2025, 17, 273. https://doi.org/10.3390/nu17020273
Adthapanyawanich K, Aitsarangkun Na Ayutthaya K, Kreungnium S, Mark PJ, Nakata H, Chen W, Chinda K, Amatyakul P, Tongpob Y. Molecular Mechanisms and Therapeutic Potential of Mulberry Fruit Extract in High-Fat Diet-Induced Male Reproductive Dysfunction: A Comprehensive Review. Nutrients. 2025; 17(2):273. https://doi.org/10.3390/nu17020273
Chicago/Turabian StyleAdthapanyawanich, Kannika, Kanyakorn Aitsarangkun Na Ayutthaya, Siriporn Kreungnium, Peter J. Mark, Hiroki Nakata, Wai Chen, Kroekkiat Chinda, Patcharada Amatyakul, and Yutthapong Tongpob. 2025. "Molecular Mechanisms and Therapeutic Potential of Mulberry Fruit Extract in High-Fat Diet-Induced Male Reproductive Dysfunction: A Comprehensive Review" Nutrients 17, no. 2: 273. https://doi.org/10.3390/nu17020273
APA StyleAdthapanyawanich, K., Aitsarangkun Na Ayutthaya, K., Kreungnium, S., Mark, P. J., Nakata, H., Chen, W., Chinda, K., Amatyakul, P., & Tongpob, Y. (2025). Molecular Mechanisms and Therapeutic Potential of Mulberry Fruit Extract in High-Fat Diet-Induced Male Reproductive Dysfunction: A Comprehensive Review. Nutrients, 17(2), 273. https://doi.org/10.3390/nu17020273