Nelumbo nucifera Petals Ameliorate Depressive-like Symptom and Cognitive Deficit in Unpredictable Chronic Mild Stress Mouse Model
<p>Schematic experiment protocols. Animals (<span class="html-italic">n</span> = 60) were divided into non-stressed and UCMS groups at week 0 (<span class="html-italic">n</span> = 12 mice per group). The UCMS groups received various stressors for 6 weeks. The UCMS mice were divided into four groups, which were daily administered with vehicle (0.5% SCMC/day), imipramine (20 mg/kg/day), and <span class="html-italic">Nelumbo nucifera</span> (NN) (100 and 500 mg/kg/day) for 3 weeks. In the sixth week, behavioral tests (modified Y-maze test, novel object recognition test, tail suspension test, and forced swimming test) were performed. After the behavioral tests, the animals were sacrificed to collect their blood and brains for neurochemical assessment.</p> "> Figure 2
<p>Structure of isolated compounds <b>1</b>–<b>5</b>.</p> "> Figure 3
<p>The effect of <span class="html-italic">N. nucifera</span> (NN) petals on anhedonia as measured by the sucrose preference test. After initiating the UCMS procedure, the amount of 2% sucrose consumed by each animal group was measured as an indicator of anhedonia behavior. Each line shows the mean ± S.E.M. (12 animals per group). <sup>###</sup> <span class="html-italic">p</span> < 0.001 vs. the non-stressed group. * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 vs. the vehicle-treated UCMS group.</p> "> Figure 4
<p>The effect of <span class="html-italic">N. nucifera</span> (NN) petals on cognitive function in the modified Y-maze test (<b>A</b>,<b>B</b>) and novel object recognition test (<b>C</b>,<b>D</b>). The time spent exploring the novel arm in the modified Y-maze test and the percentage of discrimination index of each animal group were measured 6 weeks after starting the UCMS procedure. Each column shows the mean ± S.E.M. (12 animals per group). <sup>###</sup> <span class="html-italic">p</span> < 0.001 vs. the non-stressed group. *** <span class="html-italic">p</span> < 0.001 vs. the vehicle-treated UCMS group.</p> "> Figure 5
<p>The effect of <span class="html-italic">N. nucifera</span> (NN) petals on hopeless behaviors in the forced swimming test (<b>A</b>,<b>B</b>) and tail suspension test (<b>C</b>,<b>D</b>). Six weeks after UCMS, each animal group’s immobility times were measured as an index of learned helplessness. Each column shows the mean ± S.E.M. (12 animals per group). <sup>###</sup> <span class="html-italic">p</span> < 0.001 vs. the non-stressed group. ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001 vs. the vehicle-treated UCMS group.</p> "> Figure 6
<p>The effect of <span class="html-italic">N. nucifera</span> (NN) petals on serum corticosterone levels. Each column shows the mean ± S.E.M. (5 animals per group). <sup>##</sup> <span class="html-italic">p</span> < 0.01 vs. non-stressed group. * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 vs. the vehicle-treated UCMS group.</p> "> Figure 7
<p>The effects of <span class="html-italic">N. nucifera</span> (NN) petals on the mRNA expression of SGK1 (<b>A</b>), CREB (<b>B</b>), and BDNF (<b>C</b>) in the frontal cortex and hippocampus. Each column shows the mean ± S.E.M. (5 animals per group). <sup>##</sup> <span class="html-italic">p</span> < 0.01 and <sup>###</sup> <span class="html-italic">p</span> < 0.001 vs. the vehicle-treated non-stressed group. ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001 vs. the vehicle-treated UCMS group. <sup><span>$</span></sup> <span class="html-italic">p</span> < 0.05 compared to <span class="html-italic">N. nucifera</span> petal doses.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. General Experimental Procedures
2.3. Extraction and Isolation
2.4. Human Monoamine Oxidase (MAO) A/B Inhibition Assay
2.5. Animals
2.6. Unpredictable Chronic Mild Stress (UCMS) Procedure
2.7. Drug Administration
2.8. Behavioral Studies
2.8.1. Sucrose Preference Test (Anhedonia)
2.8.2. Modified Y-Maze Test
2.8.3. Novel Object Recognition Test (NORT)
2.8.4. Tail Suspension Test (TST)
2.8.5. Forced Swimming Test (FST)
2.9. Serum Corticosterone Levels
2.10. Quantitative Real-Time Polymerase Chain Reaction (qPCR)
2.11. Statistical Analysis
3. Results
3.1. Chemical Investigation of N. nucifera Petal Extract
3.2. Inhibitory Activity of N. nucifera Petal Extract and Its Constituents Against MAOs
3.3. N. nucifera Petals (NN) Reverses UCMS-Induced Anhedonic Behavior in Mice
3.4. N. nucifera (NN) Petal Improves Memory in the UCMS Model
3.5. N. nucifera (NN) Petals Reduce Hopelessness-like Behavior in the UCMS Model
3.6. Effects of N. nucifera (NN) Petals on Serum Corticosterone Levels
3.7. N. nucifera (NN) Petals Modulate Gene Expression in the UCMS Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nochaiwong, S.; Ruengorn, C.; Thavorn, K.; Hutton, B.; Awiphan, R.; Phosuya, C.; Ruanta, Y.; Wongpakaran, N.; Wongpakaran, T. Global prevalence of mental health issues among the general population during the coronavirus disease-2019 pandemic: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 10173. [Google Scholar] [CrossRef]
- Yubonpunt, P.; Kunno, J.; Supawattanabodee, B.; Sumanasrethakul, C.; Wiriyasirivaj, B. Prevalence of perceived stress and coping strategies among healthcare workers during the COVID-19 outbreak at Bangkok metropolitan, Thailand. PLoS ONE 2022, 17, e0270924. [Google Scholar] [CrossRef]
- Ganesan, B.; Al-Jumaily, A.; Fong, K.N.K.; Prasad, P.; Meena, S.K.; Tong, R.K. Impact of coronavirus disease 2019 (COVID-19) outbreak quarantine, isolation, and lockdown policies on mental health and suicide. Front. Psychiatry 2021, 16, 565190. [Google Scholar] [CrossRef]
- Mahar, I.; Bambico, F.R.; Mechawar, N.; Nobrega, J.N. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci. Biobehav. Rev. 2014, 38, 173–192. [Google Scholar] [CrossRef] [PubMed]
- Finsterwald, C.; Alberini, C.M. Stress and glucocorticoid receptor-dependent mechanisms in long-term memory: From adaptive responses to psychopathologies. Neurobiol. Learn. Mem. 2014, 112, 17–29. [Google Scholar] [CrossRef]
- Noori, T.; Sureda, A.; Sobarzo-Sánchez, E.; Shirooie, S. The role of natural products in treatment of depressive disorder. Curr. Neuropharmacol. 2022, 20, 929–949. [Google Scholar] [CrossRef]
- Dattilo, V.; Amato, R.; Perrotti, N.; Gennarelli, M. The emerging role of SGK1 (serum- and glucocorticoid-regulated kinase 1) in major depressive disorder: Hypothesis and mechanisms. Front. Genet. 2020, 11, 826. [Google Scholar] [CrossRef]
- Wei, K.; Xu, Y.; Zhao, Z.; Wu, X.; Du, Y.; Sun, J.; Yi, T.; Dong, J.; Liu, B. Icariin alters the expression of glucocorticoid receptor, FKBP5 and SGK1 in rat brains following exposure to chronic mild stress. Int. J. Mol. Med. 2016, 38, 337–344. [Google Scholar] [CrossRef]
- Maneenet, J.; Monthakantirat, O.; Daodee, S.; Boonyarat, C.; Chotritthirong, Y.; Kwankhao, P.; Pitiporn, S.; Awale, S.; Chulikhit, Y. Merging the multi-target effects of Kleeb Bua Daeng, a Thai traditional herbal formula in unpredictable chronic mild stress-induced depression. Pharmaceuticals 2021, 14, 659. [Google Scholar] [CrossRef]
- Duman, R.S.; Monteggia, L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 2006, 59, 1116–1127. [Google Scholar] [CrossRef]
- Jiang, N.; Wang, H.; Li, C.; Zeng, G.; Lv, J.; Wang, Q.; Chen, Y.; Liu, X. The antidepressant-like effects of the water extract of Panax ginseng and Polygala tenuifolia are mediated via the BDNF-TrkB signaling pathway and neurogenesis in the hippocampus. J. Ethnopharmacol. 2021, 267, 113625. [Google Scholar] [CrossRef] [PubMed]
- Hirshler, Y.; Doron, R. Neuroplasticity-related mechanisms underlying the antidepressant-like effects of traditional herbal medicines. Eur. Neuropsychopharmacol. 2017, 27, 945–958. [Google Scholar] [CrossRef]
- Paudel, K.R.; Panth, N. Phytochemical profile and biological activity of Nelumbo nucifera. Evid. Based Complement. Alternat. Med. 2015, 2015, 789124. [Google Scholar] [CrossRef] [PubMed]
- Tungmunnithum, D.; Pinthong, D.; Hano, C. Flavonoids from Nelumbo nucifera Gaertn., a medicinal plant: Uses in traditional medicine, phytochemistry and pharmacological activities. Medicines 2018, 5, 127. [Google Scholar] [CrossRef]
- Khan, R.A.; Rajput, M.A.; Assad, T. Effect of Nelumbo nucifera fruit on scopolamine induced memory deficits and motor coordination. Metab. Brain Dis. 2019, 34, 87–92. [Google Scholar] [CrossRef] [PubMed]
- You, J.S.; Lee, Y.J.; Kim, K.S.; Kim, S.H.; Chang, K.J. Ethanol extract of lotus (Nelumbo nucifera) root exhibits an anti-adipogenic effect in human pre-adipocytes and anti-obesity and anti-oxidant effects in rats fed a high-fat diet. Nutr. Res. 2014, 34, 258–267. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Tao, Y.; Qiu, L.; Xu, W.; Huang, X.; Wei, H.; Tao, X. Lotus (Nelumbo nucifera Gaertn.) Leaf-Fermentation Supernatant Inhibits Adipogenesis in 3T3-L1 Preadipocytes and Suppresses Obesity in High-Fat Diet-Induced Obese Rats. Nutrients 2022, 14, 4348. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Public Health. Thai Hercal Pharmacopoeia; Ministry of Public Health: Nontaburi, Thailand, 2019; Volume 1. [Google Scholar]
- Prabsattroo, T.; Wattanathorn, J.; Somsapt, P.; Sritragool, O. Positive modulation of pink Nelumbo nucifera flowers on memory impairment, brain damage, and biochemical profiles in restraint rats. Oxid. Med. Cell Longev. 2016, 2016, 5789857. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lin, C.; Chang, Y.; Yang, M.; Wang, C.; Hsu, L. Nelumbo nucifera leaves extract ameliorated scopolamine-induced cognition impairment via enhanced adult hippocampus neurogenesis. Environ. Toxicol. 2024, 39, 3198–3210. [Google Scholar] [CrossRef] [PubMed]
- Rajput, M.A.; Khan, R.A. Phytochemical screening, acute toxicity, anxiolytic and antidepressant activities of the Nelumbo nucifera fruit. Metab. Brain Dis. 2017, 32, 743–749. [Google Scholar] [CrossRef]
- Chheng, C.; Waiwut, P.; Plekratoke, K.; Chulikhit, Y.; Daodee, S.; Monthakantirat, O.; Pitiporn, S.; Musigavong, N.; Kwankhao, P.; Boonyarat, C. Multitarget Activities of Kleeb Bua Daeng, a Thai Traditional Herbal Formula, Against Alzheimer′s Disease. Pharmaceuticals 2020, 13, 79. [Google Scholar] [CrossRef]
- Maneenet, J.; Omar, A.M.; Sun, S.; Kim, M.J.; Daodee, S.; Monthakantirat, O.; Boonyarat, C.; Chulikhit, Y.; Awale, S. Benzylisoquinoline alkaloids from Nelumbo nucifera Gaertn. petals with antiausterity activities against the HeLa human cervical cancer cell line. Z. Naturforsch. C J. Biosci. 2021, 76, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.; Wan, C.; Yu, Y.; Zhou, S.; Tian, S. Isolation and identification of phenolic compounds from Gynura divaricata leaves. Pharmacogn. Mag. 2011, 7, 101–108. [Google Scholar] [CrossRef]
- Wolbiś, M.; Nowak, S.; Kicel, A. Polyphenolic compounds in Scopolia caucasica Kolesn. ex Kreyer (Solanaceae). Acta Pol. Pharm. 2007, 64, 241–246. [Google Scholar]
- Kazuma, K. Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 2003, 62, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, H.; Wang, N.; Yao, X.-S. Identification of water-soluble components, that are not saponins, from Dioscorea nipponica Mak. Asian J. Tradit. Med. 2007, 2, 70–74. [Google Scholar]
- Nyigo, V.A.; Peter, X.; Mabiki, F.; Malebo, H.M.; Mdegela, R.H.; Fouche, G. Isolation and identification of euphol and β-sitosterol from the dichloromethane extracts of Synadenium glaucescens. J. Phytopharmacol. 2016, 5, 100–104. [Google Scholar] [CrossRef]
- Khamphukdee, C.; Monthakantirat, O.; Chulikhit, Y.; Buttachon, S.; Lee, M.; Silva, A.; Sekeroglu, N.; Kijjoa, A. Chemical constituents and antidepressant-like effects in ovariectomized mice of the ethanol extract of Alternanthera philoxeroides. Molecules 2018, 23, 2202. [Google Scholar] [CrossRef]
- Mizuki, D.; Matsumoto, K.; Tanaka, K.; Thi Le, X.; Fujiwara, H.; Ishikawa, T.; Higuchi, Y. Antidepressant-like effect of Butea superba in mice exposed to chronic mild stress and its possible mechanism of action. J. Ethnopharmacol. 2014, 156, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Daodee, S.; Monthakantirat, O.; Tantipongpiradet, A.; Maneenet, J.; Chotritthirong, Y.; Boonyarat, C.; Khamphukdee, C.; Kwankhao, P.; Pitiporn, S.; Awale, S.; et al. Effect of Yakae-Prajamduen-Jamod traditional Thai remedy on cognitive impairment in an ovariectomized mouse model and its mechanism of action. Molecules 2022, 27, 4310. [Google Scholar] [CrossRef] [PubMed]
- Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The Tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology 1985, 85, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Porsolt, R.D.; Bertin, A.; Jalfre, M. “Behavioural despair” in rats and mice: Strain differences and the effects of imipramine. Eur. J. Pharmacol. 1978, 51, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Daodee, S.; Monthakantirat, O.; Ruengwinitwong, K.; Gatenakorn, K.; Maneenet, J.; Khamphukdee, C.; Sekeroglu, N.; Chulikhit, Y.; Kijjoa, A. Effects of the ethanol extract of Dipterocarpus alatus leaf on the unpredictable chronic mild stress-induced depression in ICR mice and its possible mechanism of action. Molecules 2019, 24, 3396. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Ayaz, M.; Junaid, M.; Ullah, F.; Subhan, F.; Sadiq, A.; Ali, G.; Ovais, M.; Shahid, M.; Ahmad, A.; Wadood, A.; et al. Anti-Alzheimer’s studies on β-Sitosterol isolated from Polygonum hydropiper L. Front. Pharmacol. 2017, 8, 697. [Google Scholar] [CrossRef]
- Hritcu, L.; Ionita, R.; Postu, P.A.; Gupta, G.K.; Turkez, H.; Lima, T.C.; Carvalho, C.U.S.; de Sousa, D.P. Antidepressant flavonoids and their relationship with oxidative stress. Oxid. Med. Cell. Longev. 2017, 2017, 5762172. [Google Scholar] [CrossRef] [PubMed]
- Herraiz, T.; Guillén, H. Monoamine oxidase-A inhibition and associated antioxidant activity in plant extracts with potential antidepressant actions. BioMed Res. Int. 2018, 2018, 4810394. [Google Scholar] [CrossRef]
- Willner, P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol. Stress 2017, 6, 78–93. [Google Scholar] [CrossRef]
- Pizzagalli, D.A. Depression, stress, and anhedonia: Toward a synthesis and integrated model. Annu. Rev. Clin. Psychol. 2014, 10, 393–423. [Google Scholar] [CrossRef] [PubMed]
- Castagné, V.; Moser, P.; Roux, S.; Porsolt, R.D. Rodent models of depression: Forced swim and tail suspension behavioral despair tests in rats and mice. Curr. Protoc. Neurosci. 2011, 55, 1–14. [Google Scholar] [CrossRef]
- Bogdanova, O.V.; Kanekar, S.; D’Anci, K.E.; Renshaw, P.F. Factors influencing behavior in the forced swim test. Physiol. Behav. 2013, 118, 227–239. [Google Scholar] [CrossRef]
- Maneenet, J.; Daodee, S.; Monthakantirat, O.; Boonyarat, C.; Khamphukdee, C.; Kwankhao, P.; Pitiporn, S.; Awale, S.; Chulikhit, Y.; Kijjoa, A. Kleeb Bua Daeng, a Thai traditional herbal formula, ameliorated unpredictable chronic mild stress-induced cognitive impairment in ICR mice. Molecules 2019, 24, 4587. [Google Scholar] [CrossRef] [PubMed]
- Menke, A.; Nitschke, F.; Hellmuth, A.; Helmel, J.; Wurst, C.; Stonawski, S.; Blickle, M.; Weiß, C.; Weber, H.; Hommers, L.; et al. Stress impairs response to antidepressants via HPA axis and immune system activation. Brain Behav. Immun. 2021, 93, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Snyder, J.S.; Soumier, A.; Brewer, M.; Pickel, J.; Cameron, H.A. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 2011, 476, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M.; Rashidy-Pour, A. Association between chronic stress and Alzheimer′s disease: Therapeutic effects of Saffron. Biomed. Pharmacother. 2021, 133, 110995. [Google Scholar] [CrossRef]
- Sotiropoulos, I.; Catania, C.; Pinto, L.G.; Silva, R.; Pollerberg, G.E.; Takashima, A.; Sousa, N.; Almeida, O.F.X. Stress acts cumulatively to precipitate Alzheimer′s disease-like tau pathology and cognitive deficits. J. Neurosci. 2011, 31, 7840–7847. [Google Scholar] [CrossRef] [PubMed]
- Laine, M.A.; Shansky, R.M. Rodent models of stress and dendritic plasticity-Implications for psychopathology. Neurobiol. Stress 2022, 17, 100438. [Google Scholar] [CrossRef] [PubMed]
- Numakawa, T.; Suzuki, S.; Kumamaru, E.; Adachi, N.; Richards, M.; Kunugi, H. BDNF function and intracellular signaling in neurons. Histol. Histopathol. 2010, 25, 237–258. [Google Scholar] [PubMed]
- Zhang, S.Q.; Cao, L.L.; Liang, Y.Y.; Wang, P. The molecular mechanism of chronic high-dose corticosterone-induced aggravation of cognitive impairment in APP/PS1 transgenic mice. Front. Mol. Neurosci. 2021, 13, 613421. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Abd El Wahab, M.G.; Ayuob, N.N.; Suliaman, M. The antidepressant-like effect of Ocimum basilicum in an animal model of depression. Biotech. Histochem. 2017, 92, 390–401. [Google Scholar] [CrossRef]
- Phillips, C. Brain-derived neurotrophic factor, depression, and physical activity: Making the neuroplastic connection. Neural Plast. 2017, 2017, 7260130. [Google Scholar] [CrossRef] [PubMed]
- Finkbeiner, S.; Tavazoie, S.F.; Maloratsky, A.; Jacobs, K.M.; Harris, K.M.; Greenberg, M.E. CREB: A major mediator of neuronal neurotrophin responses. Neuron 1997, 19, 1031–1047. [Google Scholar] [CrossRef]
- Nair, A.; Vaidya, V.A. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: Molecules that modulate our mood? J. Biosci. 2006, 31, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Racagni, G.; Popoli, M. Cellular and Molecular mechanisms in the long-term action of antidepressants. Dialogues Clin. Neurosci. 2008, 10, 385–400. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Ku, B.; Tie, L.; Yao, H.; Jiang, W.; Ma, X.; Li, X. Curcumin reverses the effects of chronic stress on behavior, the HPA axis, BDNF expression and phosphorylation of CREB. Brain Res. 2006, 1122, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Bramham, C.R.; Messaoudi, E. BDNF function in adult synaptic plasticity: The synaptic consolidation hypothesis. Prog. Neurobiol. 2005, 76, 99–125. [Google Scholar] [CrossRef]
- Bortolato, M.; Chen, K.; Shih, S.C. Monoamine oxidase inactivation: From pathophysiology to therapeutics. Adv. Drug Deliv. Rev. 2008, 60, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Fišar, Z. Drugs related to monoamine oxidase activity. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2016, 69, 112–124. [Google Scholar] [CrossRef] [PubMed]
Compound | IC50 (µM) | |
---|---|---|
MAO-A | MAO-B | |
N. nucifera | 129.6 ± 1.98 | 387.5 ± 2.05 |
1 | 10.2 ± 0.23 | 93.5 ± 0.9 |
2 | 578.4 ± 2.01 | 860.7± 3.7 |
3 | 108.9 ± 0.21 | 242.2 ± 0.78 |
4 | 583.7 ± 11.8 | ND 1 |
5 | 2.8 ± 0.13 | ND 2 |
Clorgyline | 0.014 ± 0.0001 | 3.88 ± 0.05 |
Deprenyl | 35.13 ± 0.96 | 0.156 ± 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maneenet, J.; Chotritthirong, Y.; Omar, A.M.; Choonong, R.; Daodee, S.; Monthakantirat, O.; Khamphukdee, C.; Pitiporn, S.; Awale, S.; Matsumoto, K.; et al. Nelumbo nucifera Petals Ameliorate Depressive-like Symptom and Cognitive Deficit in Unpredictable Chronic Mild Stress Mouse Model. Nutrients 2025, 17, 94. https://doi.org/10.3390/nu17010094
Maneenet J, Chotritthirong Y, Omar AM, Choonong R, Daodee S, Monthakantirat O, Khamphukdee C, Pitiporn S, Awale S, Matsumoto K, et al. Nelumbo nucifera Petals Ameliorate Depressive-like Symptom and Cognitive Deficit in Unpredictable Chronic Mild Stress Mouse Model. Nutrients. 2025; 17(1):94. https://doi.org/10.3390/nu17010094
Chicago/Turabian StyleManeenet, Juthamart, Yutthana Chotritthirong, Ashraf M. Omar, Rattanathorn Choonong, Supawadee Daodee, Orawan Monthakantirat, Charinya Khamphukdee, Supaporn Pitiporn, Suresh Awale, Kinzo Matsumoto, and et al. 2025. "Nelumbo nucifera Petals Ameliorate Depressive-like Symptom and Cognitive Deficit in Unpredictable Chronic Mild Stress Mouse Model" Nutrients 17, no. 1: 94. https://doi.org/10.3390/nu17010094
APA StyleManeenet, J., Chotritthirong, Y., Omar, A. M., Choonong, R., Daodee, S., Monthakantirat, O., Khamphukdee, C., Pitiporn, S., Awale, S., Matsumoto, K., & Chulikhit, Y. (2025). Nelumbo nucifera Petals Ameliorate Depressive-like Symptom and Cognitive Deficit in Unpredictable Chronic Mild Stress Mouse Model. Nutrients, 17(1), 94. https://doi.org/10.3390/nu17010094