Role of Increasing Body Mass Index in Gut Barrier Dysfunction, Systemic Inflammation, and Metabolic Dysregulation in Obesity
<p>A priori group stratification resulting from the DAPC analysis run using the clinical/biochemical and anthropometric complete parameter matrix obtained from the 58-patient set. Used eigen values have been colored in dark grey.</p> "> Figure 2
<p>Clinical/anthropometric a posterior sample stratification in the DAPC analysis. The a posterior group assignment was based on BMI grouping, such as overweight, type 1, 2, and type 3 obesity.</p> "> Figure 3
<p>DAPC loading and assignment plot based on the 58-patient sample’s clinical/biochemical and anthropometric parameters. (<b>A</b>) DAPC loading plot reporting the clinical/anthropometric variables that most impacted cluster separation. An arbitrary 0.02 threshold is used to show the above threshold variables. (<b>B</b>) The cell matrix reports the fitting between the “a priori” and the “a posterior” assignments.</p> "> Figure 4
<p>Comparison of glucose metabolism and endocrine indicators based on DAPC BMI stratification in overweight and obese subjects. Data are expressed as the mean ± standard deviation, and statistical analyses were performed using an ANOVA followed by a Tukey’s post hoc test. Statistically significant comparisons (<span class="html-italic">p</span> < 0.05) are highlighted by a bold line and marked with an asterisk. Path coefficients and significance: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01. Measured parameters include (<b>a</b>) fasting plasma glucose, (<b>b</b>) fasting insulin, (<b>c</b>) HOMA-IR, (<b>d</b>) fasting obestatin, (<b>e</b>) fasting ghrelin.</p> "> Figure 5
<p>Levels of inflammatory markers in the 58 overweight and obese individuals grouped according to BMI categories. Data are expressed as the mean ± standard deviation, and statistical analyses were performed using an ANOVA followed by a Tukey’s post hoc test. Statistically significant comparisons (<span class="html-italic">p</span> < 0.05) are highlighted by a bold line and marked with an asterisk. Path coefficients and significance: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01. Inflammatory marker sub-panels include (<b>a</b>) PCR, (<b>b</b>) IL-6, (<b>c</b>) IL-8, (<b>d</b>) IL-10, (<b>e</b>) TNF-alpha.</p> "> Figure 6
<p>Levels of biomarkers related to intestinal barrier function and integrity measured in the set composed of 58 patients. Data are expressed as the mean ± standard deviation, and statistical analyses were performed using an ANOVA followed by a Tukey’s post hoc test. Statistically significant comparisons (<span class="html-italic">p</span> < 0.05) are highlighted by a bold line and marked with an asterisk. Path coefficients and significance: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, **** <span class="html-italic">p</span> < 0.0001. Sub-panels include (<b>a</b>) lac/man ration, IFAB-2 (<b>b</b>), (<b>c</b>) serum claudin 5.</p> "> Figure 7
<p>Linear regression analysis assessing the relationship between BMI and the intestinal permeability marker I-FABP.</p> "> Figure 8
<p>Levels of urinary indole, urinary skatole, and serum lipopolysaccharide (LPS) in the study cohort where the 58 patients have been grouped based on the DAPC BMI clusters. Data are expressed as the mean ± standard deviation, and statistical analyses were performed using an ANOVA followed by a Tukey’s post hoc test. <span class="html-italic">p</span>-values indicating significant differences (<span class="html-italic">p</span> < 0.05) are highlighted by a bold line and marked with an asterisk. Path coefficients and significance: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01. The cut-off levels indicating dysbiosis were set at 20 mg/L for indican and 20 μg/L for skatole. Sub-panels of urinary markers include (<b>a</b>) indican, (<b>b</b>) skatole and, (<b>c</b>) LPS.</p> "> Figure 9
<p>Statistically significant urinary VOCs detected by metabolomic (GC/MS) analyses on 37 patient samples. Fold change analysis was joined with a Welch’s corrected test (BH multiple correction) based on taxa at the genus level. A dot size increase is representative of lower <span class="html-italic">p</span>-values. Log2(FC) values range from gray (lower) to red (higher). Increased and decreased VOC concentrations are relative to the first comparison member, i.e., Group II versus Group I (<b>A</b>). (<b>B</b>) Pairwise comparison between Group III and Group I samples.</p> "> Figure 10
<p>Statistically significant taxa volcano plot. Fold change analysis was joined with a Welch’s corrected test (BH multiple correction) based on taxa at the genus level. A dot size increase is representative of lower <span class="html-italic">p</span>-values. Log2(FC) values range from gray (lower) to red (higher). Increased and decreased VOC concentrations are relative to the first comparison member, i.e., Group II (<b>A</b>) versus Group I (<b>B</b>) pairwise comparison between Group III and Group II samples. (<b>C</b>) Comparison between Group II and Group I samples.</p> "> Figure 11
<p>Pearson’s correlations among the VOC, taxa, and clinical variables. Statistically significant VOC (black), clinical/anthropometrical (dark orange), and taxa (dark green) variable sets have been correlated via a Pearson’s test. Only inter-group variable correlations with a <span class="html-italic">p</span>-value equal/lower than 0.05 have been shown, and only correlations greater than 0.6 were flagged in bold black font. Positive and negative correlations were reported as red and blue bubbles, respectively. Based on inter- and intra-group variable comparison (taxa, VOC, and clinical variables), bubbles were placed on a light aqua or yellow background.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Cohort and Clinical Trials
2.2. Anthropometric Assessment
2.3. Bioelectrical Impedance Analysis (BIA)
2.4. Clinical Biochemistry
2.5. Inflammation Marker Evaluation
2.6. Intestinal Permeability Evaluation
2.7. Gastrointestinal Barrier Integrity Evaluation
2.8. Fecal and Urinary VOC Profiles from Untargeted Metabolomics (GC/MS)
2.9. Fecal DNA Extraction and 16S Metataxonomics
2.10. Statistical Analyses
3. Results
3.1. Cohort Description
3.2. “A Priori” Clustering Analysis
3.3. Demographic, Anthropometric, and Bioimpedance Characteristics
3.4. Serum Biochemistry Analysis
3.5. Glucose Metabolism and Endocrine Hormone Level
3.6. Levels of Inflammatory Factors
3.7. Intestinal Barrier Function and Integrity
3.8. Intestinal Dysbiosis and Bacterial Translocation
3.9. Statistically Different Urinary VOCs
3.10. Metataxonomic Differences Based on Clustering-Based BMI
3.11. Statistically Different Fecal VOCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tremmel, M.; Gerdtham, U.G.; Nilsson, P.M.; Saha, S. Economic Burden of Obesity: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2017, 14, 435. [Google Scholar] [CrossRef] [PubMed]
- Hebebrand, J.; Volckmar, A.L.; Knoll, N.; Hinney, A. Chipping away the ‘missing heritability’: GIANT steps forward in the molecular elucidation of obesity—But still lots to go. Obes. Facts 2010, 3, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, D.; Nobrega, C.; Manco, L.; Padez, C. The contribution of genetics and environment to obesity. Br. Med. Bull. 2017, 123, 159–173. [Google Scholar] [CrossRef] [PubMed]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef]
- Kolb, H. Obese visceral fat tissue inflammation: From protective to detrimental? BMC Med. 2022, 20, 494. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Acciarino, A.; Diwakarla, S.; Handreck, J.; Bergola, C.; Sahakian, L.; McQuade, R.M. The role of the gastrointestinal barrier in obesity-associated systemic inflammation. Obes. Rev. 2024, 25, e13673. [Google Scholar] [CrossRef] [PubMed]
- Montagnani, M.; Bottalico, L.; Potenza, M.A.; Charitos, I.A.; Topi, S.; Colella, M.; Santacroce, L. The Crosstalk between Gut Microbiota and Nervous System: A Bidirectional Interaction between Microorganisms and Metabolome. Int. J. Mol. Sci. 2023, 24, 10322. [Google Scholar] [CrossRef]
- Rios-Arce, N.D.; Collins, F.L.; Schepper, J.D.; Steury, M.D.; Raehtz, S.; Mallin, H.; Schoenherr, D.T.; Parameswaran, N.; McCabe, L.R. Epithelial Barrier Function in Gut-Bone Signaling. In Understanding the Gut-Bone Signaling Axis; Advances in Experimental Medicine and Biology; McCabe, L., Parameswaran, N., Eds.; Springer: Cham, Switzerland, 2017; Volume 1033, pp. 151–183. [Google Scholar]
- Muehler, A.; Slizgi, J.R.; Kohlhof, H.; Groeppel, M.; Peelen, E.; Vitt, D. Clinical relevance of intestinal barrier dysfunction in common gastrointestinal diseases. World J. Gastrointest. Pathophysiol. 2020, 11, 114–130. [Google Scholar] [CrossRef] [PubMed]
- Linsalata, M.; Riezzo, G.; Clemente, C.; D’Attoma, B.; Russo, F. Noninvasive Biomarkers of Gut Barrier Function in Patients Suffering from Diarrhea Predominant-IBS: An Update. Dis. Markers 2020, 2020, 2886268. [Google Scholar] [CrossRef] [PubMed]
- Seethaler, B.; Basrai, M.; Neyrinck, A.M.; Nazare, J.A.; Walter, J.; Delzenne, N.M.; Bischoff, S.C. Biomarkers for assessment of intestinal permeability in clinical practice. Am. J. Physiol. Gastrointest. Liver Physiol. 2021, 321, G11–G17. [Google Scholar] [CrossRef] [PubMed]
- Linsalata, M.; Ignazzi, A.; D’Attoma, B.; Riezzo, G.; Mallardi, D.; Orlando, A.; Prospero, L.; Notarnicola, M.; De Nunzio, V.; Pinto, G.; et al. Relationship between Markers of Gut Barrier Function and Erythrocyte Membrane PUFAs in Diarrhea-Predominant IBS Patients Undergoing a Low-FODMAP Diet. Nutrients 2024, 16, 2706. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A. All disease begins in the (leaky) gut: Role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Research 2020, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Heo, J.S.; Baek, K.S.; Kim, S.Y.; Kim, J.H.; Baek, K.H.; Kim, K.E.; Sheen, Y.H. Zonulin level, a marker of intestinal permeability, is increased in association with liver enzymes in young adolescents. Clin. Chim. Acta 2018, 481, 218–224. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Honda, K.; Littman, D.R. The microbiota in adaptive immune homeostasis and disease. Nature 2016, 535, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Violi, F.; Cammisotto, V.; Bartimoccia, S.; Pignatelli, P.; Carnevale, R.; Nocella, C. Gut-derived low-grade endotoxaemia, atherothrombosis and cardiovascular disease. Nat. Rev. Cardiol. 2023, 20, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Maqoud, F.; Orlando, A.; Tricarico, D.; Antonacci, M.; Di Turi, A.; Giannelli, G.; Russo, F. Anti-Inflammatory Effects of a Novel Acetonitrile-Water Extract of Lens Culinaris against LPS-Induced Damage in Caco-2 Cells. Int. J. Mol. Sci. 2024, 25, 3802. [Google Scholar] [CrossRef] [PubMed]
- de La Serre, C.B.; de Lartigue, G.; Raybould, H.E. Chronic exposure to low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons. Physiol. Behav. 2015, 139, 188–194. [Google Scholar] [CrossRef]
- Schele, E.; Grahnemo, L.; Anesten, F.; Hallen, A.; Backhed, F.; Jansson, J.O. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology 2013, 154, 3643–3651. [Google Scholar] [CrossRef]
- Tolhurst, G.; Heffron, H.; Lam, Y.S.; Parker, H.E.; Habib, A.M.; Diakogiannaki, E.; Cameron, J.; Grosse, J.; Reimann, F.; Gribble, F.M. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012, 61, 364–371. [Google Scholar] [CrossRef]
- Rinaldi, R.; De Nucci, S.; Castellana, F.; Di Chito, M.; Giannuzzi, V.; Shahini, E.; Zupo, R.; Lampignano, L.; Piazzolla, G.; Triggiani, V.; et al. The Effects of Eight Weeks’ Very Low-Calorie Ketogenic Diet (VLCKD) on Liver Health in Subjects Affected by Overweight and Obesity. Nutrients 2023, 15, 825. [Google Scholar] [CrossRef] [PubMed]
- Linsalata, M.; D’Attoma, B.; Orlando, A.; Guerra, V.; Russo, F. Comparison of an enzymatic assay with liquid chromatography-pulsed amperometric detection for the determination of lactulose and mannitol in urine of healthy subjects and patients with active celiac disease. Clin. Chem. Lab. Med. 2014, 52, e61–e64. [Google Scholar] [CrossRef]
- Vitellio, P.; Celano, G.; Bonfrate, L.; Gobbetti, M.; Portincasa, P.; De Angelis, M. Effects of Bifidobacterium longum and Lactobacillus rhamnosus on Gut Microbiota in Patients with Lactose Intolerance and Persisting Functional Gastrointestinal Symptoms: A Randomised, Double-Blind, Cross-Over Study. Nutrients 2019, 11, 886. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef] [PubMed]
- Aronne, L.J. Classification of obesity and assessment of obesity-related health risks. Obes. Res. 2002, 10 (Suppl. S2), 105S–115S. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Luo, M.; Liu, Q.; Zhong, D.; Liu, Y.; Zhang, K. Influence of abdominal fat distribution and inflammatory status on post-operative prognosis in non-small cell lung cancer patients: A retrospective cohort study. J. Cancer Res. Clin. Oncol. 2024, 150, 111. [Google Scholar] [CrossRef]
- Paradis, T.; Begue, H.; Basmaciyan, L.; Dalle, F.; Bon, F. Tight Junctions as a Key for Pathogens Invasion in Intestinal Epithelial Cells. Int. J. Mol. Sci. 2021, 22, 2506. [Google Scholar] [CrossRef]
- Russo, F.; Chimienti, G.; Riezzo, G.; Linsalata, M.; D’Attoma, B.; Clemente, C.; Orlando, A. Adipose Tissue-Derived Biomarkers of Intestinal Barrier Functions for the Characterization of Diarrhoea-Predominant IBS. Dis. Markers 2018, 2018, 1827937. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, F.; Del Gaudio, A.; Petito, V.; Lopetuso, L.R.; Scaldaferri, F. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review. Intern. Emerg. Med. 2024, 19, 275–293. [Google Scholar] [CrossRef]
- Backhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718–15723. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, L.; Cao, Z.; Li, W.; Li, H.; Lu, C.; Yang, X.; Liu, Y. Gut microbiota as an “invisible organ” that modulates the function of drugs. Biomed. Pharmacother. 2020, 121, 109653. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Whitley, C.S.; Haribabu, B.; Jala, V.R. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 1463–1482. [Google Scholar] [CrossRef]
- Portincasa, P.; Bonfrate, L.; Khalil, M.; Angelis, M.; Calabrese, F.M.; D’Amato, M.; Wang, D.Q.; Di Ciaula, A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2021, 10, 83. [Google Scholar] [CrossRef] [PubMed]
- Dalile, B.; Van Oudenhove, L.; Vervliet, B.; Verbeke, K. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 461–478. [Google Scholar] [CrossRef] [PubMed]
- Brunner, J.; Ragupathy, S.; Borchard, G. Target specific tight junction modulators. Adv. Drug Deliv. Rev. 2021, 171, 266–288. [Google Scholar] [CrossRef]
- Lu, S.; Cao, Z.B. Interplay between Vitamin D and Adipose Tissue: Implications for Adipogenesis and Adipose Tissue Function. Nutrients 2023, 15, 4832. [Google Scholar] [CrossRef]
- Yajnik, C.S.; Katre, P.A.; Joshi, S.M.; Kumaran, K.; Bhat, D.S.; Lubree, H.G.; Memane, N.; Kinare, A.S.; Pandit, A.N.; Bhave, S.A.; et al. Higher glucose, insulin and insulin resistance (HOMA-IR) in childhood predict adverse cardiovascular risk in early adulthood: The Pune Children’s Study. Diabetologia 2015, 58, 1626–1636. [Google Scholar] [CrossRef]
- Rodrigues, K.F.; Pietrani, N.T.; Bosco, A.A.; Campos, F.M.F.; Sandrim, V.C.; Gomes, K.B. IL-6, TNF-α, and IL-10 levels/polymorphisms and their association with type 2 diabetes mellitus and obesity in Brazilian individuals. Arch. Endocrinol. Metab. 2017, 61, 438–446. [Google Scholar] [CrossRef]
- Tyszka, M.; Maciejewska-Markiewicz, D.; Bilinski, J.; Lubas, A.; Stachowska, E.; Basak, G.W. Increased Intestinal Permeability and Stool Zonulin, Calprotectin and Beta-Defensin-2 Concentrations in Allogenic Hematopoietic Cell Transplantation Recipients. Int. J. Mol. Sci. 2022, 23, 15962. [Google Scholar] [CrossRef] [PubMed]
- Vanuytsel, T.; Tack, J.; Farre, R. The Role of Intestinal Permeability in Gastrointestinal Disorders and Current Methods of Evaluation. Front. Nutr. 2021, 8, 717925. [Google Scholar] [CrossRef]
- Oyerinde, A.S.; Selvaraju, V.; Babu, J.R.; Geetha, T. Potential Role of Oxidative Stress in the Production of Volatile Organic Compounds in Obesity. Antioxidants 2023, 12, 129. [Google Scholar] [CrossRef]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, W.; Duan, Y. Effect of H2O2 induced oxidative stress (OS) on volatile organic compounds (VOCs) and intracellular metabolism in MCF-7 breast cancer cells. J. Breath Res. 2019, 13, 036005. [Google Scholar] [CrossRef] [PubMed]
- Capurso, C.; Capurso, A. From excess adiposity to insulin resistance: The role of free fatty acids. Vasc. Pharmacol. 2012, 57, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, N.; Su, X.; Gao, Y.; Yang, R. Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis. Cells 2023, 12, 793. [Google Scholar] [CrossRef] [PubMed]
- Alkhouri, N.; Eng, K.; Cikach, F.; Patel, N.; Yan, C.; Brindle, A.; Rome, E.; Hanouneh, I.; Grove, D.; Lopez, R.; et al. Breathprints of childhood obesity: Changes in volatile organic compounds in obese children compared with lean controls. Pediatr. Obes. 2015, 10, 23–29. [Google Scholar] [CrossRef]
- Onate, F.P.; Chamignon, C.; Burz, S.D.; Lapaque, N.; Monnoye, M.; Philippe, C.; Bredel, M.; Chene, L.; Farin, W.; Paillarse, J.M.; et al. Adlercreutzia equolifaciens Is an Anti-Inflammatory Commensal Bacterium with Decreased Abundance in Gut Microbiota of Patients with Metabolic Liver Disease. Int. J. Mol. Sci. 2023, 24, 12232. [Google Scholar] [CrossRef]
- Campbell, A.; Gdanetz, K.; Schmidt, A.W.; Schmidt, T.M. H2 generated by fermentation in the human gut microbiome influences metabolism and competitive fitness of gut butyrate producers. Microbiome 2023, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Saunders, C.; Sanossian, N. Food, gut barrier dysfunction, and related diseases: A new target for future individualized disease prevention and management. Food Sci. Nutr. 2023, 11, 1671–1704. [Google Scholar] [CrossRef]
- Estep, M.; Abawi, M.; Jarrar, M.; Wang, L.; Stepanova, M.; Elariny, H.; Moazez, A.; Goodman, Z.; Chandhoke, V.; Baranova, A.; et al. Association of obestatin, ghrelin, and inflammatory cytokines in obese patients with non-alcoholic fatty liver disease. Obes. Surg. 2011, 21, 1750–1757. [Google Scholar] [CrossRef]
- de Luca, C.; Olefsky, J.M. Inflammation and insulin resistance. FEBS Lett. 2008, 582, 97–105. [Google Scholar] [CrossRef] [PubMed]
Group I | Group II | Group III | |
---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | |
Age | 45.75 ± 13.10 | 43.43 ± 15.28 | 37.75 ± 11.09 |
Weight (kg) | 78.44 ± 7.835 | 94.84 ± 12.59 * | 118.6 ± 24.60 ****, ## |
Height (cm) | 170.3 ± 8.102 | 168.9 ± 8.175 | 165.4 ± 14.85 |
BMI (kg/m2) | 27.01 ± 1.386 | 34.15 ± 2.616 **** | 45.54 ± 3.065 ****, #### |
Waist Circumference (cm) | 95.63 ± 6.865 | 109.5 ± 13.74 * | 128.3 ± 10.05 ****, ## |
Fat Mass (kg) | 26.53 ± 3.728 | 40.29 ± 7.363 *** | 53.54 ± 5.737 ****, ### |
Fat-Free Mass (kg) | 51.9 ± 8.293 | 59.98 ± 9.793 | 70.88 ± 20.92 * |
Phase Angle (°) | 6.238 ± 0.8501 | 12.59 ± 18.45 | 13.4 ± 19.25 |
Total Body Water (kg) | 38.43 ± 5.988 | 44.53 ± 6.927 | 55.81 ± 15.36 *, ## |
Extracellular Body Water (kg) | 16.91 ± 1.936 | 23.03 ± 8.934 | 28.63 ± 4.124 ** |
Group I | Group II | Group III | |
---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | |
Total Cholesterol (mg/dL) | 211.4 ± 39.71 | 198.1 ± 26.68 | 225.7 ± 47.58 |
HDL Cholesterol (mg/dL) | 53 ± 15.91 | 58.79 ± 14.06 | 44.97 ± 13.94 |
LDL Cholesterol (mg/dL) | 141.1 ± 39.68 | 132.1 ± 22.70 | 159 ± 41.74 |
Triglycerides (mg/dL) | 69.29 ± 20.44 | 89 ± 28.97 | 205.6 ± 79.62 ****, #### |
25-OH-Vitamin D (ng/mL) | 24.18 ± 11.58 | 22.86 ± 5.389 | 13.9 ± 4.463 *, # |
Iron (µg/dL) | 100.6 ± 47.27 | 78.54 ± 27.37 | 96.9 ± 28.94 |
Ferritin (ng/mL) | 82.3 ± 90.13 | 136.1 ± 182.6 | 139.7 ±110.4 |
Uric Acid (mg/dL) | 5.113 ± 1.815 | 5.578 ± 1.436 | 5.717 ± 0.2927 |
Creatinine (mg/dL) | 0.7213 ± 0.1009 | 0.7892 ± 0.1211 | 0.775 ± 0.1865 |
Group III vs. Group II | FC | log2(FC) | raw.pval | −LOG10(p) |
---|---|---|---|---|
Caryophyllene | 0.28543 | −1.8088 | 0.0035686 | 2.4475 |
Dibutylphthalate | 5.21 × 10−5 | −14.229 | 0.030786 | 1.5116 |
2 Undecene 6 methyl(Z) | 7.11 × 10−5 | −13.779 | 0.034319 | 1.4645 |
Cyclohexane | 0.17531 | −2.512 | 0.036752 | 1.4347 |
Squalene | 5.90 × 10−5 | −14.048 | 0.038522 | 1.4143 |
Benzene propanoic acid ethylester | 0.16315 | −2.6157 | 0.046753 | 1.3302 |
Acetoin | 0.022938 | −5.4461 | 0.049827 | 1.3025 |
Group II vs. Group I | FC | log2(FC) | raw.pval | −LOG10(p) |
Tetradecane | 0.088078 | −3.5051 | 0.0012218 | 2.913 |
Ethane 1,1 diethoxy | 7.6345 | 2.9325 | 0.0029338 | 2.5326 |
1H Indole 2 methyl | 0.15457 | −2.6937 | 0.0058608 | 2.232 |
Dimethylamine | 0.068047 | −3.8773 | 0.010333 | 1.9858 |
2 Dodecanol | 0.30123 | −1.7311 | 0.019857 | 1.7021 |
1H Indole 5,methyl | 0.1325 | −2.9159 | 0.031315 | 1.5042 |
Dimethylsulfide | 0.099079 | −3.3353 | 0.040285 | 1.3949 |
9 Octadecene (E) | 0.35901 | −1.4779 | 0.042605 | 1.3705 |
Humulene | 14151 | 13.789 | 0.042715 | 1.3694 |
Group III vs. Group I | FC | log2(FC) | raw.pval | −LOG10(p) |
Tetradecane | 1.37 × 10−5 | −16.16 | 0.0010575 | 2.9757 |
1H Indole 2 methyl | 1.14 × 10−8 | −26.386 | 0.0022662 | 2.6447 |
Squalene | 2.14 × 10−7 | −22.158 | 0.0074536 | 2.1276 |
Ethanone 1 (3 aminophenyl) | 0.029422 | −5.087 | 0.0091548 | 2.0384 |
Phenol 3 methyl 5(1 methylethyl) methylcarbamate | 0.12261 | −3.0279 | 0.013715 | 1.8628 |
Cyclohexane | 0.14551 | −2.7808 | 0.015555 | 1.8081 |
Benzenepropanol | 6.3568 | 2.6683 | 0.016863 | 1.7731 |
Methanethiol | 0.00025876 | −11.916 | 0.020583 | 1.6865 |
2 Undecanone | 0.041823 | −4.5796 | 0.024052 | 1.6188 |
1H Indole 5 methyl | 0.32174 | −1.6361 | 0.025754 | 1.5892 |
1 Pentadecene | 0.075389 | −3.7295 | 0.026016 | 1.5848 |
9 Octadecenoicacid(Z) methylester | 0.090349 | −3.4683 | 0.026327 | 1.5796 |
1 Nonanol | 0.062512 | −3.9997 | 0.027971 | 1.5533 |
Butanoicacid 3 methylbutyl ester | 53850 | 15.717 | 0.030967 | 1.5091 |
Benzeneaceticacid ethyl ester | 3.1594 | 1.6596 | 0.032752 | 1.4848 |
Acetoin | 0.026044 | −5.2629 | 0.037233 | 1.4291 |
Cyclopentadecane | 0.05617 | −4.1541 | 0.038908 | 1.41 |
Disulfide dimethyl | 0.22422 | −2.157 | 0.040839 | 1.3889 |
Dimethylsulfide | 2.34 × 10−5 | −15.382 | 0.041756 | 1.3793 |
1 6 10 Dodecatrien 3 ol 3 7 11 trimethyl [S (Z)] | 0.00014158 | −12.786 | 0.041756 | 1.3793 |
2 Undecene 6 methyl (Z) | 8.18 × 10−6 | −16.899 | 0.043923 | 1.3573 |
Ethyleneoxide | 2.62 × 10−5 | −15.218 | 0.045674 | 1.3403 |
2 Dodecanol | 0.14026 | −2.8339 | 0.046023 | 1.337 |
Acetonitrile | 3.21 × 10−6 | −18.247 | 0.047046 | 1.3275 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maqoud, F.; Calabrese, F.M.; Celano, G.; Mallardi, D.; Goscilo, F.; D’Attoma, B.; Ignazzi, A.; Linsalata, M.; Bitetto, G.; Di Chito, M.; et al. Role of Increasing Body Mass Index in Gut Barrier Dysfunction, Systemic Inflammation, and Metabolic Dysregulation in Obesity. Nutrients 2025, 17, 72. https://doi.org/10.3390/nu17010072
Maqoud F, Calabrese FM, Celano G, Mallardi D, Goscilo F, D’Attoma B, Ignazzi A, Linsalata M, Bitetto G, Di Chito M, et al. Role of Increasing Body Mass Index in Gut Barrier Dysfunction, Systemic Inflammation, and Metabolic Dysregulation in Obesity. Nutrients. 2025; 17(1):72. https://doi.org/10.3390/nu17010072
Chicago/Turabian StyleMaqoud, Fatima, Francesco Maria Calabrese, Giuseppe Celano, Domenica Mallardi, Francesco Goscilo, Benedetta D’Attoma, Antonia Ignazzi, Michele Linsalata, Gabriele Bitetto, Martina Di Chito, and et al. 2025. "Role of Increasing Body Mass Index in Gut Barrier Dysfunction, Systemic Inflammation, and Metabolic Dysregulation in Obesity" Nutrients 17, no. 1: 72. https://doi.org/10.3390/nu17010072
APA StyleMaqoud, F., Calabrese, F. M., Celano, G., Mallardi, D., Goscilo, F., D’Attoma, B., Ignazzi, A., Linsalata, M., Bitetto, G., Di Chito, M., Pesole, P. L., Diciolla, A., Apa, C. A., De Pergola, G., Giannelli, G., De Angelis, M., & Russo, F. (2025). Role of Increasing Body Mass Index in Gut Barrier Dysfunction, Systemic Inflammation, and Metabolic Dysregulation in Obesity. Nutrients, 17(1), 72. https://doi.org/10.3390/nu17010072