Effects of Metabolites Derived from Guava (Psidium guajava L.) Leaf Extract Fermented by Limosilactobacillus fermentum on Hepatic Energy Metabolism via SIRT1-PGC1α Signaling in Diabetic Mice
<p>GFL supplementation decreased (<b>A</b>) fasting blood glucose and (<b>B</b>) hemoglobin A1c (HbA1c) levels in diabetic mice. All values above are represented as mean ± SD (n = 5–6). Means with different letters were significantly different. A <span class="html-italic">p</span>-value < 0.05 was considered statistically significant.</p> "> Figure 2
<p>GFL supplementation alleviated (<b>A</b>) hepatic morphology (200× magnification) in diabetic mice. (<b>B</b>) % lipid droplet, (<b>C</b>) average lipid droplet size, and (<b>D</b>) the number of lipid droplets. All values above are represented as mean ± SD (n = 3). Means with different letters were significantly different. A <span class="html-italic">p</span>-value < 0.05 was considered statistically significant.</p> "> Figure 3
<p>GFL supplementation mitigated hepatic lipid profiles in diabetic mice. (<b>A</b>) triglyceride content and (<b>B</b>) total cholesterol content All values above are represented as mean ± SD (n = 5–6). Means with different letters were significantly different. A <span class="html-italic">p</span>-value < 0.05 was considered statistically significant.</p> "> Figure 4
<p>GFL supplementation improved hepatic insulin signaling in diabetic mice. All values above are represented as mean ± SD (n = 5–6). Means with different letters were significantly different. A <span class="html-italic">p</span>-value < 0.05 was considered statistically significant.</p> "> Figure 5
<p>GFL supplementation reduced hepatic lipogenesis in diabetic mice. All values above are represented as mean ± SD (n = 5–6). Means with different letters were significantly different. A <span class="html-italic">p</span>-value < 0.05 was considered statistically significant.</p> "> Figure 6
<p>GFL supplementation enhanced hepatic energy metabolism in diabetic mice. All values above are represented as mean ± SD (n = 5–6). Means with different letters were significantly different. A <span class="html-italic">p</span>-value < 0.05 was considered statistically significant.</p> "> Figure 7
<p>GFL supplementation attenuated hepatic inflammation in diabetic mice. All values above are represented as mean ± SD (n = 5–6). Means with different letters were significantly different. A <span class="html-italic">p</span>-value < 0.05 was considered statistically significant.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Fermented Guava Leaf Extract
2.2. Experimental Design
2.3. Hemoglobin A1c
2.4. Hepatic Histological Analysis
2.5. Hepatic Lipid Profile Analysis
2.6. Protein Extraction and Western Blot Analysis
2.7. Statistical Analysis
3. Results
3.1. Effects of GFL Supplementation on Body Weight, Food Intake, and Liver Index in Diabetic Mice
3.2. Effects of GFL Supplementation Fasting Blood Glucose and Hemoglobin A1c Levels in Diabetic Mice
3.3. Effects of GFL Supplementation on Hepatic Histology in Diabetic Mice
3.4. Effects of GFL Supplementation on Hepatic Lipid Profiles in Diabetic Mice
3.5. Effects of GFL Supplementation on Hepatic Insulin Signaling in Diabetic Mice
3.6. Effects of GFL Supplementation on Hepatic Lipid Metabolism in Diabetic Mice
3.7. Effects of GFL Supplementation on Hepatic Energy Metabolism in Diabetic Mice
3.8. Effects of GFL Supplementation on Hepatic Inflammation in Diabetic Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Magliano, D.J.; Boyko, E.J.; committee, International Diabetes Federation (IDF) Diabetes Atlas (I.D.A.). IDF Diabetes Atlas, 10th ed.; IDF: Brussels, Belgium, 2021; pp. 1–141. [Google Scholar]
- Harding, J.L.; Pavkov, M.E.; Magliano, D.J.; Shaw, J.E.; Gregg, E.W. Global Trends in Diabetes Complications: A Review of Current Evidence. Diabetologia 2019, 62, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The Global Epidemiology of NAFLD and NASH in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. J. Hepatol. 2019, 71, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J.F.; Schattenberg, J.M.; et al. A New Definition for Metabolic Dysfunction-Associated Fatty Liver Disease: An International Expert Consensus Statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Sakurai, Y.; Kubota, N.; Yamauchi, T.; Kadowaki, T. Role of Insulin Resistance in MAFLD. Int. J. Mol. Sci. 2021, 22, 4156. [Google Scholar] [CrossRef]
- Chao, H.W.; Chao, S.W.; Lin, H.; Ku, H.C.; Cheng, C.F. Homeostasis of Glucose and Lipid in Non-Alcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2019, 20, 298. [Google Scholar] [CrossRef]
- Badmus, O.O.; Hillhouse, S.A.; Anderson, C.D.; Hinds, T.D.; Stec, D.E. Molecular Mechanisms of Metabolic Associated Fatty Liver Disease (MAFLD): Functional Analysis of Lipid Metabolism Pathways. Clin. Sci. 2022, 136, 1347. [Google Scholar] [CrossRef]
- Kitada, M.; Koya, D. SIRT1 in Type 2 Diabetes: Mechanisms and Therapeutic Potential. Diabetes Metab. J. 2013, 37, 315. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Gao, Z.; Zhang, J.; Rivera, C.A.; Yin, J.; Weng, J.; Ye, J. Lack of SIRT1 (Mammalian Sirtuin 1) Activity Leads to Liver Steatosis in the SIRT1+/− Mice: A Role of Lipid Mobilization and Inflammation. Endocrinology 2010, 151, 2504. [Google Scholar] [CrossRef]
- De Kreutzenberg, S.V.; Ceolotto, G.; Papparella, I.; Bortoluzzi, A.; Semplicini, A.; Dalla Man, C.; Cobelli, C.; Fadini, G.P.; Avogaro, A. Downregulation of the Longevity-Associated Protein Sirtuin 1 in Insulin Resistance and Metabolic Syndrome: Potential Biochemical Mechanisms. Diabetes 2010, 59, 1006–1015. [Google Scholar] [CrossRef]
- Iacono, A.; Raso, G.M.; Canani, R.B.; Calignano, A.; Meli, R. Probiotics as an Emerging Therapeutic Strategy to Treat NAFLD: Focus on Molecular and Biochemical Mechanisms. J. Nutr. Biochem. 2011, 22, 699–711. [Google Scholar] [CrossRef]
- Mu, J.; Tan, F.; Zhou, X.; Zhao, X. Lactobacillus Fermentum CQPC06 in Naturally Fermented Pickles Prevents Non-Alcoholic Fatty Liver Disease by Stabilizing the Gut–Liver Axis in Mice. Food Funct. 2020, 11, 8707–8723. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; An, M.; Heo, H.; Park, J.Y.; Lee, J.; Kang, C.H. Limosilactobacillus fermentum MG4294 and Lactiplantibacillus plantarum MG5289 Ameliorates Nonalcoholic Fatty Liver Disease in High-Fat Diet-Induced Mice. Nutrients 2023, 15, 2005. [Google Scholar] [CrossRef]
- Rivero-Gutiérrez, B.; Gámez-Belmonte, R.; Suárez, M.D.; Lavín, J.L.; Aransay, A.M.; Olivares, M.; Martínez-Augustin, O.; Sánchez de Medina, F.; Zarzuelo, A. A Synbiotic Composed of Lactobacillus Fermentum CECT5716 and FOS Prevents the Development of Fatty Acid Liver and Glycemic Alterations in Rats Fed a High Fructose Diet Associated with Changes in the Microbiota. Mol. Nutr. Food Res. 2017, 61, 1600622. [Google Scholar] [CrossRef] [PubMed]
- de Almada, C.N.; de Almada, C.N.; de Sant’Ana, A.S. Paraprobiotics as Potential Agents for Improving Animal Health. In Probiotics and Prebiotics in Animal Health and Food Safety; Springer: Cham, Switzerland, 2018; pp. 247–268. [Google Scholar] [CrossRef]
- Martín, R.; Langella, P. Emerging Health Concepts in the Probiotics Field: Streamlining the Definitions. Front. Microbiol. 2019, 10, 457799. [Google Scholar] [CrossRef] [PubMed]
- Taverniti, V.; Guglielmetti, S. The Immunomodulatory Properties of Probiotic Microorganisms beyond Their Viability (Ghost Probiotics: Proposal of Paraprobiotic Concept). Genes Nutr. 2011, 6, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Jun, B.G.; Kim, S.H.; Kim, S.H.; Hong, S.M.; Lee, H.; Lim, Y.; Kim, S.Y.; Lee, C.H. Metabolomic Comparison of Guava (Psidium Guajava L.) Leaf Extracts Fermented by Limosilactobacillus fermentum and Lactiplantibacillus plantarum and Their Antioxidant and Antiglycation Activities. Nutrients 2024, 16, 841. [Google Scholar] [CrossRef]
- Yoon, M.S. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism. Nutrients 2016, 8, 405. [Google Scholar] [CrossRef]
- Daniel, N.; Nachbar, R.T.; Tran, T.T.T.; Ouellette, A.; Varin, T.V.; Cotillard, A.; Quinquis, L.; Gagné, A.; St-Pierre, P.; Trottier, J.; et al. Gut Microbiota and Fermentation-Derived Branched Chain Hydroxy Acids Mediate Health Benefits of Yogurt Consumption in Obese Mice. Nat. Commun. 2022, 13, 1343. [Google Scholar] [CrossRef]
- Zhao, D.; Shah, N.P. Lactic Acid Bacterial Fermentation Modified Phenolic Composition in Tea Extracts and Enhanced Their Antioxidant Activity and Cellular Uptake of Phenolic Compounds Following in Vitro Digestion. J. Funct. Foods 2016, 20, 182–194. [Google Scholar] [CrossRef]
- Yang, X.; Hong, J.; Wang, L.; Cai, C.; Mo, H.; Wang, J.; Fang, X.; Liao, Z. Effect of Lactic Acid Bacteria Fermentation on Plant-Based Products. Fermentation 2024, 10, 48. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Amarowicz, R.; Saurabh, V.; Sneha Nair, M.; Maheshwari, C.; Sasi, M.; Prajapati, U.; Hasan, M.; Singh, S.; et al. Guava (Psidium Guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Foods 2021, 10, 752. [Google Scholar] [CrossRef]
- Nelce Mailoa, M.; Mahendradatta, M.; Laga, A.; Djide, N. Antimicrobial Activities Of Tannins Extract From Guava Leaves (Psidium Guajava L.) On Pathogens Microbial. Int. J. Sci. Technol. Res. 2014, 3, 236–241. [Google Scholar]
- Luo, Y.; Peng, B.; Liu, Y.; Wu, Y.; Wu, Z. Ultrasound Extraction of Polysaccharides from Guava Leaves and Their Antioxidant and Antiglycation Activity. Process Biochem. 2018, 73, 228–234. [Google Scholar] [CrossRef]
- Jang, M.; Jeong, S.W.; Cho, S.K.; Ahn, K.S.; Lee, J.H.; Yang, D.C.; Kim, J.C. Anti-Inflammatory Effects of an Ethanolic Extract of Guava (Psidium Guajava L.) Leaves In Vitro and In Vivo. J. Med. Food 2014, 17, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wen, Y.M.; Shen, J.; Chen, M.M.; Wen, J.H.; Li, Z.M.; Liang, Y.Z.; Xia, N. Guava Leaf Extract Attenuates Insulin Resistance via the PI3K/AKT Signaling Pathway in a Type 2 Diabetic Mouse Model. Diabetes Metab. Syndr. Obes. 2020, 13, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Radan, M.; Dianat, M.; Badavi, M.; Mard, S.A.; Bayati, V.; Goudarzi, G. In Vivo and in Vitro Evidence for the Involvement of Nrf2-Antioxidant Response Element Signaling Pathway in the Inflammation and Oxidative Stress Induced by Particulate Matter (PM10): The Effective Role of Gallic Acid. Free Radic. Res. 2019, 53, 210–225. [Google Scholar] [CrossRef]
- Singh, R.; Chandel, S.; Ghosh, A.; Matta, T.; Gautam, A.; Bhattacharya, A.; Babu, S.S.; Sukla, S.; Nag, D.; Ravichandiran, V.; et al. Glucogallin Attenuates the LPS-Induced Signaling in Macrophages and Protects Mice against Sepsis. Int. J. Mol. Sci. 2022, 23, 11254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Lv, X.Y.; Li, J.; Xu, Z.G.; Chen, L. The Characterization of High-Fat Diet and Multiple Low-Dose Streptozotocin Induced Type 2 Diabetes Rat Model. Exp. Diabetes Res. 2009, 2008, 704045. [Google Scholar] [CrossRef]
- Nair, A.; Jacob, S. A Simple Practice Guide for Dose Conversion between Animals and Human. J. Basic Clin. Pharm. 2016, 7, 27. [Google Scholar] [CrossRef]
- Charan, J.; Kantharia, N. How to Calculate Sample Size in Animal Studies? J. Pharmacol. Pharmacother. 2013, 4, 303. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; Elsohly, M.A.; Khan, I.A. Assessment of Total Phenolic and Flavonoid Content, Antioxidant Properties, and Yield of Aeroponically and Conventionally Grown Leafy Vegetables and Fruit Crops: A Comparative Study. In Evidence-Based Complementary and Alternative Medicine; Wiley Online Library: Hoboken, NJ, USA, 2014. [Google Scholar] [CrossRef]
- Son, Y.; Lee, H.; Son, S.Y.; Lee, C.H.; Kim, S.Y.; Lim, Y. Ameliorative Effect of Annona Muricata (Graviola) Extract on Hyperglycemia Induced Hepatic Damage in Type 2 Diabetic Mice. Antioxidants 2021, 10, 1546. [Google Scholar] [CrossRef] [PubMed]
- Cabral Lacerda, D.; César Trindade da Costa, P.; Brielle Pontes, P.; Alves Carneiro dos Santos, L.; Patrocínio Ribeiro Cruz Neto, J.; Cosmo Silva Luis, C.; Polyana de Sousa Brito, V.; Luiz de Brito Alves, J.; Professor, A. Potential Role of Limosilactobacillus fermentum as a Probiotic with Anti-Diabetic Properties: A Review. World J. Diabetes 2022, 13, 717. [Google Scholar] [CrossRef]
- Sherwani, S.I.; Khan, H.A.; Ekhzaimy, A.; Masood, A.; Sakharkar, M.K. Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomark. Insights 2016, 11, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.; El-Twab, S.M.A.; Yousef, A.I.; Reheim, E.S.A.; Ashour, M.B. Modulation of Hyperglycemia and Dyslipidemia in Experimental Type 2 Diabetes by Gallic Acid and P-Coumaric Acid: The Role of Adipocytokines and PPARγ. Biomed. Pharmacother. 2018, 105, 1091–1097. [Google Scholar] [CrossRef]
- Jeong, S.M.; Kang, M.J.; Choi, H.N.; Kim, J.H.; Kim, J.I. Quercetin Ameliorates Hyperglycemia and Dyslipidemia and Improves Antioxidant Status in Type 2 Diabetic Db/Db Mice. Nutr. Res. Pract. 2012, 6, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Gual, P.; Le Marchand-Brustel, Y.; Tanti, J.F. Positive and Negative Regulation of Insulin Signaling through IRS-1 Phosphorylation. Biochimie 2005, 87, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Chang, W.C.; Wu, J.S.B.; Shih, R.W.; Shen, S.C. Gallic Acid Ameliorates Hyperglycemia and Improves Hepatic Carbohydrate Metabolism in Rats Fed a High-Fructose Diet. Nutr. Res. 2016, 36, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.L.; Yen, G.C. Effect of Gallic Acid on High Fat Diet-Induced Dyslipidaemia, Hepatosteatosis and Oxidative Stress in Rats. Br. J. Nutr. 2007, 98, 727–735. [Google Scholar] [CrossRef]
- Sotiropoulou, M.; Katsaros, I.; Vailas, M.; Lidoriki, I.; Papatheodoridis, G.; Kostomitsopoulos, N.; Valsami, G.; Tsaroucha, A.; Schizas, D. Nonalcoholic Fatty Liver Disease: The Role of Quercetin and Its Therapeutic Implications. Saudi J. Gastroenterol. 2021, 27, 319–330. [Google Scholar] [CrossRef]
- Grefhorst, A.; van de Peppel, I.P.; Larsen, L.E.; Jonker, J.W.; Holleboom, A.G. The Role of Lipophagy in the Development and Treatment of Non-Alcoholic Fatty Liver Disease. Front. Endocrinol. 2021, 11, 601627. [Google Scholar] [CrossRef]
- Wang, Y.; Nakajima, T.; Gonzalez, F.J.; Tanaka, N. PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice. Int. J. Mol. Sci. 2020, 21, 2061. [Google Scholar] [CrossRef] [PubMed]
- Schadinger, S.E.; Bucher, N.L.R.; Schreiber, B.M.; Farmer, S.R. PPARγ2 Regulates Lipogenesis and Lipid Accumulation in Steatotic Hepatocytes. Am. J. Physiol. Endocrinol. Metab. 2005, 288, 1195–1205. [Google Scholar] [CrossRef]
- Min, Z.; Gao, J.; Yu, Y. The Roles of Mitochondrial SIRT4 in Cellular Metabolism. Front. Endocrinol. 2019, 10, 421094. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, W.; Yang, L.; Zhao, W.; Liu, Z.; Wang, E.; Wang, J. Phytochemical Gallic Acid Alleviates Nonalcoholic Fatty Liver Disease via AMPK-ACC-PPARa Axis through Dual Regulation of Lipid Metabolism and Mitochondrial Function. Phytomedicine 2023, 109, 154589. [Google Scholar] [CrossRef]
- Acierno, C.; Caturano, A.; Pafundi, P.C.; Nevola, R.; Adinolfi, L.E.; Sasso, F.C. Nonalcoholic Fatty Liver Disease and Type 2 Diabetes: Pathophysiological Mechanisms Shared between the Two Faces of the Same Coin. Explor. Med. 2020, 1, 287–306. [Google Scholar] [CrossRef]
- Ahmad, S.; Pandey, A.R.; Singh, S.P.; Singh, S.; Sashidhara, K.V.; Tamrakar, A.K. Antiglycation Activity of β-Glucogallin from Asparagus Racemosus. Nat. Prod. Res. 2022, 36, 6329–6335. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic Acid: Pharmacological Activities and Molecular Mechanisms Involved in Inflammation-Related Diseases. Biomed. Pharmacother. 2021, 133, 110985. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Ali, M.Y.; Bhakta, H.K.; Min, B.S.; Choi, J.S. Prunin Is a Highly Potent Flavonoid from Prunus Davidiana Stems That Inhibits Protein Tyrosine Phosphatase 1B and Stimulates Glucose Uptake in Insulin-Resistant HepG2 Cells. Arch. Pharmacal Res. 2017, 40, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.Y.; Lee, S.; Jeong, S.; Kim, J.C.; Ahn, K.S.; Mosaddik, A.; Cho, S.K. Free Radical-Scavenging Activities and Cytoprotective Effect of Polyphenol-Rich Ethyl Acetate Fraction of Guava (Psidium cattleianum) Leaves on H2O2-Treated HepG2 Cell. J. Korean Soc. Appl. Biol. Chem. 2013, 56, 687–694. [Google Scholar] [CrossRef]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef]
Group | NC | DMC | LF | GFL | p-Value |
---|---|---|---|---|---|
Body weight (g) | 33.54 ± 3.95 | 36.11 ± 4.08 | 34.64 ± 3.23 | 35.12 ± 3.90 | 0.71 |
Body composition (%) | |||||
Fat mass | 25.24 ± 3.17 | 30.96 ± 6.21 | 26.95 ± 2.96 | 30.51 ± 4.37 | 0.11 |
Lean mass | 72.07 ± 3.11 | 66.65 ± 6.11 | 70.64 ± 2.95 | 67.10 ± 4.20 | 0.12 |
Food intake (kcal/day) | 12.84 ± 0.58 a | 14.39 ± 0.65 b | 14.77 ± 1.35 b | 13.13 ± 0.19 a | 0.00 |
Liver weight (g/g BW) | 0.034 ± 0.002 a | 0.052 ± 0.008 c | 0.045 ± 0.004 bc | 0.041 ± 0.007 b | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, S.; Lee, H.; Kim, S.-Y.; Lee, C.-H.; Lim, Y. Effects of Metabolites Derived from Guava (Psidium guajava L.) Leaf Extract Fermented by Limosilactobacillus fermentum on Hepatic Energy Metabolism via SIRT1-PGC1α Signaling in Diabetic Mice. Nutrients 2025, 17, 7. https://doi.org/10.3390/nu17010007
Jeon S, Lee H, Kim S-Y, Lee C-H, Lim Y. Effects of Metabolites Derived from Guava (Psidium guajava L.) Leaf Extract Fermented by Limosilactobacillus fermentum on Hepatic Energy Metabolism via SIRT1-PGC1α Signaling in Diabetic Mice. Nutrients. 2025; 17(1):7. https://doi.org/10.3390/nu17010007
Chicago/Turabian StyleJeon, Sohyun, Heaji Lee, Sun-Yeou Kim, Choong-Hwan Lee, and Yunsook Lim. 2025. "Effects of Metabolites Derived from Guava (Psidium guajava L.) Leaf Extract Fermented by Limosilactobacillus fermentum on Hepatic Energy Metabolism via SIRT1-PGC1α Signaling in Diabetic Mice" Nutrients 17, no. 1: 7. https://doi.org/10.3390/nu17010007
APA StyleJeon, S., Lee, H., Kim, S. -Y., Lee, C. -H., & Lim, Y. (2025). Effects of Metabolites Derived from Guava (Psidium guajava L.) Leaf Extract Fermented by Limosilactobacillus fermentum on Hepatic Energy Metabolism via SIRT1-PGC1α Signaling in Diabetic Mice. Nutrients, 17(1), 7. https://doi.org/10.3390/nu17010007