Pacific Islands Families Study: Serum Uric Acid in Pacific Youth and the Associations with Free-Sugar Intake and Appendicular Skeletal Muscle Mass
<p>Association model for all Pacific youth (<span class="html-italic">n</span> = 199) controlling for appendicular skeletal muscle mass (ASMM). * Indicates statistical significance.</p> "> Figure 2
<p>Association model for Pacific girls (<span class="html-italic">n</span> = 96) controlling for appendicular skeletal muscle mass (ASMM). * Indicates statistical significance.</p> "> Figure 3
<p>Association model for Pacific boys (<span class="html-italic">n</span> = 103) controlling for appendicular skeletal muscle mass (ASMM). * Indicates statistical significance.</p> ">
Abstract
:1. Introduction
1.1. Genetic and Lifestyle Factors
1.2. Adolescent Growth and SUA
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, H.; Ma, Z.F.; Lu, Y.; Du, Y.; Shao, J.; Wang, L.; Wu, Q.; Pan, B.; Zhu, W.; Zhao, Q.; et al. Elevated serum uric acid, hyperuricaemia and dietary patterns among adolescents in mainland China. J. Pediatr. Endocrinol. Metab. 2020, 33, 487. [Google Scholar] [CrossRef]
- Lu, J.; Sun, W.; Cui, L.; Li, X.; He, Y.; Liu, Z.; Li, H.; Han, L.; Ji, A.; Wang, C.; et al. A cross-sectional study on uric acid levels among Chinese adolescents. Pediatr. Nephrol. 2020, 35, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Rosini, N.; Cunha, H.P.; Rosini, R.D.; Machado, M.J.; Silva, E.L.D. Serum uric acid in children and adolescents. J. Bras. Patol. Med. Lab. 2018, 54, 21–27. [Google Scholar] [CrossRef]
- El Ridi, R.; Tallima, H. Physiological functions and pathogenic potential of uric acid: A review. J. Adv. Res. 2017, 8, 487–493. [Google Scholar] [CrossRef]
- Ministry of Health. New Zealand Health Survey 2022/23: Annual Data Explorer. 2023. Available online: https://minhealthnz.shinyapps.io/nz-health-survey-2023-24-annual-data-explorer/_w_4d0a8767/#!/home (accessed on 14 October 2024).
- Bjornstad, P.; Chao, L.C.; Cree-Green, M.; Dart, A.B.; King, M.; Looker, H.C.; Magliano, D.J.; Nadeau, K.J.; Pinhas-Hamiel, O.; Shah, A.S.; et al. Youth-onset type 2 diabetes mellitus: An urgent challenge. Nat. Rev. Nephrol. 2023, 19, 168–184. [Google Scholar] [CrossRef]
- PwC New Zealand Ltd. e Economic and Social Cost of Type 2 Diabetes – Full Report. Diabetes New Zealand, Edgar Diabetes and Obesity Research, Healthier Lives - He Oranga Hauora National Science Challenge, Tony and Heather Falkenstein. 2020. Available online: https://ourarchive.otago.ac.nz/esploro/outputs/report/Economic-and-Social-Cost-of-Type/9926478578501891#file-0 (accessed on 14 October 2024).
- Narang, R.K.; Vincent, Z.; Phipps-Green, A.; Stamp, L.K.; Merriman, T.R.; Dalbeth, N. Population-specific factors associated with fractional excretion of uric acid. Arthritis Res. Ther. 2019, 21, 234. [Google Scholar] [CrossRef]
- Major, T.J.; Dalbeth, N.; Stahl, E.A.; Merriman, T.R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 2018, 14, 341–353. [Google Scholar] [CrossRef]
- Dalbeth, N.; Phipps-Green, A.; House, M.E.; Gamble, G.D.; Horne, A.; Stamp, L.K.; Merriman, T.R. Body mass index modulates the relationship of sugar-sweetened beverage intake with serum urate concentrations and gout. Arthritis Res. Ther. 2015, 17, 263. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Regulation of uric acid metabolism and excretion. Int. J. Cardiol. 2016, 213, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Merriman, T.R.; Dalbeth, N. The genetic basis of hyperuricaemia and gout. Jt. Bone Spine 2011, 78, 35–40. [Google Scholar] [CrossRef]
- Pascart, T.; Ducoulombier, V.; Jauffret, C. Early-onset gout. Jt. Bone Spine 2024, 91, 105704. [Google Scholar] [CrossRef] [PubMed]
- Baharuddin, B. The impact of fructose consumption on human health: Effects on obesity, hyperglycemia, diabetes, uric acid, and oxidative stress with a focus on the liver. Cureus 2024, 16, e70095. [Google Scholar] [CrossRef]
- Nakagawa, T.; Hu, H.; Zharikov, S.; Tuttle, K.R.; Short, R.A.; Glushakova, O.; Ouyang, X.; Feig, D.I.; Block, E.R.; Herrera-Acosta, J.; et al. A causal role for uric acid in fructose-induced metabolic syndrome. Am. J. Physiol. Renal. Physiol. 2006, 290, F625–F631. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Perez-Pozo, S.E.; Sautin, Y.Y.; Manitius, J.; Sanchez-Lozada, L.G.; Feig, D.I.; Shafiu, M.; Segal, M.; Glassock, R.J.; Shimada, M.; et al. Hypothesis: Could excessive fructose intake and uric acid cause type 2 diabetes? Endocr. Rev. 2009, 30, 96–116. [Google Scholar] [CrossRef]
- Johnson, R.J.; Lanaspa, M.A.; Sanchez-Lozada, L.G.; Tolan, D.; Nakagawa, T.; Ishimoto, T.; Andres-Hernando, A.; Rodriguez-Iturbe, B.; Stenvinkel, P. The fructose survival hypothesis for obesity. Philos. Trans. R. Soc. B 2023, 378, 20220230. [Google Scholar] [CrossRef] [PubMed]
- Rush, E.C.; Freitas, I.; Plank, L.D. Body size, body composition and fat distribution: Comparative analysis of European, Maori, Pacific Island and Asian Indian adults. Br. J. Nutr. 2009, 102, 632–641. [Google Scholar] [CrossRef]
- Periasamy, M.; Herrera, J.L.; Reis, F.C.G. Skeletal Muscle Thermogenesis and Its Role in Whole Body Energy Metabolism. Diabetes Metab. J. 2017, 41, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Rush, E.C.; Coppinger, T.; Jalili-Moghaddam, S.; Tautolo, E.-S.; Plank, L.D. Relationships between physical function, body composition and metabolic health in Pacific Island youth. PLoS ONE 2022, 17, e0260203. [Google Scholar] [CrossRef]
- Adeli, K.; Higgins, V.; Nieuwesteeg, M.; Raizman, J.E.; Chen, Y.; Wong, S.L.; Blais, D. Biochemical marker reference values across pediatric, adult, and geriatric ages: Establishment of robust pediatric and adult reference intervals on the basis of the Canadian Health Measures Survey. Clin. Chem. 2015, 61, 1049–1062. [Google Scholar] [CrossRef]
- Xu, Y.-L.; Xu, K.; Bai, J.; Liu, Y.; Yu, R.; Liu, C.; Shen, C.; Wu, X. Elevation of serum uric acid and incidence of type 2 diabetes: A systematic review and meta-analysis. Chronic Dis. Transl. Med. 2016, 2, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, G.J.; Roem, J.L.; Hooper, S.R.; Furth, S.L.; Weaver, D.J., Jr.; Warady, B.A.; Schneider, M.F. Longitudinal changes in uric acid concentration and their relationship with chronic kidney disease progression in children and adolescents. Pediatr. Nephrol. 2023, 38, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Shatat, I.F.; Abdallah, R.T.; Sas, D.J.; Hailpern, S.M. Serum uric acid in US adolescents: Distribution and relationship to demographic characteristics and cardiovascular risk factors. Pediatr. Res. 2012, 72, 95–100. [Google Scholar] [CrossRef]
- Batt, C.; Phipps-Green, A.J.; Black, M.A.; Cadzow, M.; Merriman, M.E.; Topless, R.; Gow, P.; Harrison, A.; Highton, J.; Jones, P.; et al. Sugar-sweetened beverage consumption: A risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout. Ann. Rheum. Dis. 2014, 73, 2101–2106. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Qi, L.; Qiao, N.; Choi, H.K.; Curhan, G.; Tucker, K.L.; Ascherio, A. Intake of added sugar and sugar-sweetened drink and serum uric acid concentration in US men and women. Hypertension 2007, 50, 306–312. [Google Scholar] [CrossRef]
- Ebrahimpour-Koujan, S.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. Consumption of sugar-sweetened beverages and serum uric acid concentrations: A systematic review and meta-analysis. J. Hum. Nutr. Diet. 2021, 34, 305–313. [Google Scholar] [CrossRef]
- Nguyen, S.; Choi, H.K.; Lustig, R.H.; Hsu, C. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents. J. Pediatr. 2009, 154, 807–813. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.H.; Chang, H.Y.; Wu, H.C.; Stanaway, F.F.; Pan, W.H. High sugar-sweetened beverage intake frequency is associated with smoking, irregular meal intake and higher serum uric acid in Taiwanese adolescents. J. Nutr. Sci. 2020, 9, e7. [Google Scholar] [CrossRef]
- de-Magistris, T. Nutrition, Choice and Health-Related Claims. Nutrients 2020, 12, 650. [Google Scholar] [CrossRef] [PubMed]
- Mosca, A.; Nobili, V.; De Vito, R.; Crudele, A.; Scorletti, E.; Villani, A.; Alisi, A.; Byrne, C.D. Serum uric acid concentrations and fructose consumption are independently associated with NASH in children and adolescents. J. Hepatol. 2017, 66, 1031–1036. [Google Scholar] [CrossRef] [PubMed]
- Rush, E.C.; Oliver, M.; Plank, L.D.; Taylor, S.; Iusitini, L.; Jalili-Moghaddam, S.; Savila, F.; Paterson, J.; Tautolo, E. Cohort profile: Pacific Islands Families (PIF) growth study, Auckland, New Zealand. BMJ Open 2016, 6, e013407. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health. NZ Food NZ Children: Key Results of the 2002 National Children’s Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2003.
- University of Otago and Ministry of Health. Methodology Report for the 2008/09 New Zealand Adult Nutrition Survey; Ministry of Health: Wellington, New Zealand, 2011.
- Kuczmarski, R.J.; Ogden, C.L.; Grummer-Strawn, L.M.; Flegal, K.M. CDC Growth Charts: United States. Adv. Data 2000, 8, 1–27. [Google Scholar]
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health. Clinical Guidelines for Weight Management in New Zealand Children and Young People; Ministry of Health: Wellington, New Zealand, 2016.
- Heymsfield, S.B.; Smith, R.; Aulet, M.; Bensen, B.; Lichtman, S.; Wang, J.; Pierson, R.N., Jr. Appendicular skeletal muscle mass: Measurement by dual-photon absorptiometry. Am. J. Clin. Nutr. 1990, 52, 214–218. [Google Scholar] [CrossRef]
- Huang, S.; Hu, Q.; Li, Z.; Li, Y.; Zhao, X.; Shang, Y.; Zheng, R.; Su, Q.; Xiong, J.; Su, Z. Uric acid reference values for children and adolescents should be stratified by pubertal stage. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 2757–2762. [Google Scholar] [CrossRef]
- Rowan, J.A.; Rush, E.C.; Plank, L.D.; Lu, J.; Obolonkin, V.; Coat, S.; Hague, W.M. Metformin in gestational diabetes: The offspring follow-up (MiG TOFU): Body composition and metabolic outcomes at 7–9 years of age. BMJ Open Diabetes Res. Care 2018, 6, e000456. [Google Scholar] [CrossRef] [PubMed]
- Rush, E.; Tautolo, E.S.; Paterson, J.; Obolonkin, V. Pacific Islands Families Study: Signs of puberty are associated with physical growth at ages 9 and 11 years. N. Z. Med. J. 2015, 128, 24–33. [Google Scholar]
- Cicero, A.F.G.; Fogacci, F.; Di Micoli, V.; Angeloni, C.; Giovannini, M.; Borghi, C. Purine Metabolism Dysfunctions: Experimental Methods of Detection and Diagnostic Potential. Int. J. Mol. Sci. 2023, 24, 7027. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, L.E.; Cook, D.; Krebs-Smith, S.M.; Friday, J. Method for assessing food intakes in terms of servings based on food guidance. Am. J. Clin. Nutr. 1997, 65, 1254S–1263S. [Google Scholar] [CrossRef]
- Krishnan, E.; Pandya, B.J.; Chung, L.; Hariri, A.; Dabbous, O. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: A 15-year follow-up study. Am. J. Epidemiol. 2012, 176, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Leask, M.P.; Crișan, T.O.; Ji, A.; Matsuo, H.; Köttgen, A.; Merriman, T.R. The pathogenesis of gout: Molecular insights from genetic, epigenomic and transcriptomic studies. Nat. Rev. Rheumatol. 2024, 20, 510–523. [Google Scholar] [CrossRef] [PubMed]
- Abbasalizad Farhangi, M.; Tofigh, A.M.; Jahangiri, L.; Nikniaz, Z.; Nikniaz, L. Sugar-sweetened beverages intake and the risk of obesity in children: An updated systematic review and dose-response meta-analysis. Pediatr. Obes. 2022, 17, e12914. [Google Scholar] [CrossRef]
- Rush, E.; Plank, L.D.; Laulu, M.; Mitchelson, E.; Coward, W.A. Accuracy of dietary energy reporting in young New Zealand men and women: Relationships to body composition, physical activity level and ethnicity. Int. J. Body Compos. Res. 2004, 2, 125–130. [Google Scholar]
- Sycamnias, L.; Kerr, J.A.; Lange, K.; Saffery, R.; Wang, Y.; Wake, M.; Olds, T.; Dwyer, T.; Burgner, D.; Grobler, A.C. Polygenic risk scores and the risk of childhood overweight/obesity in association with the consumption of sweetened beverages: A population-based cohort study. Child Obes. 2024, 20, 354–365. [Google Scholar] [CrossRef]
- Golley, R.K.; Bell, L.K.; Hendrie, G.A.; Rangan, A.M.; Spence, A.; McNaughton, S.A.; Carpenter, L.; Allman-Farinelli, M.; de Silva, A.; Gill, T.; et al. Validity of short food questionnaire items to measure intake in children and adolescents: A systematic review. J. Hum. Nutr. Diet. 2017, 30, 36–50. [Google Scholar] [CrossRef] [PubMed]
- Lean, M.E.J.; Te Morenga, L. Sugar and Type 2 diabetes. Br. Med. Bull. 2016, 120, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Moore Heslin, A.; McNulty, B. Adolescent nutrition and health: Characteristics, risk factors and opportunities of an overlooked life stage. Proc. Nutr. Soc. 2023, 82, 142–156. [Google Scholar] [CrossRef]
- Mela, D.J.; Woolner, E.M. Perspective: Total, Added, or Free? What Kind of Sugars Should We Be Talking About? Adv. Nutr. 2018, 9, 63–69. [Google Scholar] [CrossRef]
- Firestone, R.; Faeamani, G.; Okiakama, E.; Funaki, T.; Henry, A.; Prapavessis, D.; Masaga, J.; Firestone, J.; Tiatia-Seath, J.; Matheson, A.; et al. Pasifika Prediabetes Youth Empowerment Programme: Learnings from a youth-led community-based intervention study. N. Z. Med. J. 2021, 134, 57–68. [Google Scholar]
Predefined Free-Sugar Food Groups | Total (n = 204) | Girls (n = 100) | Boys (n = 104) | p Value b |
---|---|---|---|---|
Median (IQR) a | Median (IQR) | Median (IQR) | ||
Spreads and sauces | 1.07 (0.64, 2.05) | 1.00(0.63, 1.75) | 1.08 (0.63, 2.40) | 0.327 |
Convenience meals | 0.28 (0.08, 0.79) | 0.22 (0.07, 0.64) | 0.43 (0.07, 0.98) | 0.207 |
Biscuits/cakes | 1.38 (0.84, 2.52) | 1.35 (0.92, 2.22) | 1.43 (0.64, 2.94) | 0.889 |
Snacks and sweets | 0.57 (0.26, 1.28) | 0.67 (0.36, 1.20) | 0.49 (0.23, 1.41) | 0.093 |
Sugary drinks | 2.12 (1.13, 3.64) | 1.89 (0.99, 3.03) | 2.35 (1.44, 4.22) | 0.207 |
Total sugar-containing foods | 5.92 (3.81, 10.19) | 5.73 (3.87, 8.98) | 6.09 (3.67, 11.07) | 0.889 |
Girls (n = 100) | Boys (n = 104) | p Value d | |||
---|---|---|---|---|---|
Mean | SD | Mean | SD | ||
Age (years) | 14.92 | 0.47 | 14.88 | 0.43 | 0.481 e |
Anthropometry | |||||
Weight (kg) | 81.2 | 20.6 | 85.8 | 25.2 | 0.246 |
Height (cm) | 166.6 | 5.6 | 175.4 | 7.1 | 0.001e |
BMI (kg·m−2) | 29.1 | 6.5 | 27.7 | 7.5 | 0.073 |
Waist (cm) | 84.5 | 16.2 | 88.6 | 18.8 | 0.191 |
Waist/height (cm) | 0.50 | 0.09 | 0.50 | 0.10 | 0.570 |
Weight z scores a | 1.68 | 0.75 | 1.79 | 1.18 | 0.443 e |
Height z scores a | 0.75 | 0.86 | 0.81 | 0.90 | 0.576 e |
BMI z scores a | 1.55 | 0.70 | 1.42 | 1.02 | 0.263 e |
Body compositionb | |||||
Fat free mass (kg) | 49.7 | 8.4 | 60.0 | 11.3 | 0.001e |
Fat mass (kg) | 31.3 | 13.0 | 25.9 | 15.6 | 0.001 |
Fat mass% | 37.3 | 6.5 | 28.0 | 9.3 | 0.001e |
Appendicular skeletal muscle mass (kg) | 21.1 | 4.5 | 26.6 | 5.8 | 0.001e |
Biomarker | |||||
SUA (mmol·L−1) c | 0.33 | 0.63 | 0.43 | 0.09 | 0.001e |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalili-Moghaddam, S.; Mearns, G.; Plank, L.D.; Tautolo, E.-S.; Rush, E. Pacific Islands Families Study: Serum Uric Acid in Pacific Youth and the Associations with Free-Sugar Intake and Appendicular Skeletal Muscle Mass. Nutrients 2025, 17, 54. https://doi.org/10.3390/nu17010054
Jalili-Moghaddam S, Mearns G, Plank LD, Tautolo E-S, Rush E. Pacific Islands Families Study: Serum Uric Acid in Pacific Youth and the Associations with Free-Sugar Intake and Appendicular Skeletal Muscle Mass. Nutrients. 2025; 17(1):54. https://doi.org/10.3390/nu17010054
Chicago/Turabian StyleJalili-Moghaddam, Shabnam, Gael Mearns, Lindsay D. Plank, El-Shadan Tautolo, and Elaine Rush. 2025. "Pacific Islands Families Study: Serum Uric Acid in Pacific Youth and the Associations with Free-Sugar Intake and Appendicular Skeletal Muscle Mass" Nutrients 17, no. 1: 54. https://doi.org/10.3390/nu17010054
APA StyleJalili-Moghaddam, S., Mearns, G., Plank, L. D., Tautolo, E. -S., & Rush, E. (2025). Pacific Islands Families Study: Serum Uric Acid in Pacific Youth and the Associations with Free-Sugar Intake and Appendicular Skeletal Muscle Mass. Nutrients, 17(1), 54. https://doi.org/10.3390/nu17010054