Nutraceuticals and Supplements in Management of Prediabetes and Diabetes
<p>Mechanisms of action of <span class="html-italic">Ascophyllum nodosum</span> and <span class="html-italic">Fucus vesiculosus</span> hypoglycemic activity. ACC: acetyl-CoA carboxylase; Akt: serine/threonine kinase; AMPK: adenosine monophosphate-activated protein kinase; G6Pase: glucose-6-phosphatase; GLUT: glucose transporter; PEPCK: phosphoenolpyruvate carboxykinase. <span class="html-fig-inline" id="nutrients-17-00014-i001"><img alt="Nutrients 17 00014 i001" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i001.png"/></span>: decrease; <span class="html-fig-inline" id="nutrients-17-00014-i002"><img alt="Nutrients 17 00014 i002" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i002.png"/></span>: increase.</p> "> Figure 2
<p>Hypoglycemic mechanisms of action of <span class="html-italic">Lagerstroemia speciose</span>. PPAR-α/γ: peroxisome proliferator-activated receptor-α/γ. <span class="html-fig-inline" id="nutrients-17-00014-i001"><img alt="Nutrients 17 00014 i001" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i001.png"/></span>: decrease; <span class="html-fig-inline" id="nutrients-17-00014-i002"><img alt="Nutrients 17 00014 i002" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i002.png"/></span>: increase.</p> "> Figure 3
<p>Hypoglycemic mechanisms of action of <span class="html-italic">Berberis</span>. AMPK: adenosine monophosphate-activated protein kinase; G6Pase: glucose-6-phosphatase; PEPCK: phosphoenolpyruvate carboxykinase. <span class="html-fig-inline" id="nutrients-17-00014-i001"><img alt="Nutrients 17 00014 i001" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i001.png"/></span>: decrease; <span class="html-fig-inline" id="nutrients-17-00014-i002"><img alt="Nutrients 17 00014 i002" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i002.png"/></span>: increase.</p> "> Figure 4
<p>Glucose-lowering mechanisms of action of <span class="html-italic">Cinnamomum.</span> Akt: serine/threonine kinase; GLUT: glucose transporter; IR: insulin receptor; IRS-1/2: insulin receptor substrate type 1/2; PI3K: phosphatidylinositol 3-kinase; PPAR-α/γ: peroxisome proliferator-activated receptor-α/γ. <span class="html-fig-inline" id="nutrients-17-00014-i002"><img alt="Nutrients 17 00014 i002" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i002.png"/></span>: increase.</p> "> Figure 5
<p>Hypoglycemic mechanisms of action of <span class="html-italic">Gymnema sylvestre</span>.</p> "> Figure 6
<p>Glucose-lowering mechanisms of action of <span class="html-italic">Ilex paraguariensis</span>. AMPK, adenosine monophosphate-activated protein kinase; GLUT, glucose transporter; <span class="html-fig-inline" id="nutrients-17-00014-i001"><img alt="Nutrients 17 00014 i001" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i001.png"/></span>, decrease; <span class="html-fig-inline" id="nutrients-17-00014-i002"><img alt="Nutrients 17 00014 i002" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i002.png"/></span>, increase.</p> "> Figure 7
<p>Glucose-lowering mechanisms of action of <span class="html-italic">Momordica charantia</span>. AMPK: adenosine monophosphate-activated protein kinase; GLUT: glucose transporter; G6Pase: glucose-6-phosphatase; PEPCK: phosphoenolpyruvate carboxykinase. <span class="html-fig-inline" id="nutrients-17-00014-i001"><img alt="Nutrients 17 00014 i001" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i001.png"/></span>: decrease; <span class="html-fig-inline" id="nutrients-17-00014-i002"><img alt="Nutrients 17 00014 i002" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i002.png"/></span>: increase.</p> "> Figure 8
<p>Hypoglycemic mechanisms of action of <span class="html-italic">Morus</span>. G6Pase: glucose-6-phosphatase; GLUT: glucose transporter; GK: glucokinase, PEPCK: phosphoenolpyruvate carboxykinase; PFK: phosphofructokinase, PK: pyruvate kinase; SGLT1: sodium glucose co-transporter 1; PI3K/AKT: phosphatidylinositol 3-kinase/serine/threonine kinase. <span class="html-fig-inline" id="nutrients-17-00014-i001"><img alt="Nutrients 17 00014 i001" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i001.png"/></span>: decrease; <span class="html-fig-inline" id="nutrients-17-00014-i002"><img alt="Nutrients 17 00014 i002" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i002.png"/></span>: increase.</p> "> Figure 9
<p>Potential hypoglycemic mechanisms of action of <span class="html-italic">Olea europaea</span>. AGEs; advanced glycation end-products; GLP-1: glucagon-like peptide-1. <span class="html-fig-inline" id="nutrients-17-00014-i001"><img alt="Nutrients 17 00014 i001" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i001.png"/></span>: decrease; <span class="html-fig-inline" id="nutrients-17-00014-i002"><img alt="Nutrients 17 00014 i002" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i002.png"/></span>: increase.</p> "> Figure 10
<p>Possible mechanisms of action for alpha-lipoic acid in glycemic control. AKT: serine/threonine kinase; AMPK: adenosine monophosphate-activated protein kinase; GLUT4: glucose transporter; IRS-1: insulin receptor substrate type 1; MAPK: mitogen-activated protein kinase; PI3K: phosphatidylinositol 3-kinase. <span class="html-fig-inline" id="nutrients-17-00014-i002"><img alt="Nutrients 17 00014 i002" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i002.png"/></span>: increase.</p> "> Figure 11
<p>Potential hypoglycemic mechanisms of action of Omega-3. <span class="html-fig-inline" id="nutrients-17-00014-i001"><img alt="Nutrients 17 00014 i001" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i001.png"/></span>: decrease; <span class="html-fig-inline" id="nutrients-17-00014-i002"><img alt="Nutrients 17 00014 i002" src="/nutrients/nutrients-17-00014/article_deploy/html/images/nutrients-17-00014-i002.png"/></span>: increase.</p> "> Figure 12
<p>Possible mechanisms of action for essential amino acids in glycemic homeostasis. ATP: adenosine triphosphate; CCK: cholecystokinin; GIP: glucose-dependent insulinotropic peptide; GLP-1: glucagon-like peptide-1; PYY: peptide tyrosine–tyrosine; mTORC1: mammalian target of rapamycin complex 1.</p> ">
Abstract
:1. Introduction
2. Material and Methods
3. Nutraceuticals
3.1. Ascophyllum nodosum (L.) and Fucus vesiculosus (L.)
3.1.1. Mechanisms of Action
3.1.2. Clinical Trials
3.2. Banaba [(Lagerstroemia speciosa (L.) Pers]
3.2.1. Mechanisms of Action
3.2.2. Clinical Trials
3.3. Berberis
3.3.1. Mechanisms of Action
3.3.2. Clinical Trials
First Author and Year | Participants | Therapy and Duration | Findings |
---|---|---|---|
Yin, J. (2008) [33] | (1) Patients with T2DM (n = 36) (2) Patients with poorly controlled T2DM (n = 48) | (1) 1.5 g/day berberine or metformin (2) 1.5 g/day berberine plus hypoglycemic agents 3 months | (1) FPG, PPG, and HbA1c decrease (2) FPG, PPG, HbA1c, FPI, and HOMA-IR decrease |
Zhang, Y. (2008) [34] | Patients with T2DM and dyslipidemia (n = 116) | 1.0 g/day 3 months | FPG, PPG, and HbA1c decrease |
Zhang, H. (2010) [35] | (1) T2DM patients (n = 97) (2) T2DM or IFG patients with chronic hepatitis B and C (n = 35) | (1) 1.0 g/day berberine or 1.5 g/day metformin or 4 mg/day rosiglitazone (2) 1 g/day berberine 2 months | (1) FPG and HbA1c decrease Insulin levels decrease Percentage of peripheral blood lymphocytes increase (2) FPG and liver enzymes decrease |
Gu, Y. (2010) [42] | Patients with T2DM and dyslipidemia (n = 60) | 1.0 g/day 3 months | FPG, PPG, and HbA1c decrease |
Di Pierro, F. (2012) [43] | T2DM patients (n = 22) | 1 g/day berberine + 210 mg/day silymarin 3 months | HBA1c and FPI decrease |
Di Pierro, F. (2013) [44] | T2DM patients (n = 69) | 1 g/day berberine + 210 mg/day silymarin or 1 g/day berberine 4 months | FPG and HbA1c decrease |
Derosa, G. (2013) [45] | Patients with dyslipidemia (n = 102) | 1 g/day berberine + 210 mg/day silymarin 14 months | FPG and C-peptide after 6 min glucagon test increase FPG lower increase and C-peptide higher increase during glucagon test |
Derosa, G. (2013) [46] | Patients with obesity and dyslipidemia (n = 105) | 1 g/day berberine + 210 mg/day silymarin 14 months | FPI and HOMA-IR decrease |
Derosa, G. (2015) [47] | Dyslipidemic patients (n = 137) | 1 g/day berberine + 210 mg/day silymarin 6 months | FPG, FPI, and HOMA index decrease |
Di Pierro, F. (2015) [48] | Patients with T2DM and hypercholesterolemia (n = 45) | 1 g/day berberine + 210 mg/day silymarin or 1 g/day berberine + 210 mg/day silymarin with low dose statins or 1 g/day berberine + 210 mg/day silymarin with ezetimibe 12 months | FPG and HbA1c decrease |
Derosa, G. (2016) [49] | Type 1 diabetes mellitus patients (n = 85) | 1 g/day berberine + 210 mg/day silymarin 6 months | FPG, PPG, and HbA1c decrease Insulin consumption decrease |
Di Pierro, F. (2016) [50] | Dyslipidemic patients (n = 226) | 500 mg/day berberine + 105 mg/day silymarin + 10 mg/day monacolins K and KA 6 months | HbA1c and HOMA-IR decrease |
Derosa, G. (2017) [51] | Low-cardiovascular-risk patients (n = 143) | 500 mg/day berberine + 105 mg/day silymarin + 10 mg/day monacolins K and KA 3 months | FPG and HOMA index decrease FPI increase |
Di Pierro, F. (2018) [52] | Patients with T2DM and dyslipidemia (n = 59) | 500 mg/day berberine + 105 mg/day silymarin + 10 mg/day monacolins K and KA 6 months | HbA1c decrease |
Affuso, F. (2012) [31] | Patients with metabolic syndrome (n = 64) | 500 mg/day berberine + 10 mg/day policosanol + 3 mg/day monacolin K 18 weeks | FPG, FPI, PPI, and HOMA-IR decrease |
Cicero, A.F.G. (2017) [27] | IFG patients (n = 40) | 310 mg/day berberine + 500 mg/day Lagerstroemia speciosa + 250 mg/day curcumin + 2.6 μg/day chromium picolinate + 0.30 mg/day folic acid + 220 mg/day α-lipoic acid 8 weeks | FPG, FPI, and HOMA index decrease |
Derosa, G. (2020) [28] | IFG and IGT patients (n = 148) | 200 mg/day berberine + 200 mg/day curcumin + 300 mg/day inositol + 40 mg/day banaba + 100 μg/day chromium picolinate 3 months | FPG, PPG, HbA1c, and HOMA-IR decrease FPI increase |
Sartore, G. (2021) [53] | T2DM (n = 20) | 250 mg/day berberine + 200 mg/day hesperidin + 200 μg/day chromium picolinate 3 months | FPG and HbA1c decrease |
3.4. Cinnamomum
3.4.1. Mechanisms of Action
3.4.2. Clinical Trials
3.5. Gymnemic Acid [(Gymnema sylvestre (L.) Pers]
3.5.1. Mechanisms of Action
3.5.2. Clinical Trials
First Author and Year | Participants | Therapy and Duration | Findings |
---|---|---|---|
Khare, A.K. (1983) [96] | Diabetic patients (n = 6) | 6 g/day decoction of powdered GS leaves shade-dried 15 days | FPG decrease, PPG at 30 min and 2 h after OGTT decrease |
Baskaran, K. (1990) [97] | T2DM patients (n = 22) | 400 mg/day GS4 18–20 months | FPG and HbA1c decrease Insulin increase in fasting and post-prandial state |
Shanmugasundaram, E.R. (1990) [98] | Type 1 diabetic patients (n = 27) | 400 mg/day GS4 6–30 months | FPG and HbA1c decrease Less insulin requirement Fasting C-peptide increase |
Al-Romaiyan, A. (2010) [99] | T2DM patients (n = 11) | 1 g/day OSA 60 days | FPG and PPG decrease insulin and C-peptide increase |
Kumar, S.N. (2010) [102] | T2DM patients (n = 58) | 250 mg/day capsule of GS leaf extract 3 months | FPG, PPG and HbA1c decrease Insulin resistance decrease |
Li, Y. (2015) [103] | T2DM patients (n = 32) | 1 g/day capsule of GS leaf extract 30 days | FPG decrease |
Gaytán Martínez, L.A. (2021) [104] | IGT patients (n = 30) | 600 mg/day capsule of GS leaf extract 12 weeks | HbA1c decrease PPG 2 h after OGTT decrease |
3.6. Ilex paraguariensis (L.) Pers
3.6.1. Mechanisms of Action
3.6.2. Clinical Trials
3.7. Momordica charantia (L.)
3.7.1. Mechanisms of Action
3.7.2. Clinical Trials
3.8. Morus
3.8.1. Mechanisms of Action
3.8.2. Clinical Trials
3.9. Olea europaea (L.)
3.9.1. Mechanisms of Action
3.9.2. Clinical Trials
4. Supplements
4.1. Alpha-Lipoic Acid
4.1.1. Mechanisms of Action
4.1.2. Clinical Trials
4.2. Omega-3
4.2.1. Mechanisms of Action
4.2.2. Clinical Trials
4.3. Essential Amino Acids
4.3.1. Mechanisms of Action
4.3.2. Clinical Trials
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
References
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Derosa, G.; D’Angelo, A.; Maffioli, P. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature. Phytother. Res. 2022, 36, 3709–3765. [Google Scholar] [CrossRef] [PubMed]
- Derosa, G.; D’Angelo, A.; Maffioli, P. The role of selected nutraceuticals in management of prediabetes and diabetes: An updated review of the literature. Part II. Phytother. Res. 2024, 38, 5490–5532. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Standards of Medical Care in Diabetes-2021. Diabetes Care 2021, 44 (Suppl. S1), S1–S222. [Google Scholar] [CrossRef]
- Dickersin, K.; Scherer, R.; Lefebvre, C. Identifying relevant studies for systematic reviews. BMJ 1994, 309, 1286–1291. [Google Scholar] [CrossRef]
- Rupérez, P.; Ahrazem, O.; Leal, J.A. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus. J. Agric. Food Chem. 2002, 50, 840–845. [Google Scholar] [CrossRef]
- Gabbia, D.; Dall’Acqua, S.; Di Gangi, I.M.; Bogialli, S.; Caputi, V.; Albertoni, L.; Marsilio, I.; Paccagnella, N.; Carrara, M.; Giron, M.C.; et al. The phytocomplex from Fucus vesiculosus and Ascophyllum nodosum controls post-prandial plasma glucose levels: An in vitro and in vivo study in a mouse model of NASH. Mar. Drugs 2017, 15, 41. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 2011, 22, 315–326. [Google Scholar] [CrossRef]
- Landin, K.; Holm, G.; Tengborn, L.; Smith, U. Guar gum improves insulin sensitivity, blood lipids, blood pressure, and fibrinolysis in healthy men. Am. J. Clin. Nutr. 1992, 56, 1061–1065. [Google Scholar] [CrossRef]
- Ou, S.; Kwok, K.; Li, Y.; Fu, L. In vitro study of possible role of dietary fiber in lowering post-prandial serum glucose. J. Agric. Food Chem. 2001, 49, 1026–1029. [Google Scholar] [CrossRef]
- Murray, M.; Dordevic, A.L.; Ryan, L.; Bonham, M.P. A single-dose of a polyphenol-rich Fucus vesiculosus extract is insufficient to blunt the elevated post-prandial blood glucose responses exhibited by healthy adults in the evening: A randomised crossover trial. Antioxidants 2019, 8, 49. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.C.; Fairclough, A.C.; Mahadevan, K.; Paxman, J.R. Ascophyllum nodosum enriched bread reduces subsequent energy intake with no effect on post-prandial glucose and cholesterol in healthy, overweight males. A pilot study. Appetite 2012, 58, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Iacoviello, L.; Zito, F.; Rago, L.; Di Castelnuovo, A.; De Curtis, A.; Zappacosta, B.; de Gaetano, G.; Donati, M.B.; Cerletti, C. Prolonged administration of Ascophyllum nodosum to healthy human volunteers and cardiovascular risk. Nutrafoods 2013, 12, 137–144. [Google Scholar] [CrossRef]
- Murray, M.; Dordevic, A.L.; Ryan, L.; Bonham, M.P. The impact of a single dose of a polyphenol-rich seaweed extract on post-prandial glycaemic control in healthy adults: A randomised cross-over trial. Nutrients 2018, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Paradis, M.E.; Couture, P.; Lamarche, B. A randomised crossover placebo-controlled trial investigating the effect of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) on postchallenge plasma glucose and insulin levels in men and women. Appl. Physiol. Nutr. Metab. 2011, 36, 913–919. [Google Scholar] [CrossRef]
- De Martin, S.; Gabbia, D.; Carrara, M.; Ferri, N. The brown algae Fucus vesiculosus and Ascophyllum nodosum reduce metabolic syndrome risk factors: A clinical study. Nat. Prod. Commun. 2018, 13, 1691–1694. [Google Scholar] [CrossRef]
- Derosa, G.; Cicero, A.F.G.; D’Angelo, A.; Maffioli, P. Ascophyllum nodosum and Fucus vesiculosus on glycemic status and on endothelial damage markers in dysglicemic patients. Phytother. Res. 2019, 33, 791–797. [Google Scholar] [CrossRef]
- Derosa, G.; Pascuzzo, M.D.; D’Angelo, A.; Maffioli, P. Ascophyllum nodosum, Fucus vesiculosus and chromium picolinate nutraceutical composition can help to treat type 2 diabetic patients. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 1861–1865. [Google Scholar] [CrossRef]
- Judy, W.V.; Hari, S.P.; Stogsdill, W.W.; Judy, J.S.; Naguib, Y.M.; Passwater, R. Antidiabetic activity of a standardized extract (Glucosol) from Lagerstroemia speciosa leaves in Type II diabetics. A dose-dependence study. J. Ethnopharmacol. 2003, 87, 115–117. [Google Scholar] [CrossRef]
- Stohs, S.J.; Miller, H.; Kaats, G.R. A review of the efficacy and safety of banaba (Lagerstroemia speciosa L.) and corosolic acid. Phytother. Res. 2012, 26, 317–324. [Google Scholar] [CrossRef]
- Ikeda, Y.; Noguchi, M.; Kishi, S.; Masuda, K.; Kusumoto, A.; Zeida, M.; Abe, K.; Kiso, Y. Blood glucose controlling effects and safety of single and long-term administration on the extract of banaba leaves. J. Nutr. Food 2002, 5, 41–53. [Google Scholar]
- Tsuchibe, S.; Kataumi, S.; Mori, M.; Mori, H. An inhibitory effect on the increase in the post-prandial glucose by banaba extract capsule enriched corosolic acid. J. Integr. Study Diet Habits 2006, 17, 255–259. [Google Scholar] [CrossRef]
- Fukushima, M.; Matsuyama, F.; Ueda, N.; Egawa, K.; Takemoto, J.; Kajimoto, Y.; Yonaha, N.; Miura, T.; Kaneko, T.; Nishi, Y.; et al. Effect of corosolic acid on postchallenge plasma glucose levels. Diabetes Res. Clin. Pract. 2006, 73, 174–177. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.S.; Ryu, R.; Seo, Y.R.; Jeong, T.S.; Shin, D.H.; Park, Y.B.; Kim, S.R.; Jung, U.J. The beneficial effect of soybean (Glycine max (L.) Merr.) leaf extracts in adults with prediabetes: A randomized placebo controlled trial. Food Funct. 2014, 5, 1621–1630. [Google Scholar] [CrossRef]
- Ikeda, Y.; Chen, J.T.; Matsuda, T. Effectiveness and safety of banabamin tablet containing extract from banaba in patients with mild type 2 diabetes. Jpn. Pharmacol. Ther. 1999, 27, 829–835. [Google Scholar]
- Kim, H.J.; Yoon, K.H.; Kang, M.J.; Yim, H.W.; Lee, K.S.; Vuksan, V.; Sung, M.K. A six-month supplementation of mulberry, korean red ginseng, and banaba decreases biomarkers of systemic low-grade inflammation in subjects with impaired glucose tolerance and type 2 diabetes. Evid. Based Complement. Alternat. Med. 2012, 2012, 735191. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Morbini, M.; Colletti, A.; Bove, M.; Veronesi, M.; Giovannini, M.; Borghi, C. Nutraceutical effects on glucose and lipid metabolism in patients with impaired fasting glucose: A pilot, double-blind, placebo-controlled, randomized clinical trial on a combined product. High Blood Press. Cardiovasc. Prev. 2017, 24, 283–288. [Google Scholar] [CrossRef]
- Derosa, G.; D’Angelo, A.; Vanelli, A.; Maffioli, P. An evaluation of a nutraceutical with berberine, curcumin, inositol, banaba and chromium picolinate in patients with fasting dysglycemia. Diabetes Metab. Syndr. Obes. 2020, 13, 653–661. [Google Scholar] [CrossRef]
- Neag, M.A.; Mocan, A.; Echeverría, J.; Pop, R.M.; Bocsan, C.I.; Crişan, G.; Buzoianu, A.D. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front. Pharmacol. 2018, 9, 557. [Google Scholar] [CrossRef]
- Yin, J.; Ye, J.; Jia, W. Effects and mechanisms of berberine in diabetes treatment. Acta Pharm. Sin. B 2012, 2, 327–334. [Google Scholar] [CrossRef]
- Affuso, F.; Mercurio, V.; Ruvolo, A.; Pirozzi, C.; Micillo, F.; Carlomagno, G.; Grieco, F.; Fazio, S. A nutraceutical combination improves insulin sensitivity in patients with metabolic syndrome. World J. Cardiol. 2012, 4, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Derosa, G.; Maffioli, P.; Cicero, A.F. Berberine on metabolic and cardiovascular risk factors: An analysis from preclinical evidences to clinical trials. Expert Opin. Biol. Ther. 2012, 12, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Xing, H.; Ye, J. Efficacy of berberine in patients with type 2 diabetes mellitus. Metabolism 2008, 57, 712–717. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Zou, D.; Liu, W.; Yang, J.; Zhu, N.; Huo, L.; Wang, M.; Hong, J.; Wu, P.; et al. Treatment of type 2 diabetes and dyslipidemia with the natural plant alkaloid berberine. J. Clin. Endocrinol. Metab. 2008, 93, 2559–2565. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, J.; Xue, R.; Wu, J.D.; Zhao, W.; Wang, Z.Z.; Wang, S.K.; Zhou, Z.X.; Song, D.Q.; Wang, Y.M.; et al. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression. Metabolism 2010, 59, 285–292. [Google Scholar] [CrossRef]
- Xia, X.; Yan, J.; Shen, Y.; Tang, K.; Yin, J.; Zhang, Y.; Yang, D.; Liang, H.; Ye, J.; Weng, J. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis. PLoS ONE 2011, 6, e16556. [Google Scholar] [CrossRef]
- Xiao-Ping, Y.; Chun-Qing, S.; Ping, Y.; Ren-Gang, M. α-Glucosidase and α-amylase inhibitory activity of common constituents from traditional Chinese medicine used for diabetes mellitus. Chin. J. Nat. Med. 2010, 8, 349–352. [Google Scholar]
- Yin, J.; Zhang, H.; Ye, J. Traditional chinese medicine in treatment of metabolic syndrome. Endocr. Metab. Immune Disord. Drug Targets 2008, 8, 99–111. [Google Scholar] [CrossRef]
- Ni, Y.X. Therapeutic effect of berberine on 60 patients with type II diabetes mellitus and experimental research. Zhong Xi Yi Jie He Za Zhi 1988, 8, 711–713. [Google Scholar]
- DeFronzo, R.A.; Goodman, A.M. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N. Engl. J. Med. 1995, 333, 541–549. [Google Scholar] [CrossRef]
- Bloomgarden, Z.T.; Dodis, R.; Viscoli, C.M.; Holmboe, E.S.; Inzucchi, S.E. Lower baseline glycemia reduces apparent oral agent glucose-lowering efficacy: A meta-regression analysis. Diabetes Care 2006, 29, 2137–2139. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Zhang, Y.; Shi, X.; Li, X.; Hong, J.; Chen, J.; Gu, W.; Lu, X.; Xu, G.; Ning, G. Effect of traditional Chinese medicine berberine on type 2 diabetes based on comprehensive metabonomics. Talanta 2010, 81, 766–772. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, F.; Villanova, N.; Agostini, F.; Marzocchi, R.; Soverini, V.; Marchesini, G. Pilot study on the additive effects of berberine and oral type 2 diabetes agents for patients with suboptimal glycemic control. Diabetes Metab. Syndr. Obes. 2012, 5, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, F.; Putignano, P.; Villanova, N.; Montesi, L.; Moscatiello, S.; Marchesini, G. Preliminary study about the possible glycemic clinical advantage in using a fixed combination of Berberis aristata and Silybum marianum standardized extracts versus only Berberis aristata in patients with type 2 diabetes. Clin. Pharmacol. 2013, 5, 167–174. [Google Scholar] [CrossRef]
- Derosa, G.; Bonaventura, A.; Bianchi, L.; Romano, D.; D’Angelo, A.; Fogari, E.; Maffioli, P. Berberis aristata/Silybum marianum fixed combination on lipid profile and insulin secretion in dyslipidemic patients. Expert Opin. Biol. Ther. 2013, 13, 1495–1506. [Google Scholar] [CrossRef]
- Derosa, G.; Bonaventura, A.; Bianchi, L.; Romano, D.; D’ Angelo, A.; Fogari, E.; Maffioli, P. Effects of Berberis aristata/Silybum marianum association on metabolic parameters and adipocytokines in overweight dyslipidemic patients. J. Biol. Regul. Homeost. Agents 2013, 27, 717–728. [Google Scholar]
- Derosa, G.; Romano, D.; D’Angelo, A.; Maffioli, P. Berberis aristata combined with Silybum marianum on lipid profile in patients not tolerating statins at high doses. Atherosclerosis 2015, 239, 87–92. [Google Scholar] [CrossRef]
- Di Pierro, F.; Bellone, I.; Rapacioli, G.; Putignano, P. Clinical role of a fixed combination of standardized Berberis aristata and Silybum marianum extracts in diabetic and hypercholesterolemic patients intolerant to statins. Diabetes Metab. Syndr. Obes. 2015, 8, 89–96. [Google Scholar] [CrossRef]
- Derosa, G.; D’Angelo, A.; Maffioli, P. The role of a fixed Berberis aristata/Silybum marianum combination in the treatment of type 1 diabetes mellitus. Clin. Nutr. 2016, 35, 1091–1095. [Google Scholar] [CrossRef]
- Di Pierro, F.; Putignano, P.; Ferrara, T.; Raiola, C.; Rapacioli, G.; Villanova, N. Retrospective analysis of the effects of a highly standardized mixture of Berberis aristata, Silybum marianum, and monacolins K and KA in patients with dyslipidemia. Clin. Pharmacol. 2016, 9, 1–7. [Google Scholar] [CrossRef]
- Derosa, G.; D’Angelo, A.; Romano, D.; Maffioli, P. Effects of a Combination of Berberis aristata, Silybum marianum and Monacolin on Lipid Profile in Subjects at Low Cardiovascular Risk; A Double-Blind, Randomized, Placebo-Controlled Trial. Int. J. Mol. Sci. 2017, 18, 343. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, F.; Putignano, P.; Villanova, N. Retrospective analysis of the effects of a highly standardized mixture of Berberis aristata, Silybum marianum, and monacolins K and KA in diabetic patients with dyslipidemia. Acta Biomed. 2018, 88, 462–469. [Google Scholar] [PubMed]
- Sartore, G.; Ragazzi, E.; Antonello, G.; Cosma, C.; Lapolla, A. Effect of a new formulation of nutraceuticals as an add-on to metformin monotherapy for patients with type 2 diabetes and suboptimal glycemic control: A randomized controlled trial. Nutrients 2021, 13, 2373. [Google Scholar] [CrossRef]
- Sharma, S.; Mandal, A.; Kant, R.; Jachak, S.; Jagzape, M. Is cinnamon efficacious for glycaemic control in type-2 diabetes mellitus? J. Pak. Med. Assoc. 2020, 70, 2065–2069. [Google Scholar]
- Qin, B.; Qiu, W.; Avramoglu, R.K.; Adeli, K. Tumor necrosis factor-alpha induces intestinal insulin resistance and stimulates the overproduction of intestinal apolipoprotein B48-containing lipoproteins. Diabetes 2007, 56, 450–461. [Google Scholar] [CrossRef]
- Qin, B.; Panickar, K.S.; Anderson, R.A. Cinnamon: Potential role in the prevention of insulin resistance, metabolic syndrome, and type 2 diabetes. J. Diabetes Sci. Technol. 2010, 4, 685–693. [Google Scholar] [CrossRef]
- Sheng, X.; Zhang, Y.; Gong, Z.; Huang, C.; Zang, Y.Q. Improved insulin resistance and lipid metabolism by cinnamon extract through activation of peroxisome proliferator-activated receptors. PPAR Res. 2008, 2008, 581348. [Google Scholar] [CrossRef]
- Khan, A.; Safdar, M.; Ali Khan, M.M.; Khattak, K.N.; Anderson, R.A. Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care 2003, 26, 3215–3218. [Google Scholar] [CrossRef]
- Mang, B.; Wolters, M.; Schmitt, B.; Kelb, K.; Lichtinghagen, R.; Stichtenoth, D.O.; Hahn, A. Effects of a cinnamon extract on plasma glucose, HbA, and serum lipids in diabetes mellitus type 2. Eur. J. Clin. Investig. 2006, 36, 340–344. [Google Scholar] [CrossRef]
- Vanschoonbeek, K.; Thomassen, B.J.; Senden, J.M.; Wodzig, W.K.; van Loon, L.J. Cinnamon supplementation does not improve glycemic control in postmenopausal type 2 diabetes patients. J. Nutr. 2006, 136, 977–980. [Google Scholar] [CrossRef]
- Wang, J.G.; Anderson, R.A.; Graham, G.M., 3rd; Chu, M.C.; Sauer, M.V.; Guarnaccia, M.M.; Lobo, R.A. The effect of cinnamon extract on insulin resistance parameters in polycystic ovary syndrome: A pilot study. Fertil. Steril. 2007, 88, 240–243. [Google Scholar] [CrossRef]
- Solomon, T.P.; Blannin, A.K. Effects of short-term cinnamon ingestion on in vivo glucose tolerance. Diabetes Obes. Metab. 2007, 9, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Blevins, S.M.; Leyva, M.J.; Brown, J.; Wright, J.; Scofield, R.H.; Aston, C.E. Effect of cinnamon on glucose and lipid levels in non insulin-dependent type 2 diabetes. Diabetes Care 2007, 30, 2236–2237. [Google Scholar] [CrossRef]
- Altschuler, J.A.; Casella, S.J.; MacKenzie, T.A.; Curtis, K.M. The effect of cinnamon on A1C among adolescents with type 1 diabetes. Diabetes Care 2007, 30, 813–816. [Google Scholar] [CrossRef]
- Solomon, T.P.; Blannin, A.K. Changes in glucose tolerance and insulin sensitivity following 2 weeks of daily cinnamon ingestion in healthy humans. Eur. J. Appl. Physiol. 2009, 105, 969–976. [Google Scholar] [CrossRef]
- Crawford, P. Effectiveness of cinnamon for lowering hemoglobin A1C in patients with type 2 diabetes: A randomized, controlled trial. J. Am. Board Fam. Med. 2009, 22, 507–512. [Google Scholar] [CrossRef]
- Khan, R.; Khan, Z.; Shah, S.H. Cinnamon may reduce glucose, lipid and cholesterol level in type 2 diabetic individuals. Pak. J. Nutr. 2010, 9, 430–433. [Google Scholar] [CrossRef]
- Akilen, R.; Tsiami, A.; Devendra, D.; Robinson, N. Glycated haemoglobin and blood pressure-lowering effect of cinnamon in multi-ethnic Type 2 diabetic patients in the UK: A randomized, placebo-controlled, double-blind clinical trial. Diabet. Med. 2010, 27, 1159–1167. [Google Scholar] [CrossRef] [PubMed]
- Markey, O.; McClean, C.M.; Medlow, P.; Davison, G.W.; Trinick, T.R.; Duly, E.; Shafat, A. Effect of cinnamon on gastric emptying, arterial stiffness, postprandial lipemia, glycemia, and appetite responses to high-fat breakfast. Cardiovasc. Diabetol. 2011, 10, 78. [Google Scholar] [CrossRef]
- Vafa, M.; Mohammadi, F.; Shidfar, F.; Sormaghi, M.S.; Heidari, I.; Golestan, B.; Amiri, F. Effects of cinnamon consumption on glycemic status, lipid profile and body composition in type 2 diabetic patients. Int. J. Prev. Med. 2012, 3, 531–536. [Google Scholar]
- Sharma, P.; Sharma, S.; Agrawal, R.; Agarwal, V.; Singhal, S. A randomised double blind placebo control trial of cinnamon supplementation on glycemic control and lipid profile in type 2 diabetes mellitus. Aust. J. Herb. Med. 2012, 24, 108–119. [Google Scholar]
- Lu, T.; Sheng, H.; Wu, J.; Cheng, Y.; Zhu, J.; Chen, Y. Cinnamon extract improves fasting blood glucose and glycosylated hemoglobin level in Chinese patients with type 2 diabetes. Nutr. Res. 2012, 32, 408–412. [Google Scholar] [CrossRef] [PubMed]
- Hasanzade, F.; Toliat, M.; Emami, S.A.; Emamimoghaadam, Z. The Effect of Cinnamon on glucose of type II diabetes patients. J. Tradit. Complement. Med. 2013, 3, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Wickenberg, J.; Lindstedt, S.; Nilsson, J.; Hlebowicz, J. Cassia cinnamon does not change the insulin sensitivity or the liver enzymes in subjects with impaired glucose tolerance. Nutr. J. 2014, 13, 96. [Google Scholar] [CrossRef]
- Al-Yassiry, K.; Nizar, Z.; Ewadh, M.; Kathum, W.; Al-Ganimi, Y. Evaluation of anti-diabetic effect of cinnamon in patients with diabetes mellitus type ii in kerbala city. J. Nat. Sci. Res. 2014, 4, 43–45. [Google Scholar]
- Beejmohun, V.; Peytavy-Izard, M.; Mignon, C.; Muscente-Paque, D.; Deplanque, X.; Ripoll, C.; Chapal, N. Acute effect of ceylon cinnamon extract on postprandial glycemia: Alpha-amylase inhibition, starch tolerance test in rats, and randomized crossover clinical trial in healthy volunteers. BMC Complement. Altern. Med. 2014, 14, 351. [Google Scholar] [CrossRef]
- Bernardo, M.A.; Silva, M.L.; Santos, E.; Moncada, M.M.; Brito, J.; Proença, L.; Singh, J.; de Mesquita, M.F. Effect of cinnamon tea on postprandial glucose concentration. J. Diabetes Res. 2015, 2015, 913651. [Google Scholar] [CrossRef]
- Mirfeizi, M.; Mehdizadeh Tourzani, Z.; Mirfeizi, S.Z.; Asghari Jafarabadi, M.; Rezvani, H.R.; Afzali, M. Controlling type 2 diabetes mellitus with herbal medicines: A triple-blind randomized clinical trial of efficacy and safety. J. Diabetes 2016, 8, 647–656. [Google Scholar] [CrossRef]
- Anderson, R.A.; Zhan, Z.; Luo, R.; Guo, X.; Guo, Q.; Zhou, J.; Kong, J.; Davis, P.A.; Stoecker, B.J. Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose. J. Tradit. Complement. Med. 2016, 6, 332–336. [Google Scholar] [CrossRef]
- Talaei, B.; Amouzegar, A.; Sahranavard, S.; Hedayati, M.; Mirmiran, P.; Azizi, F. Effects of cinnamon consumption on glycemic indicators, advanced glycation end products, and antioxidant status in type 2 diabetic patients. Nutrients 2017, 9, 991. [Google Scholar] [CrossRef]
- Gupta Jain, S.; Puri, S.; Misra, A.; Gulati, S.; Mani, K. Effect of oral cinnamon intervention on metabolic profile and body composition of Asian Indians with metabolic syndrome: A randomized double -blind control trial. Lipids Health Dis. 2017, 16, 113. [Google Scholar] [CrossRef] [PubMed]
- Hajimonfarednejad, M.; Nimrouzi, M.; Heydari, M.; Zarshenas, M.M.; Raee, M.J.; Jahromi, B.N. Insulin resistance improvement by cinnamon powder in polycystic ovary syndrome: A randomized double-blind placebo controlled clinical trial. Phytother. Res. 2018, 32, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Zare, R.; Nadjarzadeh, A.; Zarshenas, M.M.; Shams, M.; Heydari, M. Efficacy of cinnamon in patients with type II diabetes mellitus: A randomized controlled clinical trial. Clin. Nutr. 2019, 38, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Kizilaslan, N.; Erdem, N.Z. The effect of different amounts of cinnamon consumption on blood glucose in healthy adult individuals. Int. J. Food Sci. 2019, 2019, 4138534. [Google Scholar] [CrossRef]
- Lira Neto, J.C.G.; Damasceno, M.M.C.; Ciol, M.A.; de Freitas, R.W.J.F.; de Araújo, M.F.M.; Teixeira, C.R.S.; Carvalho, G.C.N.; Lisboa, K.W.S.C.; Marques, R.L.L.; Alencar, A.M.P.G.; et al. Efficacy of cinnamon as an adjuvant in reducing the glycemic biomarkers of type 2 diabetes mellitus: A three-month, randomized, triple-blind, placebo-controlled clinical trial. J. Am. Nutr. Assoc. 2022, 41, 266–274. [Google Scholar] [CrossRef]
- Rachid, A.P.; Moncada, M.; Mesquita, M.F.; Brito, J.; Bernardo, M.A.; Silva, M.L. Effect of aqueous cinnamon extract on the postprandial glycemia levels in patients with type 2 diabetes mellitus: A randomized controlled trial. Nutrients 2022, 14, 1576. [Google Scholar] [CrossRef]
- Liu, Y.; Cotillard, A.; Vatier, C.; Bastard, J.P.; Fellahi, S.; Stévant, M.; Allatif, O.; Langlois, C.; Bieuvelet, S.; Brochot, A.; et al. A dietary supplement containing cinnamon, chromium and carnosine decreases fasting plasma glucose and increases lean mass in overweight or obese pre-diabetic subjects: A randomized, placebo-controlled trial. PLoS ONE 2015, 10, e0138646. [Google Scholar] [CrossRef]
- Whitfield, P.; Parry-Strong, A.; Walsh, E.; Weatherall, M.; Krebs, J.D. The effect of a cinnamon-, chromium- and magnesium-formulated honey on glycaemic control, weight loss and lipid parameters in type 2 diabetes: An open-label cross-over randomised controlled trial. Eur. J. Nutr. 2016, 55, 1123–1131. [Google Scholar] [CrossRef]
- Pothuraju, R.; Sharma, R.K.; Chagalamarri, J.; Jangra, S.; Kumar Kavadi, P. A systematic review of Gymnema sylvestre in obesity and diabetes management. J. Sci. Food Agric. 2014, 94, 834–840. [Google Scholar] [CrossRef]
- Sahu, N.P.; Mahato, S.B.; Sarkar, S.K.; Poddar, G. Triterpenoid saponins from Gymnema sylvestre. Phytochemistry 1996, 41, 1181–1185. [Google Scholar] [CrossRef]
- Aralelimath, V.R.; Bhise, S.B. Anti-diabetic effects of Gymnema sylvestre extract on streptozotocin induced diabetic rats and possible b-cell protective and regenerative evaluations. Dig. J. Nanomater. Bios. 2012, 7, 135–142. [Google Scholar]
- Nakamura, Y.; Tsumura, Y.; Tonogai, Y.; Shibata, T. Fecal steroid excretion is increased in rats by oral administration of gymnemic acids contained in Gymnema sylvestre leaves. J. Nutr. 1999, 129, 1214–1222. [Google Scholar] [CrossRef] [PubMed]
- Shanmugasundaram, E.R.; Gopinath, K.L.; Radha Shanmugasundaram, K.; Rajendran, V.M. Possible regeneration of the islets of Langerhans in streptozotocin-diabetic rats given Gymnema sylvestre leaf extracts. J. Ethnopharmacol. 1990, 30, 265–279. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.; Sarker, M.M.R.; Ming, L.C.; Mohamed, I.N.; Zhao, C.; Sheikh, B.Y.; Tsong, H.F.; Rashid, M.A. Comprehensive review on phytochemicals, pharmacological and clinical potentials of gymnema sylvestre. Front. Pharmacol. 2019, 10, 1223. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Mishra, B.N.; Sangwan, N.S. Phytochemical and pharmacological properties of Gymnema sylvestre: An important medicinal plant. Biomed. Res. Int. 2014, 2014, 830285. [Google Scholar] [CrossRef]
- Khare, A.K.; Tondon, R.N.; Tewari, J.P. Hypoglycaemic activity of an indigenous drug (Gymnema sylvestre, ‘Gurmar’) in normal and diabetic persons. Indian J. Physiol. Pharmacol. 1983, 27, 257–258. [Google Scholar]
- Baskaran, K.; Kizar Ahamath, B.; Radha Shanmugasundaram, K.; Shanmugasundaram, E.R. Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients. J. Ethnopharmacol. 1990, 30, 295–300. [Google Scholar] [CrossRef]
- Shanmugasundaram, E.R.; Rajeswari, G.; Baskaran, K.; Rajesh Kumar, B.R.; Radha Shanmugasundaram, K.; Kizar Ahmath, B. Use of Gymnema sylvestre leaf extract in the control of blood glucose in insulin-dependent diabetes mellitus. J. Ethnopharmacol. 1990, 30, 281–294. [Google Scholar] [CrossRef]
- Al-Romaiyan, A.; Liu, B.; Asare-Anane, H.; Maity, C.R.; Chatterjee, S.K.; Koley, N.; Biswas, T.; Chatterji, A.K.; Huang, G.C.; Amiel, S.A.; et al. A novel Gymnema sylvestre extract stimulates insulin secretion from human islets in vivo and in vitro. Phytother. Res. 2010, 24, 1370–1376. [Google Scholar] [CrossRef]
- Al-Romaiyan, A.; Liu, B.; Docherty, R.; Huang, G.C.; Amiel, S.; Persaud, S.J.; Jones, P.M. Investigation of intracellular signalling cascades mediating stimulatory effect of a Gymnema sylvestre extract on insulin secretion from isolated mouse and human islets of Langerhans. Diabetes Obes. Metab. 2012, 14, 1104–1113. [Google Scholar] [CrossRef]
- Liu, B.; Asare-Anane, H.; Al-Romaiyan, A.; Huang, G.; Amiel, S.A.; Jones, P.M.; Persaud, S.J. Characterisation of the insulinotropic activity of an aqueous extract of Gymnema sylvestre in mouse beta-cells and human islets of Langerhans. Cell. Physiol. Biochem. 2009, 23, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.N.; Mani, U.V.; Mani, I. An open label study on the supplementation of Gymnema sylvestre in type 2 diabetics. J. Diet Suppl. 2010, 7, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zheng, M.; Zhai, X.; Huang, Y.; Khalid, A.; Malik, A.; Shah, P.; Karim, S.; Azhar, S.; Hou, X. Effect of Gymnema sylvestre, Citrullus colocynthis and Artemisia absinthium on blood glucose and lipid profile in diabetic human. Acta Pol. Pharm. 2015, 72, 981–985. [Google Scholar] [PubMed]
- Gaytán Martínez, L.A.; Sánchez-Ruiz, L.A.; Zuñiga, L.Y.; González-Ortiz, M.; Martínez-Abundis, E. Effect of Gymnema sylvestre administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance. J. Med. Food 2021, 24, 28–32. [Google Scholar] [CrossRef]
- Bracesco, N.; Sanchez, A.G.; Contreras, V.; Menini, T.; Gugliucci, A. Recent advances on Ilex paraguariensis research: Minireview. J. Ethnopharmacol. 2011, 136, 378–384. [Google Scholar] [CrossRef]
- Riachi, L.G.; Bastos De Maria, C.A. Yerba mate: An overview of physiological effects in humans. J. Funct. Foods 2017, 38, 308–320. [Google Scholar] [CrossRef]
- Ong, K.W.; Hsu, A.; Tan, B.K. Chlorogenic acid stimulates glucose transport in skeletal muscle via AMPK activation: A contributor to the beneficial effects of coffee on diabetes. PLoS ONE 2012, 7, e32718. [Google Scholar] [CrossRef]
- Prasad, C.N.; Anjana, T.; Banerji, A.; Gopalakrishnapillai, A. Gallic acid induces GLUT4 translocation and glucose uptake activity in 3T3-L1 cells. FEBS Lett. 2010, 584, 531–536. [Google Scholar] [CrossRef]
- Pereira, D.F.; Kappel, V.D.; Cazarolli, L.H.; Boligon, A.A.; Athayde, M.L.; Guesser, S.M.; Da Silva, E.L.; Silva, F.R. Influence of the traditional Brazilian drink Ilex paraguariensis tea on glucose homeostasis. Phytomedicine 2012, 19, 868–877. [Google Scholar] [CrossRef]
- Arcari, D.P.; Porto, V.B.; Rodrigues, E.R.V.; Martins, F.; de Lima, R.J.; Sawaya, A.C.H.F.; Ribeiro, M.L.; de Oliveira Carvalho, P. Effect of mate tea (Ilex paraguariensis) supplementation on oxidative stress biomarkers and LDL oxidisability in normo- and hyperlipidaemic humans. J. Funct. Foods 2011, 3, 190–197. [Google Scholar] [CrossRef]
- Klein, G.A.; Stefanuto, A.; Boaventura, B.C.; de Morais, E.C.; Cavalcante, L.; de Andrade, F.; Wazlawik, E.; Di Pietro, P.F.; Maraschin, M.; da Silva, E.L. Mate tea (Ilex paraguariensis) improves glycemic and lipid profiles of type 2 diabetes and pre-diabetes individuals: A pilot study. J. Am. Coll. Nutr. 2011, 30, 320–332. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Ko, J.; Storni, C.; Song, H.J.; Cho, Y.G. Effect of green mate in overweight volunteers: A randomized placebo-controlled human study. J. Funct. Foods 2012, 4, 287–293. [Google Scholar] [CrossRef]
- Boaventura, B.C.B.; Di Pietro, P.F.; Klein, G.A.; Stefanuto, A.; de Morais, E.C.; de Andrade, F.; Wazlawik, E.; da Silva, E.L. Antioxidant potential of mate tea (Ilex paraguariensis) in type 2 diabetic mellitus and pre-diabetic individuals. J. Funct. Foods 2013, 5, 1057–1064. [Google Scholar] [CrossRef]
- Jung, J.; Hur, Y.I. The effect of maté extract on body weight and fat reduction in obese women: A randomized placebo-controlled clinical trial. Korean J. Obes. 2016, 25, 197–206. [Google Scholar] [CrossRef]
- Derosa, G.; D’Angelo, A.; Maffioli, P. Ilex paraguariensis, white mulberry and chromium picolinate in patients with pre-diabetes. Phytother. Res. 2020, 34, 1377–1384. [Google Scholar] [CrossRef]
- Derosa, G.; D’Angelo, A.; Maffioli, P. Metabolic actions of a supplement of ilex paraguariensis (an extract of the leaf standardized to 2% i-deoxinojirimcina), white mulberry and chromium picolinate in nondiabetic subects with dysglycemia: A randomized trial. Life 2021, 11, 709. [Google Scholar] [CrossRef]
- Efird, J.T.; Choi, Y.M.; Davies, S.W.; Mehra, S.; Anderson, E.J.; Katunga, L.A. Potential for improved glycemic control with dietary Momordica charantia in patients with insulin resistance and pre-diabetes. Int. J. Environ. Res. Public Health 2014, 11, 2328–2345. [Google Scholar] [CrossRef]
- Ota, A.; Ulrih, N.P. An Overview of Herbal Products and Secondary Metabolites Used for Management of Type Two Diabetes. Front. Pharmacol. 2017, 8, 436. [Google Scholar] [CrossRef]
- Tan, M.J.; Ye, J.M.; Turner, N.; Hohnen-Behrens, C.; Ke, C.Q.; Tang, C.P.; Chen, T.; Weiss, H.C.; Gesing, E.R.; Rowland, A.; et al. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem. Biol. 2008, 15, 263–273. [Google Scholar] [CrossRef]
- Singh, J.; Cumming, E.; Manoharan, G.; Kalasz, H.; Adeghate, E. Medicinal chemistry of the anti-diabetic effects of momordica charantia: Active constituents and modes of actions. Open Med. Chem. J. 2011, 5 (Suppl. S2), 70–77. [Google Scholar] [CrossRef]
- Hazarika, R.; Parida, P.; Neog, B.; Yadav, R.N. Binding Energy calculation of GSK-3 protein of Human against some anti-diabetic compounds of Momordica charantia linn (Bitter melon). Bioinformation 2012, 8, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, P. Antidiabetic potentials of Momordica charantia: Multiple mechanisms behind the effects. J. Med. Food 2012, 15, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.C.; Shlau, M.T.; Lin, C.H.; Wu, J.B. Momordica charantia ameliorates insulin resistance and dyslipidemia with altered hepatic glucose production and fatty acid synthesis and AMPK phosphorylation in high-fat-fed mice. Phytother. Res. 2014, 28, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Meir, P.; Yaniv, Z. An in vitro Study on the Effect of Momordica charantia on Glucose Uptake and Glucose Metabolism in Rats. Planta Med. 1985, 51, 12–16. [Google Scholar] [CrossRef]
- Shibib, B.A.; Khan, L.A.; Rahman, R. Hypoglycaemic activity of Coccinia indica and Momordica charantia in diabetic rats: Depression of the hepatic gluconeogenic enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase and elevation of both liver and red-cell shunt enzyme glucose-6-phosphate dehydrogenase. Biochem. J. 1993, 292 Pt 1, 267–270. [Google Scholar]
- Grover, J.K.; Yadav, S.P. Pharmacological actions and potential uses of Momordica charantia: A review. J. Ethnopharmacol. 2004, 93, 123–132. [Google Scholar] [CrossRef]
- Baldwa, V.S.; Bhandari, C.M.; Pangaria, A.; Goyal, R.K. Clinical trial in patients with diabetes mellitus of an insulin-like compound obtained from plant source. Ups. J. Med. Sci. 1977, 82, 39–41. [Google Scholar] [CrossRef]
- Leatherdale, B.A.; Panesar, R.K.; Singh, G.; Atkins, T.W.; Bailey, C.J.; Bignell, A.H. Improvement in glucose tolerance due to Momordica charantia (karela). Br. Med. J. (Clin. Res. Ed.) 1981, 282, 1823–1824. [Google Scholar] [CrossRef]
- Khanna, P.; Jain, S.C.; Panagariya, A.; Dixit, V.P. Hypoglycemic activity of polypeptide-P from a plant source. J. Nat. Prod. 1981, 44, 648–655. [Google Scholar] [CrossRef]
- Akhtar, M.S. Trial of Momordica charantia Linn (Karela) powder in patients with maturity-onset diabetes. J. Pak. Med. Assoc. 1982, 32, 106–107. [Google Scholar]
- Welihinda, J.; Karunanayake, E.H.; Sheriff, M.H.; Jayasinghe, K.S. Effect of Momordica charantia on the glucose tolerance in maturity onset diabetes. J. Ethnopharmacol. 1986, 17, 277–282. [Google Scholar] [CrossRef] [PubMed]
- John, A.J.; Cherian, R.; Subhash, H.S.; Cherian, A.M. Evaluation of the efficacy of bitter gourd (momordica charantia) as an oral hypoglycemic agent--a randomized controlled clinical trial. Indian J. Physiol. Pharmacol. 2003, 47, 363–365. [Google Scholar] [PubMed]
- Tongia, A.; Tongia, S.K.; Dave, M. Phytochemical determination and extraction of Momordica charantia fruit and its hypoglycemic potentiation of oral hypoglycemic drugs in diabetes mellitus (NIDDM). Indian J. Physiol. Pharmacol. 2004, 48, 241–244. [Google Scholar]
- Dans, A.M.; Villarruz, M.V.; Jimeno, C.A.; Javelosa, M.A.; Chua, J.; Bautista, R.; Velez, G.G. The effect of Momordica charantia capsule preparation on glycemic control in type 2 diabetes mellitus needs further studies. J. Clin. Epidemiol. 2007, 60, 554–559. [Google Scholar] [CrossRef]
- Inayat-ur-Rahman; Malik, S.A.; Bashir, M.; Khan, R.; Iqbal, M. Serum sialic acid changes in non-insulin-dependant diabetes mellitus (NIDDM) patients following bitter melon (Momordica charantia) and rosiglitazone (Avandia) treatment. Phytomedicine 2009, 16, 401–405. [Google Scholar] [CrossRef]
- Kasbia, G.S.; Arnason, J.T.; Imbeault, P. No effect of acute, single dose oral administration of Momordica charantia Linn., on glycemia, energy expenditure and appetite: A pilot study in non-diabetic overweight men. J. Ethnopharmacol. 2009, 126, 127–133. [Google Scholar] [CrossRef]
- Lim, S.T.; Jimeno, C.A.; Razon-Gonzales, E.B.; Velasquez, E.N. The MOCHA DM study: The effect of Momordica charantia tablets on glucose and insulin levels during the postprandial state among patients with type 2 diabetes mellitus. Phil. J. Inter. Med. 2010, 48, 19–25. [Google Scholar]
- Fuangchan, A.; Sonthisombat, P.; Seubnukarn, T.; Chanouan, R.; Chotchaisuwat, P.; Sirigulsatien, V.; Ingkaninan, K.; Plianbangchang, P.; Haines, S.T. Hypoglycemic effect of bitter melon compared with metformin in newly diagnosed type 2 diabetes patients. J. Ethnopharmacol. 2011, 134, 422–428. [Google Scholar] [CrossRef]
- Tsai, C.H.; Chen, E.C.; Tsay, H.S.; Huang, C.J. Wild bitter gourd improves metabolic syndrome: A preliminary dietary supplementation trial. Nutr. J. 2012, 11, 4. [Google Scholar] [CrossRef]
- Rahman, I.U.; Khan, R.U.; Rahman, K.U.; Bashir, M. Lower hypoglycemic but higher antiatherogenic effects of bitter melon than glibenclamide in type 2 diabetic patients. Nutr. J. 2015, 14, 13. [Google Scholar] [CrossRef]
- Krawinkel, M.B.; Ludwig, C.; Swai, M.E.; Yang, R.Y.; Chun, K.P.; Habicht, S.D. Bitter gourd reduces elevated fasting plasma glucose levels in an intervention study among prediabetics in Tanzania. J. Ethnopharmacol. 2018, 216, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cortez-Navarrete, M.; Martínez-Abundis, E.; Pérez-Rubio, K.G.; González-Ortiz, M.; Méndez-Del Villar, M. Momordica charantia Administration Improves Insulin Secretion in Type 2 Diabetes Mellitus. J. Med. Food 2018, 21, 672–677. [Google Scholar] [CrossRef]
- Kim, S.K.; Jung, J.; Jung, J.H.; Yoon, N.; Kang, S.S.; Roh, G.S.; Hahm, J.R. Hypoglycemic efficacy and safety of Momordica charantia (bitter melon) in patients with type 2 diabetes mellitus. Complement. Ther. Med. 2020, 52, 102524. [Google Scholar] [CrossRef]
- Kochhar, A.; Nagi, M. Effect of supplementation of traditional medicinal plants on blood glucose in non-insulin-dependent diabetics: A pilot study. J. Med. Food 2005, 8, 545–549. [Google Scholar] [CrossRef]
- Kumar, V.; Chauhan, S. Mulberry: Life enhancer. J. Med. Plant Res. 2008, 2, 271–278. [Google Scholar]
- Mena, P.; Sánchez-Salcedo, E.M.; Tassoti, M.; Martínez, J.J.; Hernández, F.; Del Rio, D. Phytochemical evaluation of eight white (Morus alba L.) and black (Morus nigra L.) mulberry clones grown in Spain based on UHPLC-ESI-MSn metabolomic profiles. Food Res. Int. 2016, 89, 1116–1122. [Google Scholar] [CrossRef]
- Konno, K.; Ono, H.; Nakamura, M.; Tateishi, K.; Hirayama, C.; Tamura, Y.; Hattori, M.; Koyama, A.; Kohno, K. Mulberry latex rich in antidiabetic sugar-mimic alkaloids forces dieting on caterpillars. Proc. Natl. Acad. Sci. USA 2006, 103, 1337–1341. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, E.M.; Amorós, A.; Hernández, F.; Martínez, J.J. Physicochemical properties of white (morus alba) and black (morus nigra) mulberry leaves, a new food supplement. J. Food Nutr. Res. 2017, 5, 253–261. [Google Scholar]
- Rodrigues, E.L.; Marcelino, G.; Silva, G.T.; Figueiredo, P.S.; Garcez, W.S.; Corsino, J.; Guimarães, R.C.A.; Freitas, K.C. Nutraceutical and medicinal potential of the morus species in metabolic dysfunctions. Int. J. Mol. Sci. 2019, 20, 301. [Google Scholar] [CrossRef]
- Kimura, T.; Nakagawa, K.; Kubota, H.; Kojima, Y.; Goto, Y.; Yamagishi, K.; Oita, S.; Oikawa, S.; Miyazawa, T. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of post-prandial blood glucose in humans. J. Agric. Food Chem. 2007, 55, 5869–5874. [Google Scholar] [CrossRef]
- Wang, H.; Shen, Y.; Zhao, L.; Ye, Y. 1-Deoxynojirimycin and its derivatives: A mini review of the literature. Curr. Med. Chem. 2021, 28, 628–643. [Google Scholar] [CrossRef] [PubMed]
- Mudra, M.; Ercan-Fang, N.; Zhong, L.; Furne, J.; Levitt, M. Influence of mulberry leaf extract on the blood glucose and breath hydrogen response to ingestion of 75 g sucrose by type 2 diabetic and control subjects. Diabetes Care 2007, 30, 1272–1274. [Google Scholar] [CrossRef] [PubMed]
- Asai, A.; Nakagawa, K.; Higuchi, O.; Kimura, T.; Kojima, Y.; Kariya, J.; Miyazawa, T.; Oikawa, S. Effect of mulberry leaf extract with enriched 1-deoxynojirimycin content on post-prandial glycemic control in subjects with impaired glucose metabolism. J. Diabetes Investig. 2011, 2, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, S.; Hashiguchi, M.; Yoshihiko, Y.; Oku, T. Hypoglycemic effects of Morus alba leaf extract on post-prandial glucose and insulin levels in patients with type 2 diabetes treated with sulfonylurea hypoglycemic agents. J. Diab. Metab. 2011, 2, 1000158. [Google Scholar] [CrossRef]
- Chung, H.I.; Kim, J.; Kim, J.Y.; Kwon, O. Acute intake of mulberry leaf aqueous extract affects post-prandial glucose response after maltose loading: Randomized double-blind placebo-controlled pilot study. J. Funct. Foods 2013, 13, 1502–1506. [Google Scholar] [CrossRef]
- Kim, J.Y.; Ok, H.M.; Kim, J.; Park, S.W.; Kwon, S.W.; Kwon, O. Mulberry leaf extract improves post-prandial glucose response in prediabetic subjects: A randomized, double-blind placebo-controlled trial. J. Med. Food 2015, 18, 306–313. [Google Scholar] [CrossRef]
- Banu, S.; Jabir, N.R.; Manjunathm, N.C.; Khan, M.S.; Ashraf, G.M.; Kamal, M.A.; Tabrez, S. Reduction of post-prandial hyperglycemia by mulberry tea in type-2 diabetes patients. Saudi J. Biol. Sci. 2015, 22, 32–36. [Google Scholar] [CrossRef]
- Sukriket, P.; Lookhanumarnjao, S.; Bumrungpert, A. The effect of mulberry leaf tea on post-prandial glycemic control and insulin sensitivity: A randomized, placebo-controlled crossover study. J. Pharm. Nutr. Sci. 2016, 6, 33–37. [Google Scholar] [CrossRef]
- Riche, D.M.; Riche, K.D.; East, H.E.; Barrett, E.K.; May, W.L. Impact of mulberry leaf extract on type 2 diabetes (Mul-DM): A randomized, placebo-controlled pilot study. Complement. Ther. Med. 2017, 32, 105–108. [Google Scholar] [CrossRef]
- Thaipitakwong, T.; Supasyndh, O.; Rasmi, Y.; Aramwit, P. A randomized controlled study of dose-finding, efficacy, and safety of mulberry leaves on glycemic profiles in obese persons with borderline diabetes. Complement. Ther. Med. 2020, 49, 102292. [Google Scholar] [CrossRef]
- Thondre, P.S.; Lightowler, H.; Ahlstrom, L.; Gallagher, A. Mulberry leaf extract improves glycaemic response and insulaemic response to sucrose in healthy subjects: Results of a randomized, double blind, placebo-controlled study. Nutr. Metab. 2021, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- Momeni, H.; Salehi, A.; Absalan, A.; Akbari, M. Hydro-alcoholic extract of Morus nigra reduces fasting blood glucose and HbA1c% in diabetic patients, probably via competitive and allosteric interaction with alpha-glucosidase enzyme; a clinical trial and in silico analysis. J. Complement. Integr. Med. 2021, 19, 763–769. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Zeng, W.; Tomlinson, B. Evaluation of a crataegus-based multiherb formula for dyslipidemia: A randomized, double-blind, placebo-controlled clinical trial. Evid. Based Complement. Alternat. 2014, 2014, 365742. [Google Scholar] [CrossRef] [PubMed]
- Trimarco, V.; Izzo, R.; Stabile, E.; Rozza, F.; Santoro, M.; Manzi, M.V.; Serino, F.; Schiattarella, G.G.; Esposito, G.; Trimarco, B. Effects of a new combination of nutraceuticals with Morus alba on lipid profile, insulin sensitivity and endotelial function in dyslipidemic subjects. A cross-over, randomized, double-blind trial. High Blood Press. Cardiovasc. Prev. 2015, 22, 149–154. [Google Scholar] [CrossRef]
- El, S.N.; Karakaya, S. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nutr. Rev. 2009, 67, 632–638. [Google Scholar] [CrossRef]
- Servili, M.; Baldioli, M.; Selvaggini, R.; Macchioni, A.; Montedoro, G. Phenolic compounds of olive fruit: One- and two-dimensional nuclear magnetic resonance characterization of Nüzhenide and its distribution in the constitutive parts of fruit. J. Agric. Food Chem. 1999, 47, 12–18. [Google Scholar] [CrossRef]
- Al-Azzawie, H.F.; Alhamdani, M.S. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci. 2006, 78, 1371–1377. [Google Scholar] [CrossRef]
- Rafferty, E.P.; Wylie, A.R.; Elliott, C.T.; Chevallier, O.P.; Grieve, D.J.; Green, B.D. In vitro and in vivo effects of natural putative secretagogues of Glucagon-Like Peptide-1 (GLP-1). Sci. Pharm. 2011, 79, 615–621. [Google Scholar] [CrossRef]
- Kerimi, A.; Nyambe-Silavwe, H.; Pyner, A.; Oladele, E.; Gauer, J.S.; Stevens, Y.; Williamson, G. Nutritional implications of olives and sugar: Attenuation of postprandial glucose spikes in healthy volunteers by inhibition of sucrose hydrolysis and glucose transport by oleuropein. Eur. J. Nutr. 2019, 58, 1315–1330. [Google Scholar] [CrossRef]
- Acar-Tek, N.; Ağagündüz, D. Olive leaf (Olea Europaea L. folium): Potential effects on glycemia and lipidemia. Ann. Nutr. Metab. 2020, 76, 10–15. [Google Scholar] [CrossRef]
- Wainstein, J.; Ganz, T.; Boaz, M.; Bar Dayan, Y.; Dolev, E.; Kerem, Z.; Madar, Z. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J. Med. Food 2012, 15, 605–610. [Google Scholar] [CrossRef] [PubMed]
- de Bock, M.; Derraik, J.G.; Brennan, C.M.; Biggs, J.B.; Morgan, P.E.; Hodgkinson, S.C.; Hofman, P.L.; Cutfield, W.S. Olive (Olea europaea L.) leaf polyphenols improve insulin sensitivity in middle-aged overweight men: A randomized, placebo-controlled, crossover trial. PLoS ONE 2013, 8, e57622. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, C.; Filesi, C.; Varì, R.; Scazzocchio, B.; Filardi, T.; Fogliano, V.; D’Archivio, M.; Giovannini, C.; Lenzi, A.; Morano, S.; et al. Consumption of extra-virgin olive oil rich in phenolic compounds improves metabolic control in patients with type 2 diabetes mellitus: A possible involvement of reduced levels of circulating visfatin. J. Endocrinol. Investig. 2016, 39, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- Araki, R.; Fujie, K.; Yuine, N.; Watabe, Y.; Nakata, Y.; Suzuki, H.; Isoda, H.; Hashimoto, K. Olive leaf tea is beneficial for lipid metabolism in adults with prediabetes: An exploratory randomized controlled trial. Nutr. Res. 2019, 67, 60–66. [Google Scholar] [CrossRef]
- Derosa, G.; D’Angelo, A.; Maffioli, P. Olea Europaea Effects on Glyco-Metabolic Parameters and on Glycemic Status in Patients with Impaired Fasting Glucose. J. Food Nutr. Res. 2022, 10, 674–680. [Google Scholar] [CrossRef]
- Said, O.; Fulder, S.; Khalil, K.; Azaizeh, H.; Kassis, E.; Saad, B. Maintaining a physiological blood glucose level with ‘glucolevel’, a combination of four anti-diabetes plants used in the traditional arab herbal medicine. Evid. Based Complement. Alternat. Med. 2008, 5, 421–428. [Google Scholar] [CrossRef]
- Wong, R.H.; Garg, M.L.; Wood, L.G.; Howe, P.R. Antihypertensive potential of combined extracts of olive leaf, green coffee bean and beetroot: A randomized, double-blind, placebo-controlled crossover trial. Nutrients 2014, 6, 4881–4894. [Google Scholar] [CrossRef]
- Derosa, G.; Catena, G.; Raddino, R.; Gaudio, G.; Maggi, A.; D’Angelo, A.; Maffioli, P. Effects on oral fat load of a nutraceutical combination of fermented red rice, sterol esters and stanols, curcumin, and olive polyphenols: A randomized, placebo controlled trial. Phytomedicine 2018, 42, 75–82. [Google Scholar] [CrossRef]
- Hermans, M.P.; Lempereur, P.; Salembier, J.P.; Maes, N.; Albert, A.; Jansen, O.; Pincemail, J. Supplementation Effect of a Combination of Olive (Olea europea L.) Leaf and Fruit Extracts in the Clinical Management of Hypertension and Metabolic Syndrome. Antioxidants 2020, 9, 872. [Google Scholar] [CrossRef]
- Chavanelle, V.; Otero, Y.F.; Le Joubioux, F.; Ripoche, D.; Bargetto, M.; Vluggens, A.; Montaurier, C.; Pickering, G.; Ducheix, G.; Dubray, C.; et al. Effects of Totum-63 on glucose homeostasis and postprandial glycemia: A translational study. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E1119–E1137. [Google Scholar] [CrossRef]
- Sirvent, P.; Chavanelle, V.; Otero, Y.F.; Bargetto, M.; Le Joubioux, F.; Boisseau, N.; Maugard, T.; Cazaubiel, M.; Pereira, B.; Guigas, B.; et al. TOTUM-63, a plant-based polyphenol-rich extract, improves glycaemic control in subjects with prediabetes or early stage newly-diagnosed type 2 diabetes in a randomized, double-blind, placebo-controlled trial. Diabetes Obes. Metab. 2022, 24, 2331–2340. [Google Scholar] [CrossRef] [PubMed]
- Alpha Lipoic Acid. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesd, MD, USA, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK591554/ (accessed on 3 May 2023).
- Capece, U.; Moffa, S.; Improta, I.; Di Giuseppe, G.; Nista, E.C.; Cefalo, C.M.A.; Cinti, F.; Pontecorvi, A.; Gasbarrini, A.; Giaccari, A.; et al. Alpha-Lipoic Acid and Glucose Metabolism: A Comprehensive Update on Biochemical and Therapeutic Features. Nutrients 2022, 15, 18. [Google Scholar] [CrossRef] [PubMed]
- Morcos, M.; Borcea, V.; Isermann, B.; Gehrke, S.; Ehret, T.; Henkels, M.; Schiekofer, S.; Hofmann, M.; Amiral, J.; Tritschler, H.; et al. Effect of alpha-lipoic acid on the progression of endothelial cell damage and albuminuria in patients with diabetes mellitus: An exploratory study. Diabetes Res. Clin. Pract. 2001, 52, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Kamenova, P. Improvement of insulin sensitivity in patients with type 2 diabetes mellitus after oral administration of alpha-lipoic acid. Hormones 2006, 5, 251–258. [Google Scholar] [CrossRef]
- Lukaszuk, J.M. Effects of R-alpha lipoic acid on HbA1c, lipids and blood pressure in type-2 diabetics: A preliminary study. J. Comp. Med. Integr. Med. 2009, 6, 1–14. [Google Scholar] [CrossRef]
- Ansar, H.; Mazloom, Z.; Kazemi, F.; Hejazi, N. Effect of alpha-lipoic acid on blood glucose, insulin resistance and glutathione peroxidase of type 2 diabetic patients. Saudi Med. J. 2011, 32, 584–588. [Google Scholar]
- Koh, E.H.; Lee, W.J.; Lee, S.A.; Kim, E.H.; Cho, E.H.; Jeong, E.; Kim, D.W.; Kim, M.S.; Park, J.Y.; Park, K.G.; et al. Effects of alpha-lipoic acid on body weight in obese subjects. Am. J. Med. 2011, 124, 85.e1–85.e8. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, P.; Wu, N.; He, B.; Lu, Y.; Li, S.; Liu, Y.; Zhao, S.; Liu, L.; Li, Y. Amelioration of lipid abnormalities by α-lipoic acid through antioxidative and anti-inflammatory effects. Obesity 2011, 19, 1647–1653. [Google Scholar] [CrossRef]
- Porasuphatana, S.; Suddee, S.; Nartnampong, A.; Konsil, J.; Harnwong, B.; Santaweesuk, A. Glycemic and oxidative status of patients with type 2 diabetes mellitus following oral administration of alpha-lipoic acid: A randomized double-blinded placebo-controlled study. Asia Pac. J. Clin. Nutr. 2012, 21, 12–21. [Google Scholar]
- Udupa, A.S.; Nahar, P.S.; Shah, S.H.; Kshirsagar, M.J.; Ghongane, B.B. Study of comparative effects of antioxidants on insulin sensitivity in type 2 diabetes mellitus. J. Clin. Diagn. Res. 2012, 6, 1469–1473. [Google Scholar]
- Manning, P.J.; Sutherland, W.H.; Williams, S.M.; Walker, R.J.; Berry, E.A.; De Jong, S.A.; Ryalls, A.R. The effect of lipoic acid and vitamin E therapies in individuals with the metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Hu, F.X. α-Lipoic acid treatment of aged type 2 diabetes mellitus complicated with acute cerebral infarction. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 3715–3719. [Google Scholar] [PubMed]
- Okanović, A.; Prnjavorac, B.; Jusufović, E.; Sejdinović, R. Alpha-lipoic acid reduces body weight and regulates triglycerides in obese patients with diabetes mellitus. Med. Glas. 2015, 12, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Scaramuzza, A.; Giani, E.; Redaelli, F.; Ungheri, S.; Macedoni, M.; Giudici, V.; Bosetti, A.; Ferrari, M.; Zuccotti, G.V. Alpha-Lipoic Acid and Antioxidant Diet Help to Improve Endothelial Dysfunction in Adolescents with Type 1 Diabetes: A Pilot Trial. J. Diabetes Res. 2015, 2015, 474561. [Google Scholar] [CrossRef]
- Surapaneni, K.; Koduganti, R.R.; Ganapathi, S.N.; Panthula, V.N.R.; Jammula, S.P.; Dasari, R.; Gireddy, H.; Ambati, M. Efficacy of systemic administration of alpha lipoic acid and scaling and root planning in patients with chronic periodontitis and type 2 diabetes mellitus-A randomised controlled trial. J. Clin. Diagn. Res. 2018, 12, ZC01–ZC05. [Google Scholar] [CrossRef]
- Gosselin, L.E.; Chrapowitzky, L.; Rideout, T.C. Metabolic effects of α-lipoic acid supplementation in pre-diabetics: A randomized, placebo-controlled pilot study. Food Funct. 2019, 10, 5732–5738. [Google Scholar] [CrossRef]
- Derosa, G.; D’Angelo, A.; Preti, P.; Maffioli, P. Safety and Efficacy of Alpha Lipoic Acid During 4 Years of Observation: A Retrospective, Clinical Trial in Healthy Subjects in Primary Prevention. Drug Des. Devel. Ther. 2020, 14, 5367–5374. [Google Scholar] [CrossRef]
- de Oliveira, A.M.; Rondó, P.H.; Luzia, L.A.; D’Abronzo, F.H.; Illison, V.K. The effects of lipoic acid and α-tocopherol supplementation on the lipid profile and insulin sensitivity of patients with type 2 diabetes mellitus: A randomized, double-blind, placebo-controlled trial. Diabetes Res. Clin. Pract. 2011, 92, 253–260. [Google Scholar] [CrossRef]
- Derosa, G.; D’Angelo, A.; Romano, D.; Maffioli, P. A Clinical Trial about a Food Supplement Containing α-Lipoic Acid on Oxidative Stress Markers in Type 2 Diabetic Patients. Int. J. Mol. Sci. 2016, 17, 1802. [Google Scholar] [CrossRef]
- Karkabounas, S.; Papadopoulos, N.; Anastasiadou, C.; Gubili, C.; Peschos, D.; Daskalou, T.; Fikioris, N.; Simos, Y.V.; Kontargiris, E.; Gianakopoulos, X.; et al. Effects of α-Lipoic Acid, Carnosine, and Thiamine Supplementation in Obese Patients with Type 2 Diabetes Mellitus: A Randomized, Double-Blind Study. J. Med. Food 2018, 21, 1197–1203. [Google Scholar] [CrossRef]
- Derosa, G.; D’Angelo, A.; Preti, P.S.; Maffioli, P. Evaluation of the Effect on Sexual Performance of a Nutraceutical Combination Containing Alpha Lipoic Acid, Vitis vinifera L. and Ginkgo biloba, Compared to Placebo, Avanafil or a Combination of Nutraceutical Plus Avanafil in Males With Type 2 Diabetes Mellitus With Erectile Dysfunction. Front. Endocrinol. 2022, 13, 847240. [Google Scholar] [CrossRef]
- Storlien, L.H.; Jenkins, A.B.; Chisholm, D.J.; Pascoe, W.S.; Khouri, S.; Kraegen, E.W. Influence of dietary fat composition on development of insulin resistance in rats. Relationship to muscle triglyceride and omega-3 fatty acids in muscle phospholipid. Diabetes 1991, 40, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Lalia, A.Z.; Lanza, I.R. Insulin-sensitizing effects of omega-3 fatty acids: Lost in translation? Nutrients 2016, 8, 329. [Google Scholar] [CrossRef] [PubMed]
- Matsuura, B.; Kanno, S.; Minami, H.; Tsubouchi, E.; Iwai, M.; Matsui, H.; Horiike, N.; Onji, M. Effects of antihyperlipidemic agents on hepatic insulin sensitivity in perfused Goto-Kakizaki rat liver. J. Gastroenterol. 2004, 39, 339–345. [Google Scholar] [CrossRef]
- Kuda, O.; Jelenik, T.; Jilkova, Z.; Flachs, P.; Rossmeisl, M.; Hensler, M.; Kazdova, L.; Ogston, N.; Baranowski, M.; Gorski, J.; et al. n-3 fatty acids and rosiglitazone improve insulin sensitivity through additive stimulatory effects on muscle glycogen synthesis in mice fed a high-fat diet. Diabetologia 2009, 52, 941–951. [Google Scholar] [CrossRef]
- Wu, J.H.; Micha, R.; Imamura, F.; Pan, A.; Biggs, M.L.; Ajaz, O.; Djousse, L.; Hu, F.B.; Mozaffarian, D. Omega-3 fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. Br. J. Nutr. 2012, 107 (Suppl. S2), S214–S227. [Google Scholar] [CrossRef]
- Rossi, A.S.; Lombardo, Y.B.; Lacorte, J.M.; Chicco, A.G.; Rouault, C.; Slama, G.; Rizkalla, S.W. Dietary fish oil positively regulates plasma leptin and adiponectin levels in sucrose-fed, insulin-resistant rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R486–R494. [Google Scholar] [CrossRef]
- Oh, D.Y.; Talukdar, S.; Bae, E.J.; Imamura, T.; Morinaga, H.; Fan, W.; Li, P.; Lu, W.J.; Watkins, S.M.; Olefsky, J.M. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 2010, 142, 687–698. [Google Scholar] [CrossRef]
- González-Périz, A.; Horrillo, R.; Ferré, N.; Gronert, K.; Dong, B.; Morán-Salvador, E.; Titos, E.; Martínez-Clemente, M.; López-Parra, M.; Arroyo, V.; et al. Obesity-induced insulin resistance and hepatic steatosis are alleviated by omega-3 fatty acids: A role for resolvins and protectins. FASEB J. 2009, 23, 1946–1957. [Google Scholar] [CrossRef]
- Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 2008, 8, 349–361. [Google Scholar] [CrossRef]
- Flachs, P.; Rossmeisl, M.; Kopecky, J. The effect of n-3 fatty acids on glucose homeostasis and insulin sensitivity. Physiol. Res. 2014, 63 (Suppl. S1), S93–S118. [Google Scholar] [CrossRef] [PubMed]
- Glauber, H.; Wallace, P.; Griver, K.; Brechtel, G. Adverse metabolic effect of omega-3 fatty acids in non-insulin-dependent diabetes mellitus. Ann. Intern. Med. 1988, 108, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Friday, K.E.; Childs, M.T.; Tsunehara, C.H.; Fujimoto, W.Y.; Bierman, E.L.; Ensinck, J.W. Elevated plasma glucose and lowered triglyceride levels from omega-3 fatty acid supplementation in type II diabetes. Diabetes Care 1989, 12, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Borkman, M.; Chisholm, D.J.; Furler, S.M.; Storlien, L.H.; Kraegen, E.W.; Simons, L.A.; Chesterman, C.N. Effects of fish oil supplementation on glucose and lipid metabolism in NIDDM. Diabetes 1989, 38, 1314–1319. [Google Scholar] [CrossRef]
- Rillaerts, E.G.; Engelmann, G.J.; Van Camp, K.M.; De Leeuw, I. Effect of omega-3 fatty acids in diet of type I diabetic subjects on lipid values and hemorheological parameters. Diabetes 1989, 38, 1412–1416. [Google Scholar] [CrossRef]
- Hendra, T.J.; Britton, M.E.; Roper, D.R.; Wagaine-Twabwe, D.; Jeremy, J.Y.; Dandona, P.; Haines, A.P.; Yudkin, J.S. Effects of fish oil supplements in NIDDM subjects. Controlled study. Diabetes Care 1990, 13, 821–829. [Google Scholar] [CrossRef]
- Pelikánová, T.; Kohout, M.; Válek, J.; Kazdová, L.; Base, J. Metabolic effects of omega-3 fatty acids in type 2 (non-insulin-dependent) diabetic patients. Ann. N. Y. Acad. Sci. 1993, 683, 272–278. [Google Scholar] [CrossRef]
- Morgan, W.A.; Raskin, P.; Rosenstock, J. A comparison of fish oil or corn oil supplements in hyperlipidemic subjects with NIDDM. Diabetes Care 1995, 18, 83–86. [Google Scholar] [CrossRef]
- Goh, Y.K.; Jumpsen, J.A.; Ryan, E.A.; Clandinin, M.T. Effect of ω3 fatty acid on plasma lipids, cholesterol and lipoprotein fatty acid content in NIDDM patients. Diabetologia 1997, 40, 45–52. [Google Scholar] [CrossRef]
- Sirtori, C.R.; Crepaldi, G.; Manzato, E.; Mancini, M.; Rivellese, A.; Paoletti, R.; Pazzucconi, F.; Pamparana, F.; Stragliotto, E. One-year treatment with ethyl esters of n-3 fatty acids in patients with hypertriglyceridemia and glucose intolerance: Reduced triglyceridemia, total cholesterol and increased HDL-C without glycemic alterations. Atherosclerosis 1998, 137, 419–427. [Google Scholar] [CrossRef]
- Kabir, M.; Skurnik, G.; Naour, N.; Pechtner, V.; Meugnier, E.; Rome, S.; Quignard-Boulangé, A.; Vidal, H.; Slama, G.; Clément, K.; et al. Treatment for 2 mo with n 3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: A randomized controlled study. Am. J. Clin. Nutr. 2007, 86, 1670–1679. [Google Scholar] [CrossRef] [PubMed]
- Derosa, G.; Maffioli, P.; D’Angelo, A.; Salvadeo, S.A.; Ferrari, I.; Fogari, E.; Gravina, A.; Mereu, R.; Randazzo, S.; Cicero, A.F. Effects of long chain omega-3 fatty acids on metalloproteinases and their inhibitors in combined dyslipidemia patients. Expert Opin. Pharmacother. 2009, 10, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.Y.; Yiu, K.H.; Li, S.W.; Lee, S.; Tam, S.; Lau, C.P.; Tse, H.F. Fish-oil supplement has neutral effects on vascular and metabolic function but improves renal function in patients with type 2 diabetes mellitus. Diabet. Med. 2010, 27, 54–60. [Google Scholar] [CrossRef]
- Fakhrzadeh, H.; Ghaderpanahi, M.; Sharifi, F.; Mirarefin, M.; Badamchizade, Z.; Kamrani, A.A.; Larijani, B. The effects of low dose n-3 fatty acids on serum lipid profiles and insulin resistance of the elderly: A randomized controlled clinical trial. Int. J. Vitam. Nutr. Res. 2010, 80, 107–116. [Google Scholar] [CrossRef]
- Cicero, A.F.; Derosa, G.; Di Gregori, V.; Bove, M.; Gaddi, A.V.; Borghi, C. Omega 3 polyunsaturated fatty acids supplementation and blood pressure levels in hypertriglyceridemic patients with untreated normal-high blood pressure and with or without metabolic syndrome: A retrospective study. Clin. Exp. Hypertens. 2010, 32, 137–144. [Google Scholar] [CrossRef]
- Derosa, G.; Cicero, A.F.; Fogari, E.; D’Angelo, A.; Bonaventura, A.; Maffioli, P. Effects of n-3 PUFA on insulin resistance after an oral fat load. Eur. J. Lipid Sci. Technol. 2011, 113, 950–960. [Google Scholar] [CrossRef]
- Derosa, G.; Cicero, A.F.; Fogari, E.; D’Angelo, A.; Bonaventura, A.; Romano, D.; Maffioli, P. Effects of n-3 PUFAs on post-prandial variation of metalloproteinases, and inflammatory and insulin resistance parameters in dyslipidemic patients: Evaluation with euglycemic clamp and oral fat load. J. Clin. Lipidol. 2012, 6, 553–564. [Google Scholar] [CrossRef]
- ORIGIN Trial Investigators; Bosch, J.; Gerstein, H.C.; Dagenais, G.R.; Díaz, R.; Dyal, L.; Jung, H.; Maggiono, A.P.; Probstfield, J.; Ramachandran, A.; et al. n-3 fatty acids and cardiovascular outcomes in patients with dysglycemia. N. Engl. J. Med. 2012, 367, 309–318. [Google Scholar]
- Crochemore, I.C.; Souza, A.F.; de Souza, A.C.; Rosado, E.L. ω-3 polyunsaturated fatty acid supplementation does not influence body composition, insulin resistance, and lipemia in women with type 2 diabetes and obesity. Nutr. Clin. Pract. 2012, 27, 553–560. [Google Scholar] [CrossRef]
- Mansoori, A.; Sotoudeh, G.; Djalali, M.; Eshraghian, M.R.; Keramatipour, M.; Nasli-Esfahani, E.; Shidfar, F.; Alvandi, E.; Toupchian, O.; Koohdani, F. Effect of DHA-rich fish oil on PPARγ target genes related to lipid metabolism in type 2 diabetes: A randomized, double-blind, placebo-controlled clinical trial. J. Clin. Lipidol. 2015, 9, 770–777. [Google Scholar] [CrossRef]
- Derosa, G.; Cicero, A.F.; D’Angelo, A.; Borghi, C.; Maffioli, P. Effects of n-3 pufas on fasting plasma glucose and insulin resistance in patients with impaired fasting glucose or impaired glucose tolerance. Biofactors 2016, 42, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Sawada, T.; Tsubata, H.; Hashimoto, N.; Takabe, M.; Miyata, T.; Aoki, K.; Yamashita, S.; Oishi, S.; Osue, T.; Yokoi, K.; et al. Effects of 6-month eicosapentaenoic acid treatment on postprandial hyperglycemia, hyperlipidemia, insulin secretion ability, and concomitant endothelial dysfunction among newly-diagnosed impaired glucose metabolism patients with coronary artery disease. An open label, single blinded, prospective randomized controlled trial. Cardiovasc. Diabetol. 2016, 15, 121. [Google Scholar] [CrossRef] [PubMed]
- Jacobo-Cejudo, M.G.; Valdés-Ramos, R.; Guadarrama-López, A.L.; Pardo-Morales, R.V.; Martínez-Carrillo, B.E.; Harbige, L.S. Effect of n-3 polyunsaturated fatty acid supplementation on metabolic and inflammatory biomarkers in type 2 diabetes mellitus patients. Nutrients 2017, 9, 573. [Google Scholar] [CrossRef]
- Thota, R.N.; Acharya, S.H.; Garg, M.L. Curcumin and/or omega-3 polyunsaturated fatty acids supplementation reduces insulin resistance and blood lipids in individuals with high risk of type 2 diabetes: A randomised controlled trial. Lipids Health Dis. 2019, 18, 31. [Google Scholar] [CrossRef]
- Alqudah, A.; Wedyan, M.; Qnais, E.; Jawarneh, H.; McClements, L. Plasma Amino Acids Metabolomics’ Important in Glucose Management in Type 2 Diabetes. Front. Pharmacol. 2021, 12, 695418. [Google Scholar] [CrossRef]
- Adams, S.H. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv. Nutr. 2011, 2, 445–456. [Google Scholar] [CrossRef]
- Yanagisawa, Y. How dietary amino acids and high protein diets influence insulin secretion. Physiol. Rep. 2023, 11, e15577. [Google Scholar] [CrossRef]
- Hedo, J.A.; Villanueva, M.L.; Marco, J. Elevation of plasma glucose and glucagon after tryptophan ingestion in man. Metabolism 1977, 26, 1131–1134. [Google Scholar] [CrossRef]
- Collene, A.L.; Hertzler, S.R.; Williams, J.A.; Wolf, B.W. Effects of a nutritional supplement containing Salacia oblonga extract and insulinogenic amino acids on postprandial glycemia, insulinemia, and breath hydrogen responses in healthy adults. Nutrition 2005, 21, 848–854. [Google Scholar] [CrossRef]
- Monti, L.D.; Setolam, E.; Lucotti, P.C.; Marrocco-Trischitta, M.M.; Comola, M.; Galluccio, E.; Poggi, A.; Mammì, S.; Catapano, A.L.; Comi, G.; et al. Effect of a long-term oral l-arginine supplementation on glucose metabolism: A randomized, double-blind, placebo-controlled trial. Diabetes Obes. Metab. 2012, 14, 893–900. [Google Scholar] [CrossRef]
- Monti, L.D.; Galluccio, E.; Villa, V.; Fontana, B.; Spadoni, S.; Piatti, P.M. Decreased diabetes risk over 9 year after 18-month oral L-arginine treatment in middle-aged subjects with impaired glucose tolerance and metabolic syndrome (extension evaluation of L-arginine study). Eur. J. Nutr. 2018, 57, 2805–2817. [Google Scholar] [CrossRef] [PubMed]
- Steinert, R.E.; Luscombe-Marsh, N.D.; Little, T.J.; Standfield, S.; Otto, B.; Horowitz, M.; Feinle-Bisset, C. Effects of intraduodenal infusion of L-tryptophan on ad libitum eating, antropyloroduodenal motility, glycemia, insulinemia, and gut peptide secretion in healthy men. J. Clin. Endocrinol. Metab. 2014, 99, 3275–3284. [Google Scholar] [CrossRef] [PubMed]
- Steinert, R.E.; Landrock, M.F.; Ullrich, S.S.; Standfield, S.; Otto, B.; Horowitz, M.; Feinle-Bisset, C. Effects of intraduodenal infusion of the branched-chain amino acid leucine on ad libitum eating, gut motor and hormone functions, and glycemia in healthy men. Am. J. Clin. Nutr. 2015, 102, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Ullrich, S.S.; Fitzgerald, P.C.; Schober, G.; Steinert, R.E.; Horowitz, M.; Feinle-Bisset, C. Intragastric administration of leucine or isoleucine lowers the blood glucose response to a mixed-nutrient drink by different mechanisms in healthy, lean volunteers. Am. J. Clin. Nutr. 2016, 104, 1274–1284. [Google Scholar] [CrossRef]
- Ullrich, S.S.; Fitzgerald, P.C.; Nkamba, I.; Steinert, R.E.; Horowitz, M.; Feinle-Bisset, C. Intragastric Lysine Lowers the Circulating Glucose and Insulin Responses to a Mixed-Nutrient Drink without Slowing Gastric Emptying in Healthy Adults. J. Nutr. 2017, 147, 1275–1281. [Google Scholar] [CrossRef]
- Randolph, A.C.; Markofski, M.M.; Rasmussen, B.B.; Volpi, E. Effect of essential amino acid supplementation and aerobic exercise on insulin sensitivity in healthy older adults: A randomized clinical trial. Clin. Nutr. 2020, 39, 1371–1378. [Google Scholar] [CrossRef]
- Amin, A.; Frampton, J.; Liu, Z.; Franco-Becker, G.; Norton, M.; Alaa, A.; Li, J.V.; Murphy, K.G. Differential effects of L- and D-phenylalanine on pancreatic and gastrointestinal hormone release in humans: A randomized crossover study. Diabetes Obes. Metab. 2021, 23, 147–157. [Google Scholar] [CrossRef]
- Elovaris, R.A.; Bitarafan, V.; Agah, S.; Ullrich, S.S.; Lange, K.; Horowitz, M.; Feinle-Bisset, C. Comparative Effects of the Branched-Chain Amino Acids, Leucine, Isoleucine and Valine, on Gastric Emptying, Plasma Glucose, C-Peptide and Glucagon in Healthy Men. Nutrients 2021, 13, 1613. [Google Scholar] [CrossRef]
- Elovaris, R.A.; Hajishafiee, M.; Ullrich, S.S.; Fitzgerald, P.C.E.; Lange, K.; Horowitz, M.; Feinle-Bisset, C. Intragastric administration of leucine and isoleucine does not reduce the glycaemic response to, or slow gastric emptying of, a carbohydrate-containing drink in type 2 diabetes. Diabetes Res. Clin. Pract. 2021, 171, 108618. [Google Scholar] [CrossRef]
- Hajishafiee, M.; Elovaris, R.A.; Jones, K.L.; Heilbronn, L.K.; Horowitz, M.; Poppitt, S.D.; Feinle-Bisset, C. Effects of intragastric administration of L-tryptophan on the glycaemic response to a nutrient drink in men with type 2 diabetes-impacts on gastric emptying, glucoregulatory hormones and glucose absorption. Nutr. Diabetes 2021, 11, 3. [Google Scholar] [CrossRef]
- Matsuda, T.; Suzuki, H.; Sugano, Y.; Suzuki, Y.; Yamanaka, D.; Araki, R.; Yahagi, N.; Sekiya, M.; Kawakami, Y.; Osaki, Y.; et al. Effects of Branched-Chain Amino Acids on Skeletal Muscle, Glycemic Control, and Neuropsychological Performance in Elderly Persons with Type 2 Diabetes Mellitus: An Exploratory Randomized Controlled Trial. Nutrients 2022, 14, 3917. [Google Scholar] [CrossRef]
First Author and Year | Participants | Therapy and Duration | Findings |
---|---|---|---|
Hall, A.C. (2012) [12] | Overweight or obesity patients (n = 12) | 100 g of bread with Ascophyllum nodosum 4% 4 h following supplement intake | PPG no decrease |
Iacoviello, L. (2013) [13] | Healthy subjects (n = 43) | 2 capsules/day Ascophyllum nodosum 900 mg and iodine 175 μg 6 months | FPG, FPI, and HOMA index no effect |
Murray, M. (2018) [14] | Healthy subjects (n = 38) | 500 mg Fucus vesiculosus 2 g Fucus vesiculosus 2 h after carbohydrate consumption | PPG and PPI no effect Different insulin sensitivity in Asian subjects |
Murray, M. (2019) [11] | Normotensive subjects (n = 18) | 2 g/day Fucus vesiculosus 3 h after supplement ingestion | PPG no effects except reduction in females PPI iAUC and peak plasma insulin increase in Asian subjects |
Paradis, M.E. (2011) [15] | Healthy subjects (n = 23) | 500 mg Ascophyllum nodosum and Fucus vesiculosus 3 h after carbohydrate ingestion | No effect on glucose response Insulin iAUC decrease Cederholm index of insulin sensitivity increase |
De Martin, S. (2018) [16] | Overweight or obesity patients (n = 50) | 3 capsules/day Ascophyllum nodosum 237.5 mg, Fucus vesiculosus 12.5 mg, and chromium picolinate 7.5 μg 6 months | FPG, FPI, and HOMA index decrease |
Derosa, G. (2019) [17] | Dysglycemic patients (n = 65) | 3 capsules/day Ascophyllum nodosum 237.5 mg, Fucus vesiculosus 12.5 mg, and chromium picolinate 7.5 μg 6 months | FPG, PPG, HbA1c, and HOMA index decrease |
Derosa, G. (2019) [18] | T2DM patients (n = 175) | 3 capsules/day Ascophyllum nodosum 237.5 mg, Fucus vesiculosus 12.5 mg, and chromium picolinate 7.5 μg 6 months | FPG, PPG, and HbA1c decrease |
First Author and Year | Participants | Therapy and Duration | Findings |
---|---|---|---|
Ikeda, Y. (2002) [21] | IFG patients (n = 15) | 100 mg/day banaba extract 1 year | FPG decrease |
Judy, W.V. (2003) [19] | T2DM patients, non-insulin-dependent (n = 10) | 16 mg/day; 32 mg/day; 48 mg/day banaba extract standardized to 1% corosolic acid 2 weeks | FPG decrease at the highest dose |
Tsuchibe, S. (2006) [22] | IFG patients (n = 12) | 10 mg/day corosolic acid 2 weeks | FPG and 1h-PPG decrease |
Fukushima, M. (2006) [23] | IFG, IGT, and T2DM patients, subjects with normal glucose tolerance (n = 31) | 10 mg corosolic acid 5 min before OGTT Different occasions | PPG from 60 to 120 min decrease |
Choi, S. (2014) [24] | Prediabetes patients (n = 45) | 300 mg/day banaba extract 2 g/day soybean leaf extract 12 weeks | FPG, HbA1c, and HOMA-IR decrease |
Ikeda, Y. (1999) [25] | T2DM patients (n = 24) | 9 tablets/day containing banaba extract, green tea, green coffee, Garcinia cambogia | FPG decrease |
Kim, H.J. (2012) [26] | IGT and T2DM patients (n = 62) | 6 g/day mixture of banaba leaf extract, mulberry leaf extract, Korean red ginseng powder 6 months | Glucose AUC decrease Downward trend insulin AUC |
Cicero, A.F.G. (2017) [27] | IFG patients (n = 40) | 500 mg/day Lagerstroemia speciosa + 310 mg/day berberine + 250 mg/day curcumin + 2.6 μg/day chromium picolinate + 0.30 mg/day folic acid + 220 mg/day α-lipoic acid 8 weeks | FPG, FPI, and HOMA index decrease |
Derosa, G. (2020) [28] | IFG and IGT patients (n = 148) | 40 mg/day banaba + 200 mg/day berberine + 200 mg/day curcumin + 300 mg/day inositol + 100 μg/day chromium picolinate 3 months | FPG, PPG, HbA1c, and HOMA-IR decrease FPI increase |
First Author and Year | Participants | Therapy and Duration | Findings |
---|---|---|---|
Khan, A. (2003) [58] | T2DM patients (n = 60) | 1 g/day, 3 g/day, or 6 g/day of Cinnamomum cassia 40 days | FPG decrease |
Mang, B. (2006) [59] | T2DM patients (n = 79) | 3 g/day of Cinnamomum cassia powder 4 months | FPG decrease |
Vanschoonbeek, K. (2006) [60] | T2DM postmenopausal patients (n = 25) | 1.5 g/day of Cinnamomum cassia 6 weeks | FPG, FPI, HbA1c, HOMA-IR, ISIcomp, and OGIS no decrease |
Wang, J.G. (2007) [61] | Women with PCOS (n = 15) | 1 g/day cinnamon extract 8 weeks | FPG and HOMA-IR decrease QUICKI and Matsuda insulin resistance index increase |
Solomon, T.P. (2007) [62] | Lean, healthy volunteers (n = 7) | 5 g of Cinnamomum cassia 2 h | AUC glucose decrease; Matsuda insulin resistance index increase |
Blevins, S.M. (2007) [63] | T2DM patients (n = 60) | 1 g/day of Cinnamomum cassia 3 months | FPG, FPI, and HbA1c no decrease |
Altschuler, J.A. (2007) [64] | Adolescent with T1DM (n = 72) | 1 g/day cinnamon 3 months | No significant difference in HbA1c total daily use of insulin and number of hypoglycemic episodes |
Solomon, T.P. (2009) [65] | Healthy volunteers (n = 8) | 3 g/day Cinnamomum cassia 14 days | PPG, PPI, AUC glucose and AUC insulin decrease Insulin sensitivity improve |
Crawford, P. (2009) [66] | T2DM patients (n = 109) | 1 g/day Cinnamomum cassia 3 months | HbA1c decrease |
Khan, R. (2010) [67] | T2DM patients (n = 14) | 1.5 g/day cinnamon 1 month | FPG decrease |
Akilen, R. (2010) [68] | T2DM patients (n = 58) | 2 g/day Cinnamomum cassia 3 months | FPG and HbA1c decrease |
Markey, O. (2011) [69] | Healthy young subjects (n = 9) | High fat meal with 3 g Cinnamomum zeylanicum 3 h | PPG no decrease |
Vafa, M. (2012) [70] | T2DM patients (n = 44) | 3 g/day Cinnamomum zeylanicum 8 weeks | FPG and HbA1c decrease |
Sharma, P. (2012) [71] | Newly diagnosed T2DM patients (n = 150) | 3 g/day and 6 g/day cinnamon 3 months | FPG and HbA1c decrease |
Lu, T. (2012) [72] | T2DM patients (n = 66) | 120 mg/day and 360 mg/day Cinnamomum aromaticum 3 months | FPG and HbA1c decrease |
Hasanzade, F. (2013) [73] | T2DM patients (n = 70) | 2 g/day Cinnamomum cassia 2 months | FPG and HbA1c no change |
Wickenberg, J. (2014) [74] | IGT patients (n = 21) | 12 g/day Cinnamomum cassia 12 weeks | FPG, FPI and HbA1c no change |
Al-Yassiry, K. (2014) [75] | T2DM patients (n = 40) | 1.5 g/day crude grind cinnamon 3 months | FPG, RBS and HbA1c decrease |
Beejmohun, V. (2014) [76] | Healthy volunteers (n = 18) | 1 g Ceylon cinnamon hydro-alcoholic extract 30 min before the test meal | PPG and glucose AUC decrease |
Bernardo, M.A. (2015) [77] | Nondiabetic subjects (n = 30) | 6 g/100 mL of Cinnamomum burmannii tea 2 h | Maximum PPG concentration and variation in maximum glucose concentration decrease |
Mirfeizi, M. (2016) [78] | T2DM patients (n = 105) | 1 g/day cinnamon 3 months | FPG, 2h-PPG, FPI, HbA1c and HOMA-IR decrease |
Anderson, R.A. (2016) [79] | Patients with FPG > 100 mg/dL or 2h-PPG > 140 mg/dL (n = 137) | 500 mg/day Cinnamomum cassia 2 months | FPG, 2h-PPG, FPI, and HOMA-IR decrease |
Talaei, B. (2017) [80] | T2DM patients (n = 44) | 3 g/day cinnamon 8 weeks | FPG, FPI, HbA1c, and HOMA-IR no change |
Gupta Jain, S. (2017) [81] | Metabolic syndrome patients (n = 116) | 3 g/day cinnamon 16 weeks | FPG, PPG, and HbA1c decrease |
Hajimonfarednejad, M. (2018) [82] | Women with PCOS (n = 66) | 1.5 g/day cinnamon 12 weeks | FPI and HOMA-IR decrease |
Zare, R. (2019) [83] | T2DM patients (n = 140) | 1 g/day cinnamon bark powder 3 months | FPG, 2h-PPG, HbA1c, FPI, and HOMA-IR decrease |
Kizilaslan, N. (2019) [84] | Healthy subjects (n = 41) | 1 g/day, 3 g/day and 6 g/day cinnamon 40 days | FPG decrease at the dose of 6 g/day; 2h-PPG decrease at the dose of 1 g/day, 3 g/day and 6 g/day |
Lira Neto, J.C.G. (2022) [85] | T2DM patients (n = 160) | 3 g/day Cinnamomum verum 3 months | FPG, HbA1c and HOMA-IR decrease |
Rachid, A.P. (2022) [86] | T2DM patients (n = 36) | 6 g/100 mL of aqueous cinnamon extract 2 h | iAUC glucose, maximum glucose concentration and glucose concentration variation no change |
Liu, Y. (2015) [87] | Obese or overweight prediabetic subjects (n = 62) | 1.2 g/day Cinnamomum cassia, chromium and carnosine 4 months | FPG decrease |
Whitfield, P. (2016) [88] | T2DM patients (n = 12) | 53.5 g/day of kanuba honey formulated with 4.5 g food grade cinnamon, 200 μg chromium picolinate and 120 mg magnesium citrate 40 days | FPG, FPI and HbA1c no change |
First Author and Year | Participants | Therapy and Duration | Findings |
---|---|---|---|
Arcari, D.P. (2011) [110] | Normolipidemic subjects (n = 42) Hyperlipidemic patients (n = 18) | 200 mL maté tea (12.5 mg/mL) per day 2 months | FPG no decrease |
Klein, G.A. (2011) [111] | T2DM patients (n = 29) Prediabetic patients (n = 29) | 19.8 g yerba mate leaves to 990 of boiling water per day 60 days | FPG and HbA1c decrease in T2DM patients |
Kim, H.J. (2012) [112] | Overweight patients (n = 46) | 334 mg/day green mate powder extract 6 weeks | FPG no decrease |
Boaventura, B.C.B. (2013) [113] | T2DM patients (n = 11) Prediabetic patients (n = 11) | 19.8 g yerba mate leaves to 990 of boiling water per day 60 days | FPG and HbA1c decrease in T2DM patients HbA1c decrease in prediabetics |
Jung, J. (2016) [114] | Obese women (n = 33) | 3 g/day maté extract 6 weeks | FPG no decrease |
Derosa, G. (2020) [115] | IFG, IGT patients (n = 137) | 1 tablet/day Ilex paraguariensis 500 mg + white mulberry 50 mg + chromium picolinate 100 μg 3 months | FPG and HOMA index decrease M value increase |
Derosa, G. (2021) [116] | IFG, IGT patients (n = 143) | 1 tablet/day Ilex paraguariensis 1000 mg + white mulberry 50 mg + chromium picolinate 100 μg 3 months | FPG, PPG, HbA1c and HOMA index decrease M value increase |
First Author and Year | Participants | Therapy and Duration | Findings |
---|---|---|---|
Baldwa, V.S. (1977) [127] | T2DM patients (n = 9) | Vegetable insulin 10 units for FPG < 180 mg/dL 20 units for FPG > 180 and <250 mg/dL 30 units for FPG ≥ 250 mg/dL | Blood glucose levels decrease |
Leatherdale, B.A. (1981) [128] | T2DM patients (n = 9) | 50 mL water-soluble extract of bitter melon fruit 0.23 kg/day fried bitter melon fruit 8–11 weeks | PPG and glucose iAUC decrease (water-soluble extract of bitter melon fruit) Glucose iAUC decrease (fried bitter melon fruit) |
Khann, P. (1981) [129] | T2DM patients (n = 19) | Polypeptide-p 10 units for FPG < 180 mg/dL 20 units for FPG > 180 and <250 mg/dL 30 units for FPG ≥ 250 mg/dL | Blood glucose levels decrease |
Akhtar, M.S. (1982) [130] | T2DM patients (n = 8) | 50 mg/kg Momordica charantia fruit 7 days | PPG decrease |
Welihinda, J. (1986) [131] | T2DM patients (n = 18) | 100 mL Momordica charantia juice 3 h | PPG and total area under Momordica charantia glucose tolerance curves decrease |
John, A.J. (2003) [132] | T2DM patients (n = 50) | 6 g/day Momordica charantia dried powdered fresh whole fruit 4 weeks | FPG and PPG no decrease |
Tongia, A. (2004) [133] | T2DM patients, non-insulin-dependent (n = 15) | (1) 1 g/day metformin; 10 mg/day glibenclamide; 1 g/day metformin and 10 mg/day glibenclamide mixture 7 days (2) 400 mg/day Momordica charantia fruit extract with 500 mg/day metformin or 5 mg/day glibenclamide or 500 mg/day metformin and 5 mg/day glibenclamide mixture 7 days | FPG and HbA1c no decrease |
Dans, A.M. (2007) [134] | T2DM patients (n = 40) | 3 g/day Momordica charantia capsules 3 months | PPG and PPI decrease |
Inayat-ur-Rahman, S.A. (2009) [135] | T2DM patients, non-insulin-dependent (n = 50) | 55 mL/day Momordica charantia juice or 4 mg/day rosiglitazone 6 months | Serum glucose no decrease |
Kasbia, G.S. (2009) [136] | Overweight subjects (n = 5) | 50 mg/kg or 100 mg/kg freeze dried Momordica charantia juice 3 h | FPG, FPI, PPG, and PPI no changes |
Lim, S.T. (2010) [137] | T2DM patients (n = 40) | 60 mg/kg 80 mg/kg or 100 mg/kg dried Momordica charantia leaves 8–11 weeks | PPI increase PPG decrease |
Fuangchan, A. (2011) [138] | T2DM patients (n = 120) | 500 mg/day, 1 g/day and 2 g/day Momordica charantia or 1 g/day metformin 4 weeks | FPG and 2h-PPG no changes |
Tsai, C.H. (2012) [139] | Metabolic syndrome subjects (n = 42) | 4.8 g/day bitter gourd powder 3 months | logHOMA decrease QUICKI and McAuley increase |
Inayat, U.; Rahman, R.U. (2015) [140] | T2DM patients (n = 95) | 2 g/day and 4 g/day bitter melon or 5 mg/day glibenclamide 10 weeks | FPG and HbA1c decrease to a greater extent with glibenclamide 2h-PPG decrease with glibenclamide |
Krawinkel, M.B. (2018) [141] | Prediabetic patients (n = 52) | 2.5 g/day dry bitter gourd 2 months | FPG decrease |
Cortez-Navarrete, M. (2018) [142] | T2DM patients (n = 25) | 2 g/day Momordica charantia fruit powder 3 months | HbA1c, 2h-PPG, and AUC glucose decrease AUC insulin, insulinogenic, and Stumvoll index increase |
Kim, S.K. (2020) [143] | T2DM patients (n = 90) | 2.38 g/day bitter melon extract 12 weeks | FPG and HOMA-IR decrease |
Kochhar, A. (2005) [144] | T2DM patients, non-insulin-dependent (n = 60) | (1) 1 g/day Momordica charantia fruit powder + fenugreek seeds + jamun seeds mixture 1.5 months (2) 2 g/day Momordica charantia fruit powder + fenugreek seeds + jamun seeds mixture 1.5 months | FPG and PPG decrease with both doses Reduction in percentage of subjects on oral hypoglycemic drug |
First Author and Year | Participants | Therapy and Duration | Findings |
---|---|---|---|
Kimura, T. (2007) [150] | Healthy subjects (n = 24) | (1) Morus alba powder leaves enriched with 0.4, 0.8, or 1.2 g DNJ 3 h (2) Morus alba powder leaves enriched with 3.6 g/day DNJ 38 days | (1) PPG and PPI decrease (2) FPG no decrease |
Mudra, M. (2007) [152] | T2DM patients (n = 10) Controls (n = 10) | Morus alba leaf extract 1 g/day 1 week | PPG decrease |
Asai, A. (2011) [153] | (1) Dysglycemic patients (n = 12) (2) Dysglycemic patients (n = 76) | (1) Morus alba leaf extract enriched with 3, 6, or 9 mg DNJ 2 h (2) Morus alba leaf extract enriched with 18 g/day DNJ 12 weeks | (1) PPG and PPI decrease (2) FPG, FPI, HbA1c, and GA no decrease 1,5AG decrease |
Nakamura, S. (2011) [154] | T2DM patients (n = 10) Healthy subjects (n = 10) | 3.3 g Morus alba leaf extract 2 h | PPG and PPI decrease |
Chung, H.I. (2013) [155] | Healthy subjects (n = 50) | 1.25, 2.5, or 5 g Morus alba leaf aqueous extract 3 h | PPG decrease |
Kim, J.Y. (2015) [156] | IFG patients (n = 38) | 5 g/day Morus alba leaf aqueous extract 4 weeks | PPG, PPI, insulin AUC, and C-peptide decrease |
Banu, S. (2015) [157] | T2DM patients (n = 48) | 70 mL Morus alba leaf tea 1.30 h | FPG and PPG decrease |
Sukriket, P. (2016) [158] | Non-diabetic subjects (n = 14) | 2 g Morus alba leaf tea powder 2.30 h | PPG decrease |
Riche, D.M. (2017) [159] | T2DM patients (n = 17) | 3 g/day Morus alba leaf extract 3 months | Post-prandial SMBG and HbA1c decrease |
Thaipitakwong, T. (2020) [160] | (1) Healthy subjects (n = 85) (2) Obese (n = 54) | (1) Morus alba leaf powder with DNJ 6, 12 and 18 mg 3 h (2) Morus alba leaf powder with DNJ 36 mg/day 12 weeks | (1) PPG decrease (2) FPG and HbA1c decrease |
Thondre, P.S. (2021) [161] | Healthy subjects (n = 38) | 250 mg Morus alba leaf aqueous extract 2 h | PPG, PPI, glucose, and insulin iAUC decrease |
Momeni, H. (2021) [162] | T2DM patients (n = 100) | 9 mL/day 4% hydro-alcoholic extract of Morus nigra leaves 3 months | FPG and HbA1c decrease |
Kim, H.J. (2012) [26] | IGT and mild-T2DM patients (n = 62) | 6 g/day white mulberry leaf water extract powder, Korean red ginseng powder, and banaba leaf water extract powder 24 weeks | OGTT AUC glucose decrease FPG, FPI, HOMA-IR, and HbA1c no decrease |
Hu, M. (2014) [163] | Dyslipidemia patients (n = 40) | 8 capsules/day each containing Crataegus pinnatifida 129 mg, Alisma orientalis 86 mg, Stigma maydis 86 mg, Ganoderma lucidum 43 mg, Polygonum multiflorum 43 mg and Morus alba 43 mg 12 weeks | HbA1c decrease |
Trimarco, V. (2015) [164] | Hypercholesterolemia patients (n = 23) | Combination A: Policosanol (10 mg), red yeast rice (200 mg; 3 mg monacolin K), berberine (500 mg), astaxanthin (0.5 mg), folic acid (200 μg) and coenzyme Q10 (2 mg) Combination B: Berberine (531.25 mg), red yeast rice powder (220 mg; 3.3 mg monacolin K), and leaf extract of Morus alba (200 mg) 8 weeks | FPG FPI, HbA1c, and HOMA index decrease with combination B |
Derosa, G. (2020) [115] | IFG, IGT patients (n = 137) | 1 tablet/day white mulberry 50 mg + Ilex paraguariensis 500 mg + chromium picolinate 100 μg 3 months | FPG and HOMA index decrease M value increase |
Derosa, G. (2021) [116] | IFG, IGT patients (n = 143) | 1 tablet/day white mulberry 50 mg + Ilex paraguariensis 1000 mg + chromium picolinate 100 μg 3 months | FPG, PPG, HbA1c, and HOMA index decrease M value increase |
First Author and Year | Participants | Therapy and Duration | Findings |
---|---|---|---|
Wainstein, J. (2012) [171] | T2DM patients (n = 79) | 500 mg/day OLE 14 weeks | HbA1c and FPI decrease |
De Bock, M. (2013) [172] | Overweight subjects (n = 46) | 4 capsules/day OLE (51.1 mg oleuropein and 9.7 mg hydroxytyrosol) 12 weeks | Insulin sensitivity and pancreatic β-cell function improvement PPG, PPI, glucose AUC, and insulin AUC decrease |
Santangelo, C. (2016) [173] | Overweight T2DM patients (n = 11) | (1) 25 mL/day ROO 4 weeks (2) 25 mL/day HP-EVOO 4 weeks | FPG and HbA1c decrease with HP-EVOO |
Araki, R. (2019) [174] | Subjects with prediabetes (n = 57) | 1.5 g/day or 15 g/day OLT 12 weeks | FPG decrease |
Derosa, G. (2022) [175] | IFG patients (n = 148) | 70 mL/day infusion of olive leaves and marigold (Olife®) 3 months | FPG, PPG, and HOMA index decrease |
Said, O. (2008) [176] | (1) T2DM patients (n = 16) (2) T2DM patients (n = 22) | 3 tablets/day dry extract of Olea europea L. + Juglans regia L. + Urtica dioica L. + Atriplex halimus L. 4 weeks | (1) FPG decrease (2) HbA1c decrease |
Wong, R.H. (2014) [177] | Subjects with mildly elevated untreated BP (n = 37) | 1 g/day OLE + 200 mg/day coffee bean extract + 300 mg/day beet powder 12 weeks | FPG, FPI, and HOMA index no change |
Derosa, G. (2018) [178] | Hypercholesterolemic overweight subjects (n = 80) | 25 mg/day olive fruit extract + 166 mg/day fermented red rice + 720 mg/day sterol esters and stanols + 230 mg/day curcumin 3 months | FPG no change |
Hermans, M.P. (2020) [179] | Subjects with borderline hypertension or grade 1 hypertension (n = 663) | 2 capsules/day Tensiofytol® (167 mg Olea europea L. leaf dry extract + 53 mg Olea europea L. fruit dry extract) 2 months | FPG decrease |
Chavenelle, V. (2021) [180] | Overweight subjects (n = 14) | (1) 2.5 g/day TOTUM-63 (extracts from olive leaf, bilberry, artichoke, Chrysanthellum, and black pepper) 4 weeks (2) 5 g/day TOTUM-63 4 weeks 2 weeks of wash-out between the two treatments | PPG, glucose peak (Cmax), PPI, insulin peak (Cmax), insulin AUC and insulin sensitivity index decrease with 5 g/day of TOTUM-63 |
Sirvent, P. (2022) [181] | Subjects with prediabetes or untreated T2DM (n = 51) | 5 g/day TOTUM-63 6 months | FPG and 2h-PPG decrease |
First Author and Year | Participants | Therapy and Duration | Findings |
---|---|---|---|
Morcos, M. (2001) [184] | T1DM and T2DM patients (n = 84) | 600 mg/day ALA 18 months | HbA1c not altered |
Kamenova, P. (2006) [185] | T2DM patients (n = 12) | 1200 mg/day ALA 4 weeks | Glucose metabolized (M value) and ISI increase |
Lukaszuk, J.M. (2009) [186] | T2DM patients (n = 12) | 600 mg/day R-ALA 91 days | HbA1c decreased in 2 subjects |
Ansar, H. (2011) [187] | T2DM patients (n = 57) | 300 mg/day ALA 8 weeks | FPG, PPG, and HOMA index decrease Glutathione peroxidase increase |
Koh, E.H. (2011) [188] | Obese subjects with hypertension, T2DM or hypercholesterolemia (n = 360) | 1200 or 1800 mg/day ALA 20 weeks | HbA1c decrease at the dose of 1800 mg/day |
Zhang, Y. (2011) [189] | Obese with IGT subjects (n = 22) | 600 mg/day ALA 2 weeks | 2h-PPG decrease M value and ISI increase |
Porasuphatana, S. (2012) [190] | T2DM patients (n = 38) | 300, 600, 900 and 1200 mg/day ALA 6 months | FPG and HbA1c decrease dose-dependent |
Udupa, A.S. (2012) [191] | T2DM patients (n = 104) | (1) 300 mg/day ALA soft gelatin capsules (2) EPA 180 mg + DHA 120 mg 6 soft gelatin capsules/day (3) 400 mg/day vitamin E soft gelatin capsules 3 months | HbA1c decrease by ALA, omega-3 and vitamin E |
Manning, P.J. (2013) [192] | Patients with metabolic syndrome (n = 160) | (1) 600 mg/day ALA (2) 100 IU/day vitamin E (3) 600 mg/day ALA + 100 IU/day vitamin E 12 months | FPG, insulin, and HOMA-IR not altered |
Zhao, L. (2014) [193] | Aged T2DM patients with acute cerebral infarction (n = 90) | 600 mg/day ALA or 3 g/day vitamin C 3 weeks | FPG, 2h-PPG, HbA1c, and HOMA-IR decrease HOMA-B increase |
Okanović, A. (2015) [194] | Obese T2DM patients with signs of peripheral polyneuropathia (n = 60) | 600 mg/day ALA 20 weeks | FPG, decrease |
Scaramuzza, A. (2015) [195] | Adolescent with T1DM (n = 71) | 400 mg/day ALA + antioxidant diet 3 months | Daily insulin requirement and percentage of bolus dose decrease |
Surapaneni, K. (2018) [196] | T2DM patients with chronic periodontal disease (n = 40) | 1800 mg/day ALA 3 months | HbA1c decrease |
Gosselin, L.E. (2019) [197] | Prediabetic and dyslipidemic patients (n = 12) | 600 mg/day ALA 2 months separated by wash-out period of 1 month | FPI and HOMA-IR decrease |
Derosa, G. (2020) [198] | Euglycemic and dysglycemic patients (n = 333) | 400, 600, 800, and 1200 mg/day ALA 4 years | FPG decrease at the dose of 800 and 1200 mg/day ALA Some dysglycemic patients returned to euglycemic condition |
De Oliveira, A.M. (2011) [199] | T2DM patients (n = 102) | (1) 600 mg/day ALA (2) 800 mg/day α-tocopherol (3) 600 mg/day ALA + 800 mg/day α-tocopherol 4 months | FPG, insulin and HOMA index not altered |
Derosa, G. (2016) [200] | T2DM patients (n = 105) | 600 mg ALA + 165 mg L-carnosine + 7.5 mg zinc + vitamins B complex daily 3 months | FPG, PPG, HbA1c, and HOMA-IR decrease Superoxide dismutase and glutathione peroxidase increase Malondialdehyde decrease |
Cicero, A.F.G. (2017) [27] | IFG patients (n = 40) | 220 mg/day ALA + 310 mg/day berberine + 500 mg/day Lagerstroemia speciosa + 250 mg/day curcumin + 2.6 μg/day chromium picolinate + 0.30 mg/day folic acid 8 weeks | FPG, FPI and HOMA index decrease |
Karkabounas, S. (2018) [201] | Obese T2DM patients (n = 82) | 7 mg ALA/kg body weight + 6 mg carnosine/kg body weight + 1 mg thiamine/kg body weight, 3 times/day 8 weeks | FPG, and HbA1c decrease Insulin and HOMA-B increase QUICKI decrease |
Derosa, G. (2022) [202] | T2DM patients with erectile dysfunction (n = 123) | 400 mg ALA + 200 mg Vitis vinifera L. + 80 mg Ginkgo biloba daily 200 mg/day Avanafil 3 months | FPG, and HOMA-IR decrease |
First Author and Year | Participants | Therapy and Duration | Findings |
---|---|---|---|
Glauber, H. (1988) [213] | T2DM non-insulin dependent patients (n = 6) | 5.5 g/day n-3 PUFAs 1 months | FPG and HbA1c increase FPI slightly not significant decrease |
Friday, K.E. (1989) [214] | T2DM non-insulin dependent patients (n = 8) | 8.0 g/day n-3 PUFAs 8 weeks | FPG increase FPI and HbA1c not altered |
Borkman, M. (1989) [215] | T2DM non-insulin dependent patients (n = 10) | 3.0 g/day n-3 PUFAs 3 weeks | FPG increase FPI and C-peptide not altered |
Rillaerts, E.G. (1989) [216] | Type 1 diabetes mellitus patients (n = 12) | 2.7 g/day n-3 PUFAs 10 weeks | FPG and HbA1c not altered |
Hendra, T.J. (1990) [217] | T2DM non-insulin dependent patients (n = 80) | 3.0 g/day n-3 PUFAs 6 weeks | FPG increase HbA1c not altered |
Pelikánová, T. (1993) [218] | T2DM non-insulin dependent, obesity patients (n = 20) | 3.1 g/day n-3 PUFAs 3 weeks | FPG, PPG and HbA1c not altered |
Morgan, W.A. (1995) [219] | Patients with T2DM non-insulin dependent and hyperlipidemia (n = 40) | (1) 5.0 g/day n-3 PUFAs (2) 10.0 g/day n-3 PUFAs 12 weeks | FPG and HbA1c not altered |
Goh, Y.K. (1997) [220] | T2DM non-insulin dependent patients assigned to a higher or lower ratio of dietary polyunsaturated to saturated fatty acid (P/S) (n = 28) | (1) 35 mg Oleic acid per kg body weight per day 3 months (2) 35 mg linseed oil or fish oli per kg body weight per day 3 months | FPG, insulin, glucagon, C-peptide not altered |
Sirtori, C.R. (1998) [221] | T2DM non-insulin dependent patients (n = 414) | (1) 2.6 g/day n-3 PUFAs 2 months (2) 1.7 g/day n-3 PUFAs 10 months | FPG, FPI and HbA1c not altered |
Kabir, M. (2007) [222] | T2DM patients (n = 26) | 1.8 g/day n-3 PUFAs 2 months | FPG, FPI, HbA1c, HOMA-B and HOMA-IS not altered |
Derosa, G. (2009) [223] | Patients with combined dyslipidemia (n = 333) | 3.0 g/day n-3 PUFAs 6 months | FPG, FPI, and HOMA-IR not altered |
Wong, C.Y. (2010) [224] | T2DM patients (n = 97) | 2.7 g/day n-3 PUFAs 12 weeks | FPG and HbA1c not altered |
Fakhrzadeh, H. (2010) [225] | Elderly patients (n = 124) | 300 mg/day n-3 PUFAs 6 months | FPG, FPI and HOMA-IR not altered |
Cicero, A.F. (2010) [226] | Patients with hypertriglyceridemia and untreated normal-high blood pressure (n = 111) | 2.0 g/day n-3 PUFAs 12 months | FPG not altered except an increase at 3 months |
Derosa, G. (2011) [227] Derosa, G. (2012) [228] | Patients with combined dyslipidemia (n = 167) | 3.0 g/day n-3 PUFAs 6 months | FPG decrease FPI and HOMA-IR not altered M value and TGR increase |
ORIGIN Trial Investigators (2012) [229] | IFG, IGT patients (n = 12.536) | 1.0 g/day n-3 PUFAs Follow-up 6.2 years | FPG and HbA1c not altered |
Crochemore, I.C. (2012) [230] | Patients with T2DM and hypertension (n = 41) | (1) 900 mg/day n-3 PUFAs (2) 540 mg/day n-3 PUFAs 1 months | (1) QUICKI decrease in 85.7% of subjects (2) FPG, HbA1c and HOMA-IR decrease in 42.9%, 35.7% and 35.7% of subjects |
Mansoori, A. (2015) [231] | T2DM patients (n = 72) | 1.85 g/day n-3 PUFAs 8 weeks | FPG, FPI and HOMA-IR not altered |
Derosa, G. (2016) [232] | IFG, IGT, overweight/obesity patients (n = 281) | 3.0 g/day n-3 PUFAs 18 months | FPG, FPI, and HOMA-IR decrease |
Sawada, T. (2016) [233] | IGM patients with CAD (n = 107) | 1800 mg/day EPA 6 months | FPG, HbA1c, and HOMA-IR not altered Glucose AUC and incremental glucose peak decrease Immune reactive insulin AUC increase Immune reactive insulin AUC/glucose AUC ratio increase |
Jacobo-Cejudo, M.G. (2017) [234] | T2DM patients (n = 54) | 520 mg/day n-3 PUFAs 6 months | FPG and HbA1c decrease FPI and HOMA-IR increase |
Thota, R.N. (2019) [235] | IFG, IGT patients (n = 64) | 1.2 g/day n-3 PUFAs + 180 mg/day curcumin 12 weeks | FPG, HbA1c, FPI, HOMA-IR, and HOMA-IS not altered |
First Author and Year | Participants | Therapy and Duration | Findings |
---|---|---|---|
Hedo J.A., (1977) [239] | Healthy subjects (n = 21) | 10 g L-tryptophan 180 min | Blood sugar levels highest increase at 180 min Insulin highest increase at 140 min |
Collene A.L., (2005) [240] | Healthy subjects (n = 43) | (1) Control (C) (2) C + phenylalanine 3.5 g + leucine 3.5 g (AA) (3) C + Salacia oblonga extract 1 g (S) (4) C + Salacia oblonga extract 1 g + phenylalanine 3.5 g + leucine 3.5 g (SAA) Separate days | Glucose AUC 0–120 min decrease for S and SAA Glucose AUC 0–180 min decrease for SAA Insulin AUC 0–120 min and 0–180 min decrease for S and SAA |
Monti L.D., (2012; 2018) [241,242] | IGT and metabolic syndrome subjects (n = 144) | L-arginine 6.4 g/day 18 months | Improvement of insulin levels at 120 min after OGTT, proinsulin/c-peptide ratio, IGI/HOMA-IR, and cumulative probability to return to euglycemia. After 12-month extended follow-up period: improvement of insulin levels at 120 min after OGTT, proinsulin/c-peptide ratio, IGI/HOMA-IR and cumulative probability to return to euglycemia; 2h-PPG, HbA1c and cumulative incidence of diabetes decrease. After a 90-month extended follow-up period: cumulative incidence of diabetes decrease; improvement of proinsulin/c-peptide ratio and IGI/HOMA-IR |
Steinert, R.E. (2014) [243] | Healthy normal-weight men (n = 10) | 90-min intraduodenal L-tryptophan infusion at 0.075 or 0.15 kcal/min 3 occasions | Insulin increase 75 min after infusion with L-tryptophan 0.075 kcal/min Blood glucose not altered with both doses |
Steinert, R.E. (2015) [244] | Lean men (n = 12) | 90-min intraduodenal leucine infusion at 0.15 or 0.45 kcal/min 3 occasions | Blood glucose decrease with leucine 0.45 Insulin increase with both doses |
Ullrich, S.S. (2016) [245] | Healthy subjects (n = 12) | (1) Intragastric leucine infusion 5 g or 10 g (2) Intragastric isoleucine infusion 5 g or 10 g 3 separate visits | Glucose AUC decrease with leucine 10 g and isoleucine 10 g Insulin and C-peptide AUCs increased with leucine 10 g |
Ullrich, S.S. (2017) [246] | Healthy volunteers (n = 12) | Intragastric L-lysine infusion 5 g or 10 g Mixed-nutrient drink after 15 min 3 occasions | Blood glucose, insulin, blood glucose, and insulin AUCs not altered Blood glucose and insulin decrease in response to mixed-nutrient drink |
Randolph, A.C. (2020) [247] | Healthy older adults (n = 42) | 15 g/day supplement contained 40% L-leucine, 16.7% L-lysine, 11% L-valine, 10.7% L-isoleucine, 9.3% L-threonine, 6.7% L-phenylalanine, 3.3% L-methionine, 1.7% histidine, 0.7% L-tryptophan alone or in association with aerobic exercise 22 weeks | Insulin sensitivity not altered |
Amin, A. (2021) [248] | Healthy subjects (n = 11) | 10 g L-phenylalanine Test meal 70 min after treatment 120 min | PPG AUC decrease Insulin increase prior meal intake Insulin AUC increase after meal intake Glucagon increase before and after meal intake GIP increase after treatment |
Elovaris, R.A. (2021) [249] | Healthy subjects (n = 15) | 10 g leucine, isoleucine and valine Mixed-nutrient drink 30 min after treatment 4 separate occasions | Peak glucose decrease with leucine and isoleucine Glucose AUC15–120min reduced with isoleucine |
Elovaris, R.A. (2021) [250] | T2DM patients (n = 14) | 10 g leucine and isoleucine Mixed-nutrient drink 30 min after treatment 3 separate visits | Glucose AUC and peak glucose levels not altered Insulin AUC increase before and after mixed-nutrient drink Peak insulin levels increase with leucine Glucagon AUC increase before and after mixed-nutrient drink with isoleucine |
Alqudah, A. (2021) [236] | T2DM patients (n = 124) Healthy (n = 67) | Amino acids profile and correlation with glycemic parameters | Increase in leucine, lysine, phenylalanine, and tryptophan Positive correlation with FPG and HbA1c |
Hajishafiee, M. (2021) [251] | T2DM patients (n = 12) | 3 g or 1.5 g tryptophan Mixed-nutrient drink 30 min after treatment 3 separate occasions | FPG not altered C-peptide increase C-peptide AUC increase with 1.5 g tryptophan PPG decrease with 3 g tryptophan |
Matsuda, T. (2022) [252] | T2DM elderly patients (n = 36) | 8 g/day BCAA (4 g leucine, 2 g valine, 2 g isoleucine) 24 weeks | FPG, FPI, HbA1c, and HOMA-IR not altered |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derosa, G.; D’Angelo, A.; Angelini, F.; Belli, L.; Cicero, A.F.G.; Da Ros, R.; De Pergola, G.; Gaudio, G.V.; Lupi, A.; Sartore, G.; et al. Nutraceuticals and Supplements in Management of Prediabetes and Diabetes. Nutrients 2025, 17, 14. https://doi.org/10.3390/nu17010014
Derosa G, D’Angelo A, Angelini F, Belli L, Cicero AFG, Da Ros R, De Pergola G, Gaudio GV, Lupi A, Sartore G, et al. Nutraceuticals and Supplements in Management of Prediabetes and Diabetes. Nutrients. 2025; 17(1):14. https://doi.org/10.3390/nu17010014
Chicago/Turabian StyleDerosa, Giuseppe, Angela D’Angelo, Fabrizio Angelini, Luca Belli, Arrigo F. G. Cicero, Roberto Da Ros, Giovanni De Pergola, Giovanni V. Gaudio, Alessandro Lupi, Giovanni Sartore, and et al. 2025. "Nutraceuticals and Supplements in Management of Prediabetes and Diabetes" Nutrients 17, no. 1: 14. https://doi.org/10.3390/nu17010014
APA StyleDerosa, G., D’Angelo, A., Angelini, F., Belli, L., Cicero, A. F. G., Da Ros, R., De Pergola, G., Gaudio, G. V., Lupi, A., Sartore, G., Vignati, F. A., & Maffioli, P. (2025). Nutraceuticals and Supplements in Management of Prediabetes and Diabetes. Nutrients, 17(1), 14. https://doi.org/10.3390/nu17010014