The Extraction, Biosynthesis, Health-Promoting and Therapeutic Properties of Natural Flavanone Eriodictyol
Abstract
:1. Introduction
2. Extraction and Biosynthesis of Eriodictyol
2.1. Extraction of Eriodictyol
2.2. Biosynthesis of Eriodictyol
3. Health-Promoting Effects of Eriodictyol
3.1. Skin Care
3.2. Neuroprotective Effects
3.3. Hypoglycemic Effects
3.4. Anti-Inflammatory Effects
3.5. Anti-Oxidative Effects
4. Potential Therapeutic Properties/Uses of Eriodictyol
4.1. Cardioprotective Effects
4.2. Pulmonary Protective Effects
4.3. Hepatoprotective Effects
4.4. Renal Protective Effects
4.5. Anti-Cancer Effects
5. Other Effects
6. Future Perspectives
Funding
Conflicts of Interest
Abbreviation
4HPA3H | 4-hydroxyphenylacetate 3-hydroxylase |
AD | Alzheimer’s disease |
AKT | Protein kinase B |
APP | Amyloid precursor protein |
ARE | Antioxidant response element |
BAX | Bcl-2-related X protein |
Bcl-2 | B-cell lymphoma-2 |
cAMP | Cyclic adenosine monophosphate |
COX-2 | Cyclooxygenase-2 |
DSS | Dextran sodium sulphate |
eNOS | Endothelial Nitric oxide synthase |
ERK | Extracellular regulated protein kinases |
D-GALN | D-galactoamine |
GC-MS | Gas chromatography–mass spectrometry |
GRAS | Generally regarded as safe |
HO-1 | Heme oxygenase-1 |
HPLC | High-Performance Liquid Chromatography |
ICAM-1 | Intercellular adhesion molecule-1 |
ICR | Institute of Cancer Research |
IL | Interleukin |
LC-DAD-MSD | Liquid chromatography serially coupled to diode array and mass selective detection |
LC-MS/MS | Liquid chromatography tandem mass spectrometry |
LPS | Lipopolysaccharide |
MAPK | Mitogen-activated protein kinase |
MEK | External signal-regulated kinase |
MIP-1 | Macrophage inflammatory protein-1 |
mTOR | Mammalian target of rapamycin |
NFκB | Nuclear factor kappa-B |
NLRP3 | NOD-like receptor pyrin domain-containing 3 |
NMR | Nuclear magnetic resonance spectroscopy |
NQO1 | NADH dehydrogenase quinone 1 |
Nrf2 | Nuclear factor erythroid 2 |
PI3K | Phosphoinositide 3-kinase |
PKA | Protein kinase A |
PS1 | Presenilin 1 |
PSE | Ethanol extract of peanut shells |
ROS | Reactive oxygen species |
TGF-β | Transforming growth factor-β |
TNBS | Trinitro-benzene-sulfonic acid |
TNF-α | Tumor necrosis factor-α |
TRP | Tyrosinase-related protein |
UHPLC-ESI-MS | Liquid chromatography electrospray ionization tandem mass spectrometry |
UPLC-Q-Exactive Orbitrap | Ultra-high-performance liquid chromatography coupled with quadrupole electrostatic field orbitrap high-resolution |
UVA | Ultraviolet A |
VEGR | Vascular endothelial growth factor |
References
- Zahida, N.; Hira, M.; Abrar, B. Flavonoids in plants of pakistan: A review. J. Microbiol. Biotechnol. Food Sci. 2017, 7, 83–91. [Google Scholar] [CrossRef]
- Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomas-Barberan, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 2004, 59, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Jugnu, G.; Kumar, V.P. An Overview of Biosynthetic Pathway and Therapeutic Potential of Rutin. Mini Rev. Med. Chem. 2023, 23, 1451–1460. [Google Scholar] [CrossRef]
- Overwin, H.; Wray, V.; Seeger, M.; Sepúlveda-Boza, S.; Hofer, B. Flavanone and isoflavone glucosylation by non-Leloir glycosyltransferases. J. Biotechnol. 2016, 233, 121–128. [Google Scholar] [CrossRef]
- Ilona, K.-S.; Weronika, W.; Maria, Z.; Ewa, O.-K.; Anna, B. Effect of dietary flavonoid naringenin on bones in rats with ovariectomy-induced osteoporosis. Acta Pol. Pharm. 2016, 73, 1073–1081. [Google Scholar]
- He, P.; Yan, S.; Zheng, J.; Gao, Y.; Zhang, S.; Liu, Z.; Liu, X.; Xiao, C. Eriodictyol Attenuates LPS-Induced Neuroinflammation, Amyloidogenesis, and Cognitive Impairments via the Inhibition of NF-kappaB in Male C57BL/6J Mice and BV2 Microglial Cells. J. Agric. Food Chem. 2018, 66, 10205–10214. [Google Scholar] [CrossRef]
- Sato, A.; Kikuta, Y.; Kazama, I. Lemon Juice and Peel Constituents Potently Stabilize Rat Peritoneal Mast Cells. Cell. Physiol. Biochem. 2024, 58, 445–457. [Google Scholar]
- Miyake, Y.; Mochizuki, M.; Okada, M.; Hiramitsu, M.; Morimitsu, Y.; Osawa, T. Isolation of Antioxidative Phenolic Glucosides from Lemon Juice and Their Suppressive Effect on the Expression of Blood Adhesion Molecules. Biosci. Biotechnol. Biochem. 2007, 71, 1911–1919. [Google Scholar] [CrossRef]
- Gupta, A.; Jacobson, G.A.; Burgess, J.R.; Jelinek, H.F.; Nichols, D.S.; Narkowicz, C.K.; Al-Aubaidy, H.A. Citrus bioflavonoids dipeptidyl peptidase-4 inhibition compared with gliptin antidiabetic medications. Biochem. Biophys. Res. Commun. 2018, 503, 21–25. [Google Scholar] [CrossRef]
- Yaw, V.B.; Clement, O.A.; David, N. Isolation and Identification of Flavanone Derivative Eriodictyol from the Methanol Extract of Afzelia africana Bark and Its Antimicrobial and Antioxidant Activities. Evid.-Based Complement. Altern. Med. Ecam 2023, 2023, 9345047. [Google Scholar] [CrossRef]
- Lalita, C.; Soottawat, B.; Kongkarn, K. Ultrasound assisted extraction of antioxidative phenolics from cashew (Anacardium occidentale L.) leaves. J. Food Sci. Technol. 2019, 56, 1785–1792. [Google Scholar] [CrossRef]
- Gao, A.X.; Xiao, J.; Xia, T.C.-X.; Dong, T.T.-X.; Tsim, K.W.-K. The extract of peanut shell enhances neurite outgrowth of neuronal cells: Recycling of agricultural waste for development of nutraceutical products. J. Funct. Foods 2022, 91, 105023. [Google Scholar] [CrossRef]
- Katarzyna, D.S.S.; Wioleta, P.; Katarzyna, K.; Anna, G.; Rafał, C.; Marek, G. LC-ESI-MS/MS Identification of Biologically Active Phenolics in Different Extracts of Alchemilla acutiloba Opiz. Molecules 2022, 27, 621. [Google Scholar] [CrossRef]
- Cai, R.; Li, X.; Li, C.; Zhu, J.; Zeng, J.; Li, J.; Tang, B.; Li, Z.; Liu, S.; Yan, Y. Standards-Based UPLC-Q-Exactive Orbitrap MS Systematically Identifies 36 Bioactive Compounds in Ampelopsis grossedentata (Vine Tea). Separations 2022, 9, 329. [Google Scholar] [CrossRef]
- Xia, J.-X.; Zhao, B.-B.; Zan, J.-F.; Wang, P.; Chen, L.-L. Simultaneous determination of phenolic acids and flavonoids in Artemisiae Argyi Folium by HPLC-MS/MS and discovery of antioxidant ingredients based on relevance analysis. J. Pharm. Biomed. Anal. 2019, 175, 112734. [Google Scholar] [CrossRef]
- Katarzyna, B.; Izabela, F. Aspalathin and Other Rooibos Flavonoids Trapped α-Dicarbonyls and Inhibited Formation of Advanced Glycation End Products In Vitro. Int. J. Mol. Sci. 2022, 23, 14738. [Google Scholar] [CrossRef]
- Zhang, Q.; Pei, H.Y.; Chen, K.; Tang, H.; Wu, B.; Tang, M.H.; Peng, A.H.; Ye, H.Y.; Chen, L.J. Separation of caffeoylquinic acids and flavonoids from Asteris souliei by high-performance counter-current chromatography and their anti-inflammatory activity in vitro. J. Sep. Sci. 2017, 40, 2261–2268. [Google Scholar] [CrossRef]
- Ferrarese, I.; Lupo, M.G.; Rossi, I.; Sut, S.; Loschi, F.; Allegrini, P.; Riva, A.; Ferri, N.; Dall’Acqua, S. Bergamot (Citrus bergamia) peel extract as new hypocholesterolemic agent modulating PCSK9 expression. J. Funct. Foods 2023, 108, 105724. [Google Scholar] [CrossRef]
- Zeng, B.; Chen, K.; Du, P.; Wang, S.S.; Ren, B.; Ren, Y.L.; Yan, H.S.; Liang, Y.; Wu, F.H. Phenolic Compounds from Clinopodium chinense (Benth.) O. Kuntze and Their Inhibitory Effects on alpha-Glucosidase and Vascular Endothelial Cells Injury. Chem. Biodivers. 2016, 13, 596–601. [Google Scholar] [CrossRef]
- Huang, D.W.; Chung, C.P.; Kuo, Y.H.; Lin, Y.L.; Chiang, W. Identification of compounds in adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed hull extracts that inhibit lipopolysaccharide-induced inflammation in RAW 264.7 macrophages. J. Agric. Food Chem. 2009, 57, 10651–10657. [Google Scholar] [CrossRef]
- Nurmirza, B.; Jun, L.; Khayrulla, B.; Sodik, N.; Akber, A.H. The chemical components of Coreopsis tinctoria Nutt. and their antioxidant, antidiabetic and antibacterial activities. Nat. Prod. Res. 2018, 34, 1772–1776. [Google Scholar] [CrossRef]
- Stander, M.A.; Malherbe, C.J.; Villiers, A.d.; Joubert, E.; Schulze, A.E.; Beer, D.d. Food Ingredient Extracts of Cyclopia subternata (Honeybush): Variation in Phenolic Composition and Antioxidant Capacity. Molecules 2012, 17, 14602–14624. [Google Scholar] [CrossRef] [PubMed]
- Abdussamat, G.; Huseyin, A.; Mahfuz, E.; Ramazan, E. Bioassay-guided isolation and identification of antioxidant flavonoids from Cyclotrichium origanifolium (Labill.) Manden and Scheng. Pharmacogn. Mag. 2017, 13, 316–320. [Google Scholar] [CrossRef]
- Kasinee, T.; Chatchai, C.; Boonchoo, S.; Kittisak, L.; Pithi, C. Cytotoxic and anti-metastatic activities of phenolic compounds from Dendrobium ellipsophyllum. Anticancer. Res. 2014, 34, 6573–6579. [Google Scholar]
- Gao, J.; Wang, Z.; Chen, D.; Peng, J.; Xie, D.; Lin, Z.; Lin, Z.; Dai, W. Metabolomic characterization of the chemical compositions of Dracocephalum rupestre Hance. Food Res. Int. 2022, 161, 111871. [Google Scholar] [CrossRef]
- Zhao, L.; Qin, X.; Lin, T.; Xie, F.; Yao, L.; Li, Y.; Xiong, B.; Xu, Z.; Ye, Y.; Chen, H.; et al. Multi-target mechanisms against coronaviruses of constituents from Chinese Dagang Tea revealed by experimental and docking studies. J. Ethnopharmacol. 2022, 297, 115528. [Google Scholar] [CrossRef]
- Zhong, J.D.; Feng, Y.; Li, H.M.; Xia, X.S.; Li, R.T. A new flavonoid glycoside from Elsholtzia bodinieri. Nat. Prod. Res. 2016, 30, 2278–2284. [Google Scholar] [CrossRef]
- Armah, F.A.; Amponsah, I.K.; Mensah, A.Y.; Dickson, R.A.; Steenkamp, P.A.; Madala, N.E.; Adokoh, C.K. Leishmanicidal activity of the root bark of Erythrophleum Ivorense (Fabaceae) and identification of some of its compounds by ultra-performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS/MS). J. Ethnopharmacol. 2018, 211, 207–216. [Google Scholar] [CrossRef]
- Monforte, M.T.; Fimiani, V.; Lanuzza, F.; Naccari, C.; Restuccia, S.; Galati, E.M. Feijoa sellowiana Berg fruit juice: Anti-inflammatory effect and activity on superoxide anion generation. J. Med. Food 2014, 17, 455–461. [Google Scholar] [CrossRef]
- Chang-Seob, S.; Hye-Sun, L.; Hyekyung, H.; Eun, J.S.; Hyeun-Kyoo, S. Quantitative analysis and anti-inflammatory effects of Gleditsia sinensis thorns in RAW 264.7 macrophages and HaCaT keratinocytes. Mol. Med. Rep. 2015, 12, 4773–4781. [Google Scholar] [CrossRef]
- Fan, Y.H.; Ye, R.; Xu, H.Y.; Feng, X.H.; M, C.M. Structures and In Vitro Antihepatic Fibrosis Activities of Prenylated Dihydrostilbenes and Flavonoids from Glycyrrhiza uralensis Leaves. J. Food Sci. 2019, 84, 1224–1230. [Google Scholar] [CrossRef]
- Mao, Z.; Gan, C.; Zhu, J.; Ma, N.; Wu, L.; Wang, L.; Wang, X. Anti-atherosclerotic activities of flavonoids from the flowers of Helichrysum arenarium L. MOENCH through the pathway of anti-inflammation. Bioorganic Med. Chem. Lett. 2017, 27, 2812–2817. [Google Scholar] [CrossRef]
- Nakashima, S.; Oda, Y.; Nakamura, S.; Liu, J.; Onishi, K.; Kawabata, M.; Miki, H.; Himuro, Y.; Yoshikawa, M.; Matsuda, H. Inhibitors of melanogenesis in B16 melanoma 4A5 cells from flower buds of Lawsonia inermis (Henna). Bioorganic Med. Chem. Lett. 2015, 25, 2702–2706. [Google Scholar] [CrossRef]
- Torres, C.A.; Perez Zamora, C.M.; Sato, H.A.; Nuñez, M.B.; Gonzalez, A.M. Phytochemical composition and biological screening of two Lophophytum species. Bol. Latinoam. Y Del Caribe De Plantas Med. Y Aromat. 2021, 20, 598–610. [Google Scholar] [CrossRef]
- Neha, S.; Nitesh, S.; Ram, A.K.; Sathish, R.S.; Kumar, R.A.; Vijaya, S.; Jyotsana, P.; Tadigoppula, N.; Kumar, T.A.; Brijesh, K.; et al. Assessment of the dual role of Lyonia ovalifolia (Wall.) Drude in inhibiting AGEs and enhancing GLUT4 translocation through LC-ESI-QTOF-MS/MS determination and in silico studies. Front. Pharmacol. 2023, 14, 1073327. [Google Scholar] [CrossRef]
- Politeo, O.; Bektasevic, M.; Carev, I.; Jurin, M.; Roje, M. Phytochemical Composition, Antioxidant Potential and Cholinesterase Inhibition Potential of Extracts from Mentha pulegium L. Chem. Biodivers. 2018, 15, e1800374. [Google Scholar] [CrossRef]
- Silvia, F.; Lucia, V.; Viera, N.; Katarina, D.; Daniela, T.; Daniel, G.; Ruzena, S. Water Extract of Mentha x villosa: Phenolic Fingerprint and Effect on Ischemia-Reperfusion Injury. Nat. Prod. Commun. 2015, 10, 937–940. [Google Scholar]
- Rodríguez-chávez, J.L.; Rufino-gonzález, Y.; Ponce-macotela, M.; Delgado, G. In vitro activity of ‘Mexican Arnica’ Heterotheca inuloides Cass natural products and some derivatives against Giardia intestinalis. Parasitology 2014, 142, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Salama, M.M.; Ezzat, S.M.; Sleem, A.A. A New Hepatoprotective Flavone Glycoside from the Flowers of Onopordum alexandrinum Growing in Egypt. Z. Für Naturforschung C 2014, 66, 251–259. [Google Scholar] [CrossRef]
- Kandasamy, S.; Cengiz, S.; Seyma, S.S.; Busra, S.R.; MyeongHyeon, W. Phytochemical Composition, Antioxidant, and Enzyme Inhibition Activities of Methanolic Extracts of Two Endemic Onosma Species. Plants 2021, 10, 1373. [Google Scholar] [CrossRef]
- Shanmugam, S.; Gomes, I.A.; Denadai, M.; Lima, B.d.S.; Araújo, A.A.d.S.; Narain, N.; Neta, M.T.S.L.; Serafini, M.R.; Quintans-Júnior, L.J.; Thangaraj, P. UHPLC-QqQ-MS/MS identification, quantification of polyphenols from Passiflora subpeltata fruit pulp and determination of nutritional, antioxidant, α-amylase and α-glucosidase key enzymes inhibition properties. Food Res. Int. 2018, 108, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Fatemeh, A.; Navaz, K.; Zahra, L.G. Flavonoid Constituents of Phlomis (Lamiaceae) Species Using Liquid Chromatography Mass Spectrometry. Phytochem. Anal. PCA 2018, 29, 180–195. [Google Scholar] [CrossRef]
- Tang, X.; Liu, L.; Li, Y.; Hao, S.; Zhao, Y.; Wu, X.; Li, M.; Chen, Y.; Deng, S.; Gou, S.; et al. Chemical profiling and investigation of molecular mechanisms underlying anti-hepatocellular carcinoma activity of extracts from Polygonum perfoliatum L. Biomed. Pharmacother. = Biomed. Pharmacother. 2023, 166, 115315. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Tian, J.; Li, Y.; Liu, Q.; Chen, X.; Feng, F.; Yu, X.; Yang, C. Multiomics analysis reveals that peach gum colouring reflects plant defense responses against pathogenic fungi. Food Chem. 2022, 383, 132424. [Google Scholar] [CrossRef]
- Kuroda, M.; Iwabuchi, K.; Mimaki, Y. Chemical Constituents of the Aerial Parts of Scutellaria lateriflora and their α-Glucosidase Inhibitory Activities. Nat. Prod. Commun. 2012, 7, 471–474. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Lin, H.; Liang, Y.; Kaliaperumal, K.; Xiong, Q.; Duan, S.; Jiang, Y. Semiliquidambar chingii is a highly potent antibacterial plant resource against Xanthomonas citri subsp. citri: Insights into the possible mechanisms of action, chemical basis, and synergistic effect of bioactive compounds. Ind. Crops Prod. 2023, 202, 117020. [Google Scholar] [CrossRef]
- Li, W.; Huang, R.; Han, S.; Li, X.; Gong, H.; Zhang, Q.; Yan, C.; Li, Y.; He, R. Potential of Tamarind Shell Extract against Oxidative Stress In Vivo and In Vitro. Molecules 2023, 28, 1885. [Google Scholar] [CrossRef]
- Elhady, S.S.; Ibrahim, E.A.; Goda, M.S.; Nafie, M.S.; Samir, H.; Diri, R.M.; Alahdal, A.M.; Thomford, A.K.; El Gindy, A.; Hadad, G.M.; et al. GC-MS/MS Quantification of EGFR Inhibitors, β-Sitosterol, Betulinic Acid, (+) Eriodictyol, (+) Epipinoresinol, and Secoisolariciresinol, in Crude Extract and Ethyl Acetate Fraction of Thonningia sanguinea. Molecules 2022, 27, 4109. [Google Scholar] [CrossRef]
- Ismaili, H.; Sosa, S.; Brkic, D.; Fkih-Tetouani, S.; Ilidrissi, A.; Touati, D.; Aquino, R.P.; Tubaro, A. Topical anti-inflammatory activity of extracts and compounds from Thymus broussonettii. J. Pharm. Pharmacol. 2002, 54, 1137–1140. [Google Scholar] [CrossRef]
- Milena, N.; Ina, A.; Petar, Z.; Stahil, B. Analysis of exudate compounds of;Thymus;species. Plant Biosyst. -Int. J. Deal. All Asp. Plant Biol. 2024, 158, 142–146. [Google Scholar] [CrossRef]
- Nguyen, H.T.M.; Ngo, D.T.T.; Nguyen, P.D.N.; Pham, T.N.K.; Do, L.T.M.; Sichaem, J. New prenyl flavanone and diarylbutanol from Uvaria siamensis stem bark and their α-glucosidase inhibitory activity. Nat. Prod. Res. 2023, 38, 3982–3988. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, Y.; Hua, Y.; Zhang, C.; Fang, B.; Long, X.; Pan, Y.; Gao, B.; Zhang, J.Z.H.; Li, L.; et al. Biosynthesis of eriodictyol in citrus waster by endowing P450BM3 activity of naringenin hydroxylation. Appl. Microbiol. Biotechnol. 2024, 108, 84. [Google Scholar] [CrossRef] [PubMed]
- Magadán-Corpas, P.; Ye, S.; Pérez-Valero, Á.; McAlpine, P.L.; Valdés-Chiara, P.; Torres-Bacete, J.; Nogales, J.; Villar, C.J.; Lombó, F. Optimized De Novo Eriodictyol Biosynthesis in Streptomyces albidoflavus Using an Expansion of the Golden Standard Toolkit for Its Use in Actinomycetes. Int. J. Mol. Sci. 2023, 24, 8879. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Liu, J.; Liu, D.; Yuwen, M.; Koffas, M.A.G.; Zha, J. Biosynthesis of eriodictyol from tyrosine by Corynebacterium glutamicum. Microb. Cell Factories 2022, 21, 86. [Google Scholar] [CrossRef]
- Huy, T.N.; Bharadwaj, T.V.; Thanh, V.T.; Duc, T.N.Q.; Hoang, L.N. Bioproduction of eriodictyol by Escherichia coli engineered co-culture. World J. Microbiol. Biotechnol. 2022, 38, 86. [Google Scholar] [CrossRef]
- Brugliera, F.; Barri-Rewell, G.; Holton, T.A.; Mason, J.G. Isolation and characterization of a flavonoid 3′-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J. Cell Mol. Biol. 1999, 19, 441–451. [Google Scholar] [CrossRef]
- Limem-Ben, A.I.; Alain, H.; Emmanuel, G.; Kamel, G.; Jean-Marc, E.; Leila, C.-G.; Mohamed, G. Biotransformation of naringenin to eriodictyol by Saccharomyces cerevisiea functionally expressing flavonoid 3′ hydroxylase. Nat. Prod. Commun. 2010, 5, 1893–1898. [Google Scholar]
- Zhu, S.; Wu, J.; Guocheng, G.; Zhou, J.; Chen, J. Efficient synthesis of eriodictyol from L-tyrosine in Escherichia coli. Appl. Environ. Microbiol. 2014, 80, 3072–3080. [Google Scholar] [CrossRef]
- Pourzand, C.; Watkin, R.D.; Brown, J.E.; Tyrrell, R.M. Ultraviolet A radiation induces immediate release of iron in human primary skin fibroblasts: The role of ferritin. Proc. Natl. Acad. Sci. USA 1999, 96, 6751–6756. [Google Scholar] [CrossRef]
- Ridley, A.J.; Whiteside, J.R.; McMillan, T.J.; Allinson, S.L. Cellular and sub-cellular responses to UVA in relation to carcinogenesis. Int. J. Radiat. Biol. 2009, 85, 177–195. [Google Scholar] [CrossRef]
- Eung-Ryoung, L.; Jung-Hyun, K.; Yeon, C.H.; Kilsoo, J.; Ssang-Goo, C. Cytoprotective effect of eriodictyol in UV-irradiated keratinocytes via phosphatase-dependent modulation of both the p38 MAPK and Akt signaling pathways. Cell. Physiol. Biochem. 2011, 27, 513–524. [Google Scholar] [CrossRef]
- Rajan, V.K.; Ahamed, T.S.; Muraleedharan, K. Studies on the UV filtering and radical scavenging capacity of the bitter masking flavanone Eriodictyol. J. Photochem. Photobiol. B Biol. 2018, 185, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Nisar, M.F.; Liu, T.; Wang, M.; Chen, S.; Chang, L.; Karisma, V.W.; Weixu; Diao, Q.; Xue, M.; Tang, X.; et al. Eriodictyol protects skin cells from UVA irradiation-induced photodamage by inhibition of the MAPK signaling pathway. J. Photochem. Photobiol. B Biol. 2021, 226, 112350. [Google Scholar] [CrossRef]
- Thanigaimalai, P.; Vigneshwaran, N.; Manoj, M.; Sang-Hun, J. Inhibitors of Melanogenesis: An Updated Review. J. Med. Chem. 2018, 61, 7395–7418. [Google Scholar] [CrossRef]
- Han, C.; Lin, B.; Huang, X.; Mao, Z.; Kong, X.; Fang, L.; Xue, P.; Wang, A.; Zhang, F. Quinoa husk peptides reduce melanin content via Akt signaling and apoptosis pathways. iScience 2023, 26, 105721. [Google Scholar] [CrossRef]
- Lou, H.; Jing, X.; Ren, D.; Wei, X.; Zhang, X. Eriodictyol protects against H 2 O 2 -induced neuron-like PC12 cell death through activation of Nrf2/ARE signaling pathway. Neurochem. Int. 2012, 61, 251–257. [Google Scholar] [CrossRef]
- He, P.; Yan, S.; Wen, X.; Zhang, S.; Liu, Z.; Liu, Z.; Xiao, C. Eriodictyol alleviates lipopolysaccharide-triggered oxidative stress and synaptic dysfunctions in BV-2 microglial cells and mouse brain. J. Cell. Biochem. 2019, 120, 14756–14770. [Google Scholar] [CrossRef]
- Solomon, H. The Nrf2/HO-1 Axis as Targets for Flavanones: Neuroprotection by Pinocembrin, Naringenin, and Eriodictyol. Oxidative Med. Cell. Longev. 2019, 2019, 4724920. [Google Scholar] [CrossRef]
- Wang, C.; Ma, Z.; Wang, Z.; Ming, S.; Ding, Y.; Zhou, S.; Qian, H. Eriodictyol Attenuates MCAO-Induced Brain Injury and Neurological Deficits via Reversing the Autophagy Dysfunction. Front. Syst. Neurosci. 2021, 15, 655125. [Google Scholar] [CrossRef]
- DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef]
- Jing, X.; Shi, H.; Zhu, X.; Wei, X.; Ren, M.; Han, M.; Ren, D.; Lou, H. Eriodictyol Attenuates β-Amyloid 25-35 Peptide-Induced Oxidative Cell Death in Primary Cultured Neurons by Activation of Nrf2. Neurochem. Res. 2015, 40, 1463–1471. [Google Scholar] [CrossRef]
- Lin, L.; Jun, L.W.; Ru, Z.X.; Long, L.Q.; Qian, D.; Jie, L.Y.; Qing, L.S. Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation. Mol. Med. 2022, 28, 11. [Google Scholar] [CrossRef]
- Guo, P.; Zeng, M.; Wang, S.; Cao, B.; Liu, M.; Zhang, Y.; Jia, J.; Zhang, Q.; Zhang, B.; Wang, R.; et al. Eriodictyol and Homoeriodictyol Improve Memory Impairment in Aβ25–35-Induced Mice by Inhibiting the NLRP3 Inflammasome. Molecules 2022, 27, 2488. [Google Scholar] [CrossRef] [PubMed]
- Bucolo, C.; Leggio, G.M.; Drago, F.; Salomone, S. Eriodictyol prevents early retinal and plasma abnormalities in streptozotocin-induced diabetic rats. Biochem. Pharmacol. 2012, 84, 88–92. [Google Scholar] [CrossRef]
- Lv, P.; Yu, J.; Xu, X.; Lu, T.; Xu, F. Eriodictyol inhibits high glucose-induced oxidative stress and inflammation in retinal ganglial cells. J. Cell. Biochem. 2019, 120, 5644–5651. [Google Scholar] [CrossRef]
- Wei-Yun, Z.; Jung-Jin, L.; Yohan, K.; In-Su, K.; Joo-Hui, H.; Sang-Gil, L.; Min-Ju, A.; Sang-Hyuk, J.; Chang-Seon, M. Effect of eriodictyol on glucose uptake and insulin resistance in vitro. J. Agric. Food Chem. 2012, 60, 7652–7658. [Google Scholar] [CrossRef]
- Hameed, A.; Hafizur, R.M.; Hussain, N.; Raza, S.A.; Rehman, M.; Ashraf, S.; Ul-Haq, Z.; Khan, F.; Abbas, G.; Choudhary, M.I. Eriodictyol stimulates insulin secretion through cAMP/PKA signaling pathway in mice islets. Eur. J. Pharmacol. 2018, 820, 245–255. [Google Scholar] [CrossRef]
- Bai, J.; Wang, Y.; Zhu, X.; Shi, J. Eriodictyol inhibits high glucose-induced extracellular matrix accumulation, oxidative stress, and inflammation in human glomerular mesangial cells. Phytother. Res. PTR 2019, 33, 2775–2782. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, W.; Tang, Z.; Kong, Y.; Liu, J.; Cao, X. Identification of the effective α-amylase inhibitors from Dalbergia odorifera: Virtual screening, spectroscopy, molecular docking, and molecular dynamic simulation. Spectrochim. Acta. Part A Mol. Biomol. Spectrosc. 2022, 280, 121448. [Google Scholar] [CrossRef]
- Pérez-Ramírez, I.F.; Herrera, M.D.; Mora, O.; Ramos-Gómez, M.; Martínez-Alarcón, D.; Reynoso-Camacho, R. Effect of different pigmented cooked common beans on glucose and lipid metabolism in obese rats and 3T3 L1 cells. Food Biosci. 2023, 53, 102510. [Google Scholar] [CrossRef]
- AlTamimi, J.Z.; AlFaris, N.A.; Alshammari, G.M.; Alagal, R.I.; Aljabryn, D.H.; Yahya, M.A. Protective effect of eriodictyol against hyperglycemia-induced diabetic nephropathy in rats entails antioxidant and anti-inflammatory effects mediated by activating Nrf2. Saudi Pharm. J. 2023, 31, 101817. [Google Scholar] [CrossRef]
- Park, S.-J.; Lee, Y.-H.; Lee, K.H.; Kim, T.-J. Effect of Eriodictyol on the Development of Atopic Dermatitis-Like Lesions in ICR Mice. Biol. Pharm. Bull. 2013, 36, 1375–1379. [Google Scholar] [CrossRef] [PubMed]
- Eunjung, L.; Ki-Woong, J.; Areum, S.; Bonghwan, J.; Nath, J.H.; Bong-Hyun, J.; Jee-Young, L.; Yong-Seok, H.; Yangmee, K. Binding model for eriodictyol to Jun-N terminal kinase and its anti-inflammatory signaling pathway. BMB Rep. 2013, 46, 594–599. [Google Scholar] [CrossRef]
- Ferreira, E.d.O.; Fernandes, M.Y.S.D.; Lima, N.M.R.d.; Neves, K.R.T.; Carmo, M.R.S.d.; Lima, F.A.V.; Fonteles, A.A.; Menezes, A.P.F.; Andrade, G.M.d. Neuroinflammatory response to experimental stroke is inhibited by eriodictyol. Behav. Brain Res. 2016, 312, 321–332. [Google Scholar] [CrossRef]
- Imen, M.-B.; Nadia, M.; Aicha, S.; Ahmed, B.; Mohamed, G.; Kamel, G.; Leila, C.-G. Investigation of immunomodulatory and anti-inflammatory effects of eriodictyol through its cellular anti-oxidant activity. Cell Stress Chaperones 2016, 21, 773–781. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Chen, Y.; Zhou, B.; Shan, X.; Yang, G. Eriodictyol inhibits IL-1β-induced inflammatory response in human osteoarthritis chondrocytes. Biomed. Pharmacother. 2018, 107, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yan, X. Eriodictyol inhibits survival and inflammatory responses and promotes apoptosis in rheumatoid arthritis fibroblast-like synoviocytes through AKT/FOXO1 signaling. J. Cell. Biochem. 2019, 120, 14628–14635. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Li, J.; Jing, S.; Jin, Y.; Yang, L.; Yu, H.; Wang, D.; Wang, T.; Wang, L. Eriodictyol as a Potential Candidate Inhibitor of Sortase A Protects Mice From Methicillin-Resistant Staphylococcus aureus-Induced Pneumonia. Front. Microbiol. 2021, 12, 635710. [Google Scholar] [CrossRef]
- Hu, L.H.; Liu, J.Y.; Yin, J.B. Eriodictyol attenuates TNBS-induced ulcerative colitis through repressing TLR4/NF-kB signaling pathway in rats. Kaohsiung J. Med. Sci. 2021, 37, 812–818. [Google Scholar] [CrossRef]
- Wang, R.; Shen, L.; Li, H.; Peng, H. Eriodictyol attenuates dextran sodium sulphate-induced colitis in mice by regulating the sonic hedgehog signalling pathway. Pharm. Biol. 2021, 59, 972–983. [Google Scholar] [CrossRef]
- Maquera-Huacho, P.M.; Spolidorio, D.P.; Manthey, J.A.; Grenier, D. Eriodictyol Suppresses Porphyromonas gingivalis-Induced Reactive Oxygen Species Production by Gingival Keratinocytes and the Inflammatory Response of Macrophages. Front. Oral Health 2022, 3, 847914. [Google Scholar] [CrossRef]
- Li, H.; Li, C.; Shen, T.; Zhao, L.; Ren, D. R-eriodictyol and S-eriodictyol exhibited comparable effect against H2O2-induced oxidative stress in EA.hy926 cells. Drug Discov. Ther. 2014, 8, 218–224. [Google Scholar] [CrossRef]
- Zhu, G.F.; Guo, H.J.; Huang, Y.; Wu, C.T.; Zhang, X.F. Eriodictyol, a plant flavonoid, attenuates LPS-induced acute lung injury through its antioxidative and anti-inflammatory activity. Exp. Ther. Med. 2015, 10, 2259–2266. [Google Scholar] [CrossRef]
- Preethi, H.; Mariyappan, P.; Manju, V. An Evaluation of Antioxidant Potential of Flavonoid Eriodictyol in Isoproterenol-Induced Myocardial Infarction in Rats. Indian J. Pharm. Educ. Res. 2017, 51, 603–612. [Google Scholar] [CrossRef]
- Khlifi, R.; Dhaouefi, Z.; Maatouk, M.; Sassi, A.; Boudhiba, N.; Ioannou, I.; Ghedira, K.; Chekir-Ghedira, L.; Kilani-Jaziri, S. Heat treatment improves the immunomodulatory and cellular antioxidant behavior of a natural flavanone: Eriodictyol. Int. Immunopharmacol. 2018, 61, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Eibulayin, G.; Rahman, N.; Fu, J.H.; Turxuntayi, A. Study on the Protective Effect of Flavonoids in Vernonia anthelmintica (L.) Willd on Oxidative Stress Damage of HaCaT Cells. Nat. Prod. Commun. 2024, 19, 1–15. [Google Scholar] [CrossRef]
- Wang, C.; Song, Z.; Cao, Y.; Han, L.; Yu, Q.; Han, G.; Zhu, X. Characterization of sodium alginate-carrageenan films prepared by adding peanut shell flavonoids as an antioxidant: Application in chilled pork preservation. Int. J. Biol. Macromol. 2024, 266, 131081. [Google Scholar] [CrossRef]
- Lee, S.; Yang, H.; Son, G.; Park, H.; Park, C.-S.; Jin, Y.-H.; Park, Y. Eriodictyol Protects Endothelial Cells against Oxidative Stress-Induced Cell Death through Modulating ERK/Nrf2/ARE-Dependent Heme Oxygenase-1 Expression. IJMS 2015, 16, 14526–14539. [Google Scholar] [CrossRef]
- Xie, Y.; Ji, R.; Han, M. Eriodictyol protects H9c2 cardiomyocytes against the injury induced by hypoxia/reoxygenation by improving the dysfunction of mitochondria. Exp. Ther. Med. 2019, 17, 551–557. [Google Scholar] [CrossRef]
- Sun, J.; Jiang, X.; Chen, Y.; Guo, S.; Zhao, Z.; Cao, J.; Liu, Y.; Cheng, G.; Li, Y.; Tian, L. Elsholtzia bodinieri Vaniot Ameliorated Acute Lung Injury by NQO1, BCL2 and PTGS2 In Silico and In Vitro Analyses. Int. J. Mol. Sci. 2022, 23, 15651. [Google Scholar] [CrossRef]
- Jiang, X.; Sun, J.; Guo, S.; Zhao, Z.; Chen, Y.; Cao, J.; Liu, Y.; Cheng, G.; Tian, L.; Li, Y. Elsholtzia bodinieri Vaniot ameliorated acute lung injury in mice by regulating pyroptosis, inflammation, oxidative stress and macrophage polarization. J. Ethnopharmacol. 2023, 307, 116232. [Google Scholar] [CrossRef]
- Wang, X.; Deng, R.; Dong, J.; Huang, L.; Li, J.; Zhang, B. Eriodictyol ameliorates lipopolysaccharide-induced acute lung injury by suppressing the inflammatory COX-2/NLRP3/NF-κB pathway in mice. J. Biochem. Mol. Toxicol. 2020, 34, e22434. [Google Scholar] [CrossRef]
- He, X.; Ouyang, P.; Yuan, Z.; Yin, Z.; Fu, H.; Lin, J.; He, C.; Shu, G.; Yuan, Z.; Song, X.; et al. Eriodictyol protects against Staphylococcus aureus-induced lung cell injury by inhibiting alpha-hemolysin expression. World J. Microbiol. Biotechnol. 2018, 34, 64. [Google Scholar] [CrossRef]
- Chawon, Y.; Jae, L.H.; Jae, L.C. Eriodictyol Inhibits the Production and Gene Expression of MUC5AC Mucin via the IκBα-NF-κB p65 Signaling Pathway in Airway Epithelial Cells. Biomol. Ther. 2021, 29, 637–642. [Google Scholar] [CrossRef]
- Wang, Z.; Lan, Y.; Chen, M.; Wen, C.; Hu, Y.; Liu, Z.; Ye, L. Eriodictyol, Not Its Glucuronide Metabolites, Attenuates Acetaminophen-Induced Hepatotoxicity. Mol. Pharm. 2017, 14, 2937–2951. [Google Scholar] [CrossRef]
- Xie, G.; Meng, X.; Wang, F.; Bao, Y.; Huo, J. Eriodictyol attenuates arsenic trioxide-induced liver injury by activation of Nrf2. Oncotarget 2017, 8, 68668–68674. [Google Scholar] [CrossRef]
- Kwon, E.-Y.; Choi, M.-S. Dietary Eriodictyol Alleviates Adiposity, Hepatic Steatosis, Insulin Resistance, and Inflammation in Diet-Induced Obese Mice. Int. J. Mol. Sci. 2019, 20, 1227. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, X.; Wen, Q.; Tang, H.; Zhao, L.; Shi, F.; Li, Y.; Yin, Z.; Zou, Y.; Song, X.; et al. Eriodictyol Alleviated LPS/D-GalN-Induced Acute Liver Injury by Inhibiting Oxidative Stress and Cell Apoptosis via PI3K/AKT Signaling Pathway. Nutrients 2023, 15, 4349. [Google Scholar] [CrossRef]
- Cai, Y.; Yuan, L.; Wang, K.; Liu, Q.; Xing, H.; Zhong, P.; Lin, J.; Liang, Y.; Chen, G.; Li, W.; et al. Eriodictyol downregulates UBA52 to promote autophagy and upregulates Nrf2/HO-1 to inhibit oxidative stress to ameliorate non-alcoholic fatty liver disease. J. Funct. Foods 2024, 113, 106041. [Google Scholar] [CrossRef]
- Li, C.-z.; Jin, H.-h.; Sun, H.-x.; Zhang, Z.-z.; Zheng, J.-x.; Li, S.-h.; Han, S.-h. Eriodictyol attenuates cisplatin-induced kidney injury by inhibiting oxidative stress and inflammation. Eur. J. Pharmacol. 2016, 772, 124–130. [Google Scholar] [CrossRef]
- Badi, R.M.; Khaleel, E.F.; Satti, H.H.; Monir, R. Eriodictyol attenuates doxorubicin-induced nephropathy by activating the AMPK/Nrf2 signalling pathway. J. Tradit. Complement. Med. 2024, 14, 203–214. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Y.-H.; Wang, J.-J.; Xu, H.-L.; Wang, C.-M. Eriodictyol-induced anti-cancer and apoptotic effects in human hepatocellular carcinoma cells are associated with cell cycle arrest and modulation of apoptosis-related proteins. Bangladesh J. Pharmacol. 2016, 11, 285–291. [Google Scholar] [CrossRef]
- Huang, W.; Wang, C.; Zhang, H. Eriodictyol inhibits the motility, angiogenesis and tumor growth of hepatocellular carcinoma via NLRP3 inflammasome inactivation. Heliyon 2024, 10, e24401. [Google Scholar] [CrossRef] [PubMed]
- Palani, M.; Natesan, K.; Vaiyapuri, M. Computational studies on different types of apoptotic proteins docked with a dietary flavonoid eriodictyol in colon cancer. Asian J. Pharm. Clin. Res. 2016, 10, e24401. [Google Scholar] [CrossRef]
- Mariyappan, P.; Kalaiyarasu, T.; Manju, V. Effect of eriodictyol on preneoplastic lesions, oxidative stress and bacterial enzymes in 1,2-dimethyl hydrazine-induced colon carcinogenesis. Toxicol. Res. 2017, 6, 678–692. [Google Scholar] [CrossRef]
- Hua, H.; Yun, H.; Youran, L.; Mingjia, G.; Minna, W.; Lijiang, J. Eriodictyol suppresses the malignant progression of colorectal cancer by downregulating tissue specific transplantation antigen P35B (TSTA3) expression to restrain fucosylation. Bioengineered 2022, 13, 5551–5563. [Google Scholar] [CrossRef]
- Yong, Z.; Rui, Z.; Huanjuan, N. Eriodictyol exerts potent anticancer activity against A549 human lung cancer cell line by inducing mitochondrial-mediated apoptosis, G2/M cell cycle arrest and inhibition of m-TOR/PI3K/Akt signalling pathway. Arch. Med. Sci. 2020, 16, 446–452. [Google Scholar] [CrossRef]
- Tang, L.; Qin, Y.; Ling, K.; Wan, H. Eriodictyol inhibits the growth of CNE1 human nasopharyngeal cancer growth by targeting MEK/ERK signalling pathway, inducing cellular autophagy and inhibition of cell migration and invasion. J. BUON 2020, 25, 2389–2394. [Google Scholar]
- Shan, H.; Zhang, X.; Zhang, Y.; Jia, J.; Wang, B.; Yang, Q. Eriodictyol Suppresses Gastric Cancer Cells via Inhibition of PI3K/AKT Pathway. Pharmaceuticals 2022, 5, 1477. [Google Scholar] [CrossRef]
- Wang, x.; Chen, J.; Tie, H.; Tian, W.; Zhao, Y.; Qin, L.; Guo, S.; Li, Q.; Ba, C. Eriodictyol regulated ferroptosis, mitochondrial dysfunction, and cell viability via Nrf2/HO-1/NQO1 signaling pathway in ovarian cancer cells. J. Biochem. Mol. Toxicol. 2023, 37, e23368. [Google Scholar] [CrossRef]
- Ho, C.Y.; Wei, C.Y.; Zhao, R.W.; Ye, Y.L.; Huang, H.C.; Lee, J.C.; Cheng, F.J.; Huang, W.C. Artemisia argyi extracts overcome lapatinib resistance via enhancing TMPRSS2 activation in HER2-positive breast cancer. Environ. Toxicol. 2024, 39, 3389–3399. [Google Scholar] [CrossRef]
- Li, W.; Du, Q.; Li, X.; Zheng, X.; Lv, F.; Xi, X.; Huang, G.; Yang, J.; Liu, S. Eriodictyol Inhibits Proliferation, Metastasis and Induces Apoptosis of Glioma Cells via PI3K/Akt/NF-κB Signaling Pathway. Front. Pharmacol. 2020, 11, 114. [Google Scholar] [CrossRef]
- Lv, F.; Du, Q.; Li, L.; Xi, X.; Liu, Q.; Li, W.; Liu, S. Eriodictyol inhibits glioblastoma migration and invasion by reversing EMT via downregulation of the P38 MAPK/GSK-3β/ZEB1 pathway. Eur. J. Pharmacol. 2021, 900, 174069. [Google Scholar] [CrossRef]
- Liu, K.; Cho, Y.Y.; Yao, K.; Nadas, J.; Kim, D.J.; Cho, E.J.; Lee, M.H.; Pugliese, A.; Zhang, J.; Bode, A.M.; et al. Eriodictyol inhibits RSK2-ATF1 signaling and suppresses EGF-induced neoplastic cell transformation. J. Biol. Chem. 2011, 286, 2057–2066. [Google Scholar] [CrossRef]
- Lee, S.E.; Park, H.R.; Yun, H.D.; Cho, J.-J.; Ahn, H.-J.; Park, C.-S.; Park, Y.S. Integrated miRNA and mRNA expression profiling in response to eriodictyol in human endothelial cells. BioChip J. 2017, 11, 188–195. [Google Scholar] [CrossRef]
- Qadir, K.A.; Zhonghua, L.; Mahmood, A.M.; Pengcheng, W.; Xianlong, Z.; Lili, T. Eriodictyol can modulate cellular auxin gradients to efficiently promote in vitro cotton fibre development. BMC Plant Biol. 2019, 19, 443. [Google Scholar] [CrossRef]
- Zhang, M.; Lu, X.; Ren, T.; Marowa, P.; Meng, C.; Wang, J.; Yang, H.; Li, C.; Zhang, L.; Xu, Z. Heterologous overexpression of Apocynum venetum flavonoids synthetase genes improves Arabidopsis thaliana salt tolerance by activating the IAA and JA biosynthesis pathways. Front. Plant Sci. 2023, 14, 1123856. [Google Scholar] [CrossRef]
- Rossato, M.F.; Trevisan, G.; Walker, C.I.B.; Klafke, J.Z.; Oliveira, A.P.d.; Villarinho, J.G.; Zanon, R.B.; Royes, L.F.F.; Athayde, M.L.; Gomez, M.V.; et al. Eriodictyol: A flavonoid antagonist of the TRPV1 receptor with antioxidant activity. Biochem. Pharmacol. 2011, 81, 544–551. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, F.; Bai, Y.; Li, C.; Xu, X.; Kristiansen, K.; Zhou, G. Proteomic Analysis of the Protective Effect of Eriodictyol on Benzo(a)pyrene-Induced Caco-2 Cytotoxicity. Front. Nutr. 2022, 9, 839364. [Google Scholar] [CrossRef]
- Fumie, N.; Qi, L.W.; Mayuka, W.; Sayako, S.; Hiroyuki, H.; Masaki, K.; Asuka, I.; Koji, U.; Takahiro, S. Eriodictyol and thymonin act as GPR35 agonists. Biosci. Biotechnol. Biochem. 2023, 87, 1514–1522. [Google Scholar] [CrossRef]
- Balykina, A.; Naida, L.; Kirkgöz, K.; Nikolaev, V.O.; Fock, E.; Belyakov, M.; Whaley, A.; Whaley, A.; Shpakova, V.; Rukoyatkina, N.; et al. Antiplatelet Effects of Flavonoid Aglycones Are Mediated by Activation of Cyclic Nucleotide-Dependent Protein Kinases. Int. J. Mol. Sci. 2024, 25, 4864. [Google Scholar] [CrossRef]
- Zirong, D.; Sabba, H.; Muhammad, R.; Hongshui, L.; Yang, H.; Yi, C.; Xi, K.; Zhaoguo, L.; Tingdong, Y. Pharmacological Activity of Eriodictyol: The Major Natural Polyphenolic Flavanone. Evid.-Based Complement. Altern. Med. 2020, 2020, 6681352. [Google Scholar] [CrossRef]
- Guo, S.; Xing, N.; Xiang, G.; Zhang, Y.; Wang, S. Eriodictyol: A review of its pharmacological activities and molecular mechanisms related to ischemic stroke. Food Funct. 2023, 14, 1851–1868. [Google Scholar] [CrossRef]
Source | Tissue | Identification/Analytical Methods | Extraction Solvents/Methods | References |
---|---|---|---|---|
Afzelia africana | Bark | HPLC | Methanol/Maceration | [10] |
Alchemilla acutiloba | Aerial parts | LC-ESI-MS/MS | 60% methanol, diethyl ether, ethyl acetate, and n-butanol/Ultrasound-assisted | [13] |
Ampelopsis grossedentata | Leaf | UPLC-Q-Exactive Orbitrap | Water/Maceration | [14] |
Anacardium occidentale | Leaf | LC-DAD-MSD | 80% ethanol/Ultrasound-assisted | [11] |
Arachis hypogaea | Shell | HPLC | Ethanol/Ultrasound-assisted | [12] |
Artemisiae argyi | Leaf | HPLC-MS/MS | Ethyl acetate/Silica gel chromatography, Sephadex LH-20 column, and preparative HPLC | [15] |
Aspalathus linearis | Plant | UHPLC-ESI-MS | Ethanol/Ultrasound-assisted | [16] |
Asteris souliei | Flower | HPLC | Hexane/ethyl acetate/methanol/water/Two-step high-performance counter-current chromatography method | [17] |
Citrus bergamia | Peel | HPLC and TLC | Methanol/Ultrasound-assisted | [18] |
Clinopodium chinense (Benth.) O. Kuntze. | Whole plant | NMR | In vitro bioactivity-guided fractionation procedure | [19] |
Coix lachryma-jobi L. var. ma-yuen Stapf | Seed hull | HPLC | Ethanol/Silica gel chromatography | [20] |
Coreopsis tinctoria | Capitula | HPLC | - | [21] |
Cyclopia subternata | Seedling | HPLC | Water/Water bath | [22] |
Cyclotrichium origanifolium | Aerial parts | HPLC | Hexane, ethyl acetate, and n-butanol/Maceration | [23] |
Dendrobium ellipsophyllum | Whole plant | GC | Methanol/Chromatographic techniques including silica gel and Sephadex LH20 | [24] |
Dracocephalum rupestre Hance | Leaf | LC-MS | Methanol/Maceration | [25] |
Eurya chinensis | Leaf | LC-MS | 95% ethanol/Silica gel column chromatography | [26] |
Elsholtzia bodinieri | Whole plant | NMR | - | [27] |
Erythrophleum Ivorense | Root bark | HPLC-MS | Methanol/Maceration | [28] |
Feijoa sellowiana | Fruit juice | HPLC | - | [29] |
Gleditsia sinensis | Thorn | HPLC | Ethanol/Ultrasound-assisted | [30] |
Glycyrrhiza uralensis | Leaf | HPLC | Ethanol/Repeated Chromatography | [31] |
Helichrysum arenarium | Flower | HPLC | - | [32] |
Lawsonia inermis | Flower bud | HPLC | Methanol/Extraction with ethyl acetate followed by 1-butanol | [33] |
Lophophytum | Tuber | HPLC-MS | - | [34] |
Lyonia ovalifolia | Aerial parts | LC-ESI-QTOF-MS/MS | Ethanol/Solvent extraction and fractionation | [35] |
Mentha pulegium | Plant | HPLC-DAD | Water and methanol | [36] |
Mentha x villosa | Leaf | LC-DAD | Water | [37] |
Mexican Arnica | Flower | NMR | - | [38] |
Onopordum alexandrinum | Flower | UV and NMR | Ethyl acetate fraction/Maceration | [39] |
Onosma | Aerial part | ESI-MS/MS | Methanol/Maceration | [40] |
Passiflora subpeltata | Fruit pulp | HPLC-MS/MS | Chloroform, acetone, and methanol/Ultrasound-assisted | [41] |
Phlomis | Leaf | LC-MS/MS | 85% methanol/Liquid Chromatogram | [42] |
Polygonum perfoliatum L. | Stem | LC-MS/MS | 95% ethanol | [43] |
Prunus persica | Gum | LC-QQQ/MS | Air dried, ground, passed through a 60-mesh screen, and homogenized | [44] |
Scutellaria lateriflora | Aerial parts | MS and NMR | Methanol | [45] |
Semiliquidambar chingii | Twig | HPLC | Ethyl acetate/Reflux | [46] |
Tamarindus indica | Shell | UPLC-MS/MS | 95% ethanol/Reflux | [47] |
Thonningia sanguinea Vahl | Plant | GC-MS/MS | Methanol/Maceration | [48] |
Thymus broussonetii | Leaf | NMR, UV, and MS | Methanol | [49] |
Thymus species | Exudate | GC/MS and TLC | Acetone | [50] |
Uvaria siamensis | Stem bark | Extensive spectroscopic | - | [51] |
Initial Substrate | Host | Cultivation Conditions | Yield | References |
---|---|---|---|---|
Naringenin | Competent E. coli BL21 cells | Cultured in 5 mL of Luria–Bertani medium containing kanamycin and incubated in a shaker at 37 °C, 220 rpm for about 8 h | 62.57% | [52] |
- | Streptomyces albidoflavus | At 30 °C in yeast and malt extract 17% (w/v) sucrose | 0.06 mg/L | [53] |
Tyrosine | Corynebacterium glutamicum | Grown and fermented at 30 °C; stored in medium with glycerol (20%, v/v) at −80 °C for long term. | 62% | [54] |
D-glucose | Escherichia coli | Cultured in Luria–Bertani medium containing the appropriate antibiotics: ampicillin, chloramphenicol, streptomycin, or kanamycin | 51.5 mg/L | [55] |
Naringenin | Yeast | In a selective medium | 200 mg/L | [57] |
L-tyrosine | Escherichia coli | Inoculated in the Luria–Bertani plate and cultured at 37 °C for 12 h | 107 mg/L | [58] |
Experimental Subject | Theory or Pathway | Doses | References |
---|---|---|---|
Male Sprague-Dawley rats | Decreased TNFa, ICAM-1, VEGF, and eNOS | 0.1, 1, and 10 mg/kg | [74] |
Rat RGC-5 cells | Nrf2/HO-1 pathway | 5, 10, and 20 μM | [75] |
HepG2 and 3T3-L1 | Glucose uptake and insulin resistance | 5 and 25 μM | [76] |
BALB/c mice, Wistar rats, and MIN6 cells | cAMP/PKA pathway | 10 and 20 mg/kg | [77] |
Human glomerular mesangial cells | Akt/NF-κB pathway | 12.5 and 25 μM | [78] |
α-amylase from porcine pancreas | Inhibited the activity of α-amylase | 0 to 1.5 × 105 mol/L | [79] |
Type | Experimental Subject | Inducement | References |
---|---|---|---|
Atopic dermatitis | Male ICR mice | 2,4-dinitrochlorobenzene | [82] |
Inflammation | Macrophages | LPS | [83] |
Neuroinflammation | Male Swiss mice | Electrocoagulation | [84] |
Inflammation | Spleen cells and macrophages | LPS | [85] |
Osteoarthritis | chondrocytes | IL-1β | [86] |
Rheumatoid arthritis | RA-FLSs isolated from patients | - | [87] |
Pneumonia | Inbred C57BL/6J and A549 cells | Staphylococcus aureus | [88] |
Ulcerative colitis | Wistar rats | TNBS | [89] |
Colitis | C57BL/6 mice | DSS | [90] |
Periodontitis | Macrophages | Porphyromonas gingivalis | [91] |
Organ | Disease | Experimental Subject | Inducement | References |
---|---|---|---|---|
Heart | Vascular disease | HUVECs | H2O2 | [98] |
Heart | Myocardial infarction | H9c2 cardiomyocytes | Hypoxia/reoxygenation | [99] |
Lung | Acute lung injury | Female C57BL/6 mice | LPS | [93] |
Lung | Acute lung injury | Male BALB/c mice | LPS | [102] |
Lung | Lung cell injury | A549 cells | Staphylococcus aureus | [103] |
Lung | Inflammatory | NCI-H292 cells | PMA | [104] |
Liver | Hepatotoxicity | Kunming mice | Acetaminophen | [105] |
Liver | Oxidative damage | Male Wistar rats | AS2O3 | [106] |
Liver | Hepatic steatosis | C57BL/6N mice | High-fat diet | [107] |
Liver | Acute liver injury | Male ICR mice | LPS/D-GALN | [108] |
Liver | Non-alcoholic fatty liver | Male mice | High-fat diet | [109] |
Kidney | Kidney injury | Male BALB/c mice | Cisplatin | [110] |
Kidney | Nephropathy | Male Wistar-Kyoto rats | Doxorubicin | [111] |
Type | Experimental Subject | Theory or Pathway | References |
---|---|---|---|
Hepatocellular cancer | HepG2 | Associated with cell cycle arrest and modulation of apoptosis-related proteins | [112] |
Hepatocellular carcinoma | HepG2 and Huh-7 cells | NLRP3 inflammasome inactivation | [113] |
Colorectal adenocarcinoma | - | It had a high degree of interaction with apoptotic proteins | [114] |
Colorectal cancer | Male albino Wistar rats | Inhibition of carcinogens and the occurrence of aberrant crypt foci, regulation of lipid peroxidation markers and biological invertase, maintenance of antioxidant defense enzymes | [115] |
Colorectal cancer | Human colon epithelial cell line and human CRC cell line | Inhibited fucosylation by down-regulating TSTA3 expression thus suppressed EMT process. | [116] |
Lung cancer | A549 human lung cancer cell line | Induced mitochondrial apoptosis, G2/M cell cycle arrest and inhibited the mTOR/PI3K/AKT cascade | [117] |
Nasopharyngeal cancer | CNE1 cancer cells | MEK/ERK signaling pathway | [118] |
Gastric cancer | Gastric cancer cells | PI3K/AKT pathway | [119] |
Ovarian cancer | A2780 and CaoV3 | Nrf2/HO-1/NQO1 signaling pathway | [120] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, H.; Li, Y.; Feng, Y.; Tian, L.; Li, Y. The Extraction, Biosynthesis, Health-Promoting and Therapeutic Properties of Natural Flavanone Eriodictyol. Nutrients 2024, 16, 4237. https://doi.org/10.3390/nu16234237
Yin H, Li Y, Feng Y, Tian L, Li Y. The Extraction, Biosynthesis, Health-Promoting and Therapeutic Properties of Natural Flavanone Eriodictyol. Nutrients. 2024; 16(23):4237. https://doi.org/10.3390/nu16234237
Chicago/Turabian StyleYin, Haiaolong, Yaxian Li, Yi Feng, Lei Tian, and Ye Li. 2024. "The Extraction, Biosynthesis, Health-Promoting and Therapeutic Properties of Natural Flavanone Eriodictyol" Nutrients 16, no. 23: 4237. https://doi.org/10.3390/nu16234237
APA StyleYin, H., Li, Y., Feng, Y., Tian, L., & Li, Y. (2024). The Extraction, Biosynthesis, Health-Promoting and Therapeutic Properties of Natural Flavanone Eriodictyol. Nutrients, 16(23), 4237. https://doi.org/10.3390/nu16234237