Bondarzewia dickinsii Against Colitis-Associated Cancer Through the Suppression of the PI3K/AKT/COX-2 Pathway and Inhibition of PGE2 Production in Mice
<p>Effect of BD on AOM/DSS-induced CAC mice. (<b>A</b>) Flow chart of experimental protocol. (<b>B</b>) Bodyweight changes in mice (<span class="html-italic">n</span> = 8). (<b>C</b>) BD inhibits tumor development in CAC mice (<span class="html-italic">n</span> = 5).</p> "> Figure 2
<p>BD alleviates colorectal status in CAC mice. (<b>A</b>) The number of tumors. (<b>B</b>) The length of the colorectal. (<b>C</b>) Colon coefficient. (<b>D</b>) Histopathological observation of colorectal tumors in CAC mice (<span class="html-italic">n</span> = 3) (40× scale bar: 500 μm; 200× scale bar: 100 μm). ### <span class="html-italic">p</span> < 0.001 vs. Ctrl group; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 vs. model group.</p> "> Figure 3
<p>The impact of BD on the intestinal microbiota in CAC mice. (<span class="html-italic">n</span> = 4) (<b>A</b>) Venn diagram. (<b>B</b>) PCoA based on weighted UniFrac distances. (<b>C</b>) Heatmap illustrating the composition of the top 20 most advantageous genera.</p> "> Figure 4
<p>BD modulates serum metabolite concentrations and colorectal cytokine levels in CAC mice. (<b>A</b>) OPLS-DA score plot. (<b>B</b>) Venn diagram. (<b>C</b>) Heatmap of 37 significantly altered metabolites in CAC mice.</p> "> Figure 5
<p>(<b>A</b>) The associated heatmap of significantly altered metabolites and genus microbiota. (<b>B</b>) PGE2, (<b>C</b>) COX-2, (<b>D</b>) IL-6 in CAC mice colon. ### <span class="html-italic">p</span> < 0.001 vs. Ctrl group; * <span class="html-italic">p</span> < 0.05 vs. model group.</p> "> Figure 6
<p>BD regulated protein expression in the colorectal tissue of CAC mice. (<b>A</b>) BD reduced the phosphorylation of PI3K and AKT and decreased the levels of COX-2, PGE2 and other proteins. Quantification of (<b>B</b>) P-PI3K, (<b>C</b>) P-AKT, (<b>D</b>) COX-2, (<b>E</b>) PGES2, (<b>F</b>) PKA, (<b>G</b>) CRTC1, (<b>H</b>) AREG, and (<b>I</b>) IL-6. # <span class="html-italic">p</span> < 0.05, ## <span class="html-italic">p</span> < 0.01 vs. Ctrl group; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 vs. model group.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of the BD Components
2.1.1. Main Components
2.1.2. Amino Acid
2.1.3. Minerals
2.1.4. Fatty Acids
2.2. CAC Mice Model Establishment and BD Treatment Procedure
2.3. Histopathological Examination
2.4. Intestinal Microbiota Analysis
2.5. Metabolomics Analysis
2.6. Cytokine Assay
2.7. Western Blot
2.8. Statistical Analysis
3. Results
3.1. Composition of BD
3.2. BD Markedly Suppresses Tumor Growth in CAC Mice
3.3. BD Regulated the Intestinal Microbiota in CAC Mice
3.4. BD Altered the Metabolism in CAC Mice
3.5. BD Inhibited CAC by Regulating PI3K/AKT/COX-2 Pathway
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from globocan. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef]
- Naz, T.; Rehman, A.U.; Shahzad, A.; Rasool, M.F.; Saleem, Z.; Hussain, R. Impact of bevacizumab on clinical outcomes and its comparison with standard chemotherapy in metastatic colorectal cancer patients: A systematic review and meta-analysis. J. Pharm. Policy Pract. 2024, 17, 2354300. [Google Scholar] [CrossRef]
- Terzić, J.; Grivennikov, S.; Karin, E.; Karin, M. Inflammation and colon cancer. Gastroenterology 2010, 138, 2101–2114.e2105. [Google Scholar] [CrossRef]
- Arhi, C.; Askari, A.; Nachiappan, S.; Bottle, A.; Arebi, N.; Athanasiou, T.; Ziprin, P.; Aylin, P.; Faiz, O. Stage at diagnosis and survival of colorectal cancer with or without underlying inflammatory bowel disease: A population-based study. J. Crohns Colitis 2021, 15, 375–382. [Google Scholar] [CrossRef]
- Shah, S.C.; Itzkowitz, S.H. Colorectal cancer in inflammatory bowel disease: Mechanisms and management. Gastroenterology 2022, 162, 715. [Google Scholar] [CrossRef]
- Wijnands, A.M.; Mahmoud, R.; Lutgens, M.; Oldenburg, B. Surveillance and management of colorectal dysplasia and cancer in inflammatory bowel disease: Current practice and future perspectives. Eur. J. Intern. Med. 2021, 93, 35–41. [Google Scholar] [CrossRef]
- Itzkowitz, S.H.; Yio, X. Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: The role of inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G7–G17. [Google Scholar] [CrossRef]
- Svrcek, M.; Borralho Nunes, P.; Villanacci, V.; Beaugerie, L.; Rogler, G.; De Hertogh, G.; Tripathi, M.; Feakins, R. Clinicopathological and molecular specificities of inflammatory bowel disease-related colorectal neoplastic lesions: The role of inflammation. J. Crohns Colitis 2018, 12, 1486–1498. [Google Scholar] [CrossRef]
- Nanda, N.; Dhawan, D.K. Role of cyclooxygenase-2 in colorectal cancer patients. Front. Biosci. 2021, 26, 706–716. [Google Scholar] [CrossRef]
- Schumacher, Y.; Aparicio, T.; Ourabah, S.; Baraille, F.; Martin, A.; Wind, P.; Dentin, R.; Postic, C.; Guilmeau, S. Dysregulated crtc1 activity is a novel component of PGE2 signaling that contributes to colon cancer growth. Oncogene 2016, 35, 2602–2614. [Google Scholar] [CrossRef]
- Cheng, Y.; Ling, Z.; Li, L. The intestinal microbiota and colorectal cancer. Front. Immunol. 2020, 11, 615056. [Google Scholar] [CrossRef]
- Ignacio, A.; Fernandes, M.R.; Avila-Campos, M.J.; Nakano, V. Enterotoxigenic and non-enterotoxigenic bacteroides fragilis from fecal microbiota of children. Braz. J. Microbiol. 2015, 46, 1141–1145. [Google Scholar] [CrossRef]
- Wick, E.C.; Rabizadeh, S.; Albesiano, E.; Wu, X.; Wu, S.; Chan, J.; Rhee, K.J.; Ortega, G.; Huso, D.L.; Pardoll, D.; et al. STAT3 activation in murine colitis induced by enterotoxigenic Bacteroides fragilis. Inflamm. Bowel Dis. 2014, 20, 821–834. [Google Scholar] [CrossRef]
- Cheng, W.T.; Kantilal, H.K.; Davamani, F. The mechanism of Bacteroides fragilis toxin contributes to colon cancer formation. Malays. J. Med. Sci. 2020, 27, 9–21. [Google Scholar] [CrossRef]
- Krumbeck, J.A.; Rasmussen, H.E.; Hutkins, R.W.; Clarke, J.; Shawron, K.; Keshavarzian, A.; Walter, J. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome 2018, 6, 121. [Google Scholar] [CrossRef]
- Yao, S.; Zhao, Z.; Wang, W.; Liu, X. Bifidobacterium longum: Protection against inflammatory bowel disease. J. Immunol. Res. 2021, 2021, 8030297. [Google Scholar] [CrossRef]
- Asadollahi, P.; Ghanavati, R.; Rohani, M.; Razavi, S.; Esghaei, M.; Talebi, M. Anti-cancer effects of Bifidobacterium species in colon cancer cells and a mouse model of carcinogenesis. PLoS ONE 2020, 15, e0232930. [Google Scholar] [CrossRef]
- Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre, M.L.; et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015, 350, 1084–1089. [Google Scholar] [CrossRef]
- Benson, A.B.; Venook, A.P.; Al-Hawary, M.M.; Azad, N.; Chen, Y.J.; Ciombor, K.K.; Cohen, S.; Cooper, H.S.; Deming, D.; Garrido-Laguna, I.; et al. Rectal cancer, version 2.2022, nccn clinical practice guidelines in oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 1139–1167. [Google Scholar] [CrossRef]
- Guo, C.; Guo, D.; Fang, L.; Sang, T.; Wu, J.; Guo, C.; Wang, Y.; Wang, Y.; Chen, C.; Chen, J.; et al. Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon. Carbohydr. Polym. 2021, 267, 118231. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, Y.; Zhao, R.; Huang, T.; Tian, Y.; Zhu, L.; Qin, J.; Liu, H. Structural characterization of extracellular polysaccharides from Phellinus igniarius SH-1 and their therapeutic effects on dss induced colitis in mice. Int. J. Biol. Macromol. 2024, 275, 133654. [Google Scholar] [CrossRef]
- Shao, S.; Wang, D.; Zheng, W.; Li, X.; Zhang, H.; Zhao, D.; Wang, M. A unique polysaccharide from Hericium erinaceus mycelium ameliorates acetic acid-induced ulcerative colitis rats by modulating the composition of the gut microbiota, short chain fatty acids levels and GPR41/43 respectors. Int. Immunopharmacol. 2019, 71, 411–422. [Google Scholar] [CrossRef]
- Chen, J.; Cui, B.; He, S.; Cooper, J.A.; Barrett, M.D.; Chen, J.; Song, J.; Dai, Y. Molecular phylogeny and global diversity of the remarkable genus Bondarzewia (Basidiomycota, russulales). Mycologia 2016, 108, 697–708. [Google Scholar] [CrossRef]
- Parang, B.; Barrett, C.W.; Williams, C.S. AOM/DSS model of colitis-associated cancer. Methods Mol. Biol. 2016, 1422, 297–307. [Google Scholar] [CrossRef]
- Chow, P.S.; Landhäusser, S.M. A method for routine measurements of total sugar and starch content in woody plant tissues. Tree Physiol. 2004, 24, 1129–1136. [Google Scholar] [CrossRef]
- Teixeira, R.S.; da Silva, A.S.; Ferreira-Leitão, V.S.; da Silva Bon, E.P. Amino acids interference on the quantification of reducing sugars by the 3,5-dinitrosalicylic acid assay mislead carbohydrase activity measurements. Carbohydr. Res. 2012, 363, 33–37. [Google Scholar] [CrossRef]
- Ma, T.W.; Lai, Y.; Yang, F.C. Enhanced production of triterpenoid in submerged cultures of antrodia cinnamomea with the addition of citrus peel extract. Bioprocess. Biosyst. Eng. 2014, 37, 2251–2261. [Google Scholar] [CrossRef]
- Dulf, F.V.; Vodnar, D.C.; Dulf, E.H.; Pintea, A. Phenolic compounds, flavonoids, lipids and antioxidant potential of apricot (Prunus armeniaca L.) pomace fermented by two filamentous fungal strains in solid state system. Chem. Cent. J. 2017, 11, 92. [Google Scholar] [CrossRef]
- Chai, W.; Yuen, C.T.; Feizi, T.; Lawson, A.M. Core-branching pattern and sequence analysis of mannitol-terminating oligosaccharides by neoglycolipid technology. Anal. Biochem. 1999, 270, 314–322. [Google Scholar] [CrossRef]
- Usha, N.P.; Bibu, K.J.; Jose, S.; Nair, A.M.C.; Nair, G.K.; Nair, N.D. Antibacterial activity of successive extracts of some medicinal plants against field isolates of Pasteurella multocida. Indian. J. Anim. Sci. 2012, 82, 1146–1149. [Google Scholar] [CrossRef]
- Jurak, E.; Punt, A.M.; Arts, W.; Kabel, M.A.; Gruppen, H. Fate of carbohydrates and lignin during composting and mycelium growth of Agaricus bisporus on wheat straw based compost. PLoS ONE 2015, 10, e0138909. [Google Scholar] [CrossRef]
- Wang, H.; Pampati, N.; McCormick, W.M.; Bhattacharyya, L. Protein nitrogen determination by kjeldahl digestion and ion chromatography. J. Pharm. Sci. 2016, 105, 1851–1857. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Gantumur, M.A.; He, Y.T.; Bilawal, A.; Jiang, Z.M.; Yang, Y.H. Characterization and comparison of chemical compositions and biological activities of an edible mushroom (Lactarius volemus) of three different sizes. Food Chem. 2024, 464, 141690. [Google Scholar] [CrossRef]
- Srivastava, M.; Kumari, M.; Karn, S.K.; Bhambri, A.; Mahale, V.G.; Mahale, S. Submerged cultivation and phytochemical analysis of medicinal mushrooms (Trametes sp.). Front. Fungal Biol. 2024, 5, 1414349. [Google Scholar] [CrossRef]
- Kraujalytė, V.; Venskutonis, P.R.; Pukalskas, A.; Česonienė, L.; Daubaras, R. Antioxidant properties and polyphenolic compositions of fruits from different european cranberrybush (Viburnum opulus L.) genotypes. Food Chem. 2013, 141, 3695–3702. [Google Scholar] [CrossRef]
- Lu, P.Y.; Wang, J.; Wu, S.G.; Gao, J.; Dong, Y.; Zhang, H.J.; Qi, G.H. Standardized ileal digestible amino acid and metabolizable energy content of wheat from different origins and the effect of exogenous xylanase on their determination in broilers. Poult. Sci. 2020, 99, 992–1000. [Google Scholar] [CrossRef]
- Mittal, M.; Kumar, K.; Anghore, D.; Rawal, R.K. ICP-MS: Analytical method for identification and detection of elemental impurities. Curr. Drug Discov. Technol. 2017, 14, 106–120. [Google Scholar] [CrossRef]
- Honicky, M.; Cardoso, S.M.; de Lima, L.R.A.; Ozcariz, S.G.I.; Vieira, F.G.K.; de Carlos Back, I.; Moreno, Y.M.F. Added sugar and trans fatty acid intake and sedentary behavior were associated with excess total-body and central adiposity in children and adolescents with congenital heart disease. Pediatr. Obes. 2020, 15, e12623. [Google Scholar] [CrossRef]
- Sims, E.D.; Jennings, W.J.; Empringham, B.; Fleming, A.; Portwine, C.; Johnston, D.L.; Zelcer, S.M.; Rassekh, S.R.; Burrow, S.; Thabane, L.; et al. Circulating leptin levels are associated with adiposity in survivors of childhood brain tumors. Sci. Rep. 2020, 10, 4711. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Zhang, L.; Tian, Q. Mushroom polysaccharide lentinan for treating different types of cancers: A review of 12 years clinical studies in china. Prog. Mol. Biol. Transl. Sci. 2019, 163, 297–328. [Google Scholar] [CrossRef]
- Sivanesan, I.; Muthu, M.; Gopal, J.; Oh, J.W. Mushroom polysaccharide-assisted anticarcinogenic mycotherapy: Reviewing its clinical trials. Molecules 2022, 27, 4090. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Zeng, P.; Liu, Y.; Zhang, M.; Hao, C.; Wang, H.; Lv, Z.; Zhang, L. Molecular basis for Poria cocos mushroom polysaccharide used as an antitumour drug in china. J. Cell Mol. Med. 2019, 23, 4–20. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry, nutrition, and health-promoting properties of Hericium erinaceus (lion’s mane) mushroom fruiting bodies and mycelia and their bioactive compounds. J. Agric. Food Chem. 2015, 63, 7108–7123. [Google Scholar] [CrossRef]
- Ayimbila, F.; Keawsompong, S. Nutritional quality and biological application of mushroom protein as a novel protein alternative. Curr. Nutr. Rep. 2023, 12, 290–307. [Google Scholar] [CrossRef]
- Motta, F.; Gershwin, M.E.; Selmi, C. Mushrooms and immunity. J. Autoimmun. 2021, 117, 102576. [Google Scholar] [CrossRef]
- Castellanos-Reyes, K.; Villalobos-Carvajal, R.; Beldarrain-Iznaga, T. Fresh mushroom preservation techniques. Foods 2021, 10, 2126. [Google Scholar] [CrossRef]
- Chaturvedi, V.K.; Agarwal, S.; Gupta, K.K.; Ramteke, P.W.; Singh, M.P. Medicinal mushroom: Boon for therapeutic applications. 3 Biotech. 2018, 8, 334. [Google Scholar] [CrossRef]
- Gao, L.J.; De Jonghe, S.; Daelemans, D.; Herdewijn, P. L-aspartic and L-glutamic acid ester-based protides of anticancer nucleosides: Synthesis and antitumoral evaluation. Bioorganic Med. Chem. Lett. 2016, 26, 2142–2146. [Google Scholar] [CrossRef]
- Belokrylov, G.A.; Popova, O.; Molchanova, I.V.; Sorochinskaya, E.I.; Anokhina, V.V. Peptides and their constituent amino acids influence the immune response and phagocytosis in different ways. Int. J. Immunopharmacol. 1992, 14, 1285–1292. [Google Scholar] [CrossRef]
- Wang, F.; Cai, K.; Xiao, Q.; He, L.; Xie, L.; Liu, Z. Akkermansia muciniphila administration exacerbated the development of colitis-associated colorectal cancer in mice. J. Cancer 2022, 13, 124–133. [Google Scholar] [CrossRef]
- Tan, H.; Zhai, Q.; Chen, W. Investigations of Bacteroides spp. Towards next-generation probiotics. Food Res. Int. 2019, 116, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yue, S.; Yang, Z.; Feng, W.; Meng, X.; Wang, A.; Peng, C.; Wang, C.; Yan, D. Oral hydroxysafflor yellow a reduces obesity in mice by modulating the gut microbiota and serum metabolism. Pharmacol. Res. 2018, 134, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Worthley, D.L.; Whitehall, V.L.J.; Le Leu, R.K.; Irahara, N.; Buttenshaw, R.L.; Mallitt, K.A.; Greco, S.A.; Ramsnes, I.; Winter, J.; Hu, Y.; et al. DNA methylation in the rectal mucosa is associated with crypt proliferation and fecal short-chain fatty acids. Dig. Dis. Sci. 2011, 56, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Hu, Z.; Pan, Z.; Ji, Z.; Cao, X.; Yu, H.; Qin, X.; Guan, M. The arachidonic acid metabolome reveals elevation of prostaglandin e2 biosynthesis in colorectal cancer. Analyst 2024, 149, 1907–1920. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Gao, Z. Atorvastatin inhibits proliferation and promotes apoptosis of colon cancer cells via COX-2/PGE2/β-catenin pathway. J. Buon 2021, 26, 1219–1225. [Google Scholar]
- Husvik, C.; Khuu, C.; Bryne, M.; Halstensen, T.S. PGE2 production in oral cancer cell lines is COX-2-dependent. J. Dent. Res. 2009, 88, 164–169. [Google Scholar] [CrossRef]
- Yang, C.C.; Tu, H.F.; Wu, C.H.; Chang, H.C.; Chiang, W.F.; Shih, N.C.; Lee, Y.S.; Kao, S.Y.; Chang, K.W. Up-regulation of HB-EGF by the COX-2/PGE2 signaling associates with the cisplatin resistance and tumor recurrence of advanced HNSCC. Oral Oncol. 2016, 56, 54–61. [Google Scholar] [CrossRef]
- Majumder, M.; Xin, X.; Liu, L.; Tutunea-Fatan, E.; Rodriguez-Torres, M.; Vincent, K.; Postovit, L.M.; Hess, D.; Lala, P.K. COX-2 induces breast cancer stem cells via EP4/PI3K/AKT/NOTCH/WNT axis. Stem Cells 2016, 34, 2290–2305. [Google Scholar] [CrossRef]
- Chang, J.; Tang, N.; Fang, Q.; Zhu, K.; Liu, L.; Xiong, X.; Zhu, Z.; Zhang, B.; Zhang, M.; Tao, J. Inhibition of COX-2 and 5-LOX regulates the progression of colorectal cancer by promoting PTEN and suppressing PI3K/AKT pathway. Biochem. Biophys. Res. Commun. 2019, 517, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.T.; Ran, C.C.; Liao, Y.P.; Zhu, J.H.; Wang, H.; Deng, R.; Nie, M.; He, B.C.; Deng, Z.L. IGF-1 reverses the osteogenic inhibitory effect of dexamethasone on BMP9-induced osteogenic differentiation in mouse embryonic fibroblasts via PI3K/AKT/COX-2 pathway. J. Steroid Biochem. Mol. Biol. 2019, 191, 105363. [Google Scholar] [CrossRef] [PubMed]
- Kuang, W.; Deng, Q.; Deng, C.; Li, W.; Shu, S.; Zhou, M. Hepatocyte growth factor induces breast cancer cell invasion via the PI3K/AKT and p38 mapk signaling pathways to up-regulate the expression of COX2. Am. J. Transl. Res. 2017, 9, 3816–3826. [Google Scholar] [PubMed]
- Rieker, R.J.; Joos, S.; Mechtersheimer, G.; Blaeker, H.; Schnabel, P.A.; Morresi-Hauf, A.; Hecker, E.; Thomas, M.; Dienemann, H.; Schirmacher, P.; et al. COX-2 upregulation in thymomas and thymic carcinomas. Int. J. Cancer 2006, 119, 2063–2070. [Google Scholar] [CrossRef] [PubMed]
- De Vita, F.; Romano, C.; Orditura, M.; Galizia, G.; Martinelli, E.; Lieto, E.; Catalano, G. Interleukin-6 serum level correlates with survival in advanced gastrointestinal cancer patients but is not an independent prognostic indicator. J. Interferon Cytokine Res. 2001, 21, 45–52. [Google Scholar] [CrossRef]
- Knüpfer, H.; Preiss, R. Serum interleukin-6 levels in colorectal cancer patients--a summary of published results. Int. J. Color. Dis. 2010, 25, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; He, Z.; Ye, J.; Liu, Z.; She, X.; Gao, X.; Liang, R. Progress in understanding the IL-6/STAT3 pathway in colorectal cancer. Onco Targets Ther. 2020, 13, 13023–13032. [Google Scholar] [CrossRef]
- Chayangsu, C.; Khunsri, S.; Sriuranpong, V.; Tanasanvimon, S. The correlations between serum amphiregulin and other clinicopathological factors in colorectal cancer. J. Gastrointest. Oncol. 2017, 8, 980–984. [Google Scholar] [CrossRef]
Compounds | Contents (%) | Compounds | Contents (%) | Compounds | Contents (%) |
---|---|---|---|---|---|
Total sugar | 37.29 | Reducing sugar | 8.07 | Triterpenoids | 0.60 |
Flavonoids | 3.47 | Mannitol | 15.84 | Crude fat | 1.64 |
Total ash | 5.67 | Total protein | 24.90 | Crude fiber | 11.12 |
Sterols | 0.33 | Polyphenols | 0.08 |
Compounds | Contents (%) | Compounds | Contents (%) | Compounds | Contents (%) |
---|---|---|---|---|---|
Glutamic (Glu) | 1.38 | Aspartic (Asp) | 1.05 | Leucine (Leu) | 1.10 |
Lysine (Lys) | 0.64 | Arginine (Arg) | 0.75 | Alanine (Ala) | 0.96 |
Valine (Val) | 0.97 | Threonine (Thr) | 0.59 | Glycine (Gly) | 0.50 |
Serine (Ser) | 0.60 | Proline (Pro) | 0.77 | Phenylalanine (Phe) | 0.67 |
Isoleucine (Iso) | 0.80 | Histidine (His) | 0.24 | ||
Methionine (Met) | 0.19 | Tyrosine (Tyr) | 0.36 |
Compounds | Contents (mg/kg) | Compounds | Contents (mg/kg) |
---|---|---|---|
Manganese (Mn) | 9.84 | Arsenic (As) | 0.0633 |
Zinc (Zn) | 55.6 | Kalium (K) | 2.24 × 104 |
Ferrum (Fe) | 132 | Calcium (Ca) | 340 |
Cadmium (Cd) | 0.248 | Lead (Pb) | 0.519 |
Cuprum (Cu) | 21.9 | Chromium (Cr) | 0.162 |
Natrium (Na) | 59.2 | Selenium (Se) | 0.0639 |
Compounds | Contents (g/100 g) | Compounds | Contents (g/100 g) | Compounds | Contents (g/100 g) |
---|---|---|---|---|---|
Butryic acid (C4:0) | ND | Heptadecanoic acid (C17:0) | 0.92 × 10−2 | Docosanoic acid (C22:0) | ND |
Caprylic acid (C6:0) | ND | Heptadecenoic acid (C17:1) | ND | Eicosatrienoic acid (C20:3n6) | ND |
Octoic acid (C8:0) | ND | Stearic acid (C18:0) | 38.39 × 10−2 | Eicosatrienoic acid (C20:3n3) | ND |
Capric acid (C10:0) | ND | Trans-oleic acid (C18:1n9t) | ND | Erucic acid (C22:1n9) | ND |
Undecanoic acid (C11:0) | ND | Oleic acid (C18:1n9c) | 36.31 × 10−2 | Arachidonic acid (C20:4n6) | ND |
Lauric acid (C12:0) | ND | trans-Linoleic acid (C18:2n6t) | ND | Tricosanoic acid (C23:0) | ND |
Tridecanoic acid (C13:0) | ND | Linoleic acid (C18:2n6c) | 109.35 × 10−2 | cis-13,16-Docosadienoic acid (C22:2) | ND |
Myristic acid (C14:0) | ND | Arachidic acid (C20:0) | ND | Eicosapentaenoic acid (C20:5n3) | ND |
Myristoleic acid (C14:1) | ND | γ-linolenic acid (C18:3n6) | ND | Tetracosanoic acid (C24:0) | 0.89 × 10−2 |
Pentadecanoic acid (C15:0) | 1.06 × 10−2 | α-Linolenic acid (C18:3n3) | 1.12 × 10−2 | Nervonic acid (C24:1) | ND |
Pentadecenoic acid (C15:1) | ND | Eicosenoic acid (C20:1) | ND | Docosahexaenoic acid (C22:6n3) | ND |
Hexadecanoic acid (C16:0) | 23.58 × 10−2 | Heneicosanoic acid (C21:0) | ND | ||
Palmitoleic acid (C16:1) | ND | Eicosadienoic acid (C20:2) | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Liu, S.; Zhang, X.; Dai, X.; Li, Y.; Han, Y.; Li, L. Bondarzewia dickinsii Against Colitis-Associated Cancer Through the Suppression of the PI3K/AKT/COX-2 Pathway and Inhibition of PGE2 Production in Mice. Nutrients 2024, 16, 4048. https://doi.org/10.3390/nu16234048
Chen J, Liu S, Zhang X, Dai X, Li Y, Han Y, Li L. Bondarzewia dickinsii Against Colitis-Associated Cancer Through the Suppression of the PI3K/AKT/COX-2 Pathway and Inhibition of PGE2 Production in Mice. Nutrients. 2024; 16(23):4048. https://doi.org/10.3390/nu16234048
Chicago/Turabian StyleChen, Junliang, Shuai Liu, Xin Zhang, Xiaojing Dai, Yu Li, Yonglin Han, and Lanzhou Li. 2024. "Bondarzewia dickinsii Against Colitis-Associated Cancer Through the Suppression of the PI3K/AKT/COX-2 Pathway and Inhibition of PGE2 Production in Mice" Nutrients 16, no. 23: 4048. https://doi.org/10.3390/nu16234048
APA StyleChen, J., Liu, S., Zhang, X., Dai, X., Li, Y., Han, Y., & Li, L. (2024). Bondarzewia dickinsii Against Colitis-Associated Cancer Through the Suppression of the PI3K/AKT/COX-2 Pathway and Inhibition of PGE2 Production in Mice. Nutrients, 16(23), 4048. https://doi.org/10.3390/nu16234048