The Mediating Role of Gut Microbiota on the Association Between Dietary Quality and Cancer-Related Fatigue Among Breast Cancer Patients: A Cross-Sectional Study
<p>Gut microbiota structure in breast cancer patients with NCRF and CRF. (<b>A</b>) Rarefaction curves. (<b>B</b>) Venn diagram displaying the shared number of operational taxonomic units (OTUs). (<b>C</b>) Chao index, Shannon index, Sobs index, and Simpson index. The Wilcoxon rank-sum test was used. (<b>D</b>) Weighted UniFrac distance-based principal coordinate analysis (PCoA). The statistical significance was assessed with analysis of similarities (ANOSIM). CRF, cancer-related fatigue (<span class="html-italic">n</span> = 25); NCRF, non-cancer-related fatigue (<span class="html-italic">n</span> = 39). * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 1 Cont.
<p>Gut microbiota structure in breast cancer patients with NCRF and CRF. (<b>A</b>) Rarefaction curves. (<b>B</b>) Venn diagram displaying the shared number of operational taxonomic units (OTUs). (<b>C</b>) Chao index, Shannon index, Sobs index, and Simpson index. The Wilcoxon rank-sum test was used. (<b>D</b>) Weighted UniFrac distance-based principal coordinate analysis (PCoA). The statistical significance was assessed with analysis of similarities (ANOSIM). CRF, cancer-related fatigue (<span class="html-italic">n</span> = 25); NCRF, non-cancer-related fatigue (<span class="html-italic">n</span> = 39). * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 2
<p>Gut microbiota composition in breast cancer patients with NCRF and CRF. The community structures at the phylum (<b>A</b>) and genus (<b>B</b>) levels. CRF, cancer-related fatigue (<span class="html-italic">n</span> = 25); NCRF, non-cancer-related fatigue (<span class="html-italic">n</span> = 39).</p> "> Figure 3
<p>Differentiated microbes between breast cancer patients with CRF and NCRF. Differentiated microbes at the phylum (<b>A</b>) and genus (<b>B</b>) levels. (<b>C</b>) Linear discriminatory analysis effect size (LEfSe) was used to distinguish the differential microbes between the CRF and NCRF patients. (<b>D</b>) Linear discriminant analysis (LDA) was performed, and only the microbiota with LDA scores of >4 are shown. CRF, cancer-related fatigue (<span class="html-italic">n</span> = 25); NCRF, non-cancer-related fatigue (<span class="html-italic">n</span> = 39). * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Size
2.3. Assessment of CRF
2.4. Dietary Intake Assessment
2.5. Calculation of CHEI
2.6. Plasma KYN/TRP Ratio Measurement
2.7. GM Analysis
2.8. Assessment of Other Variables
2.9. Statistical Analyses
3. Results
3.1. Participants’ Characteristics
3.2. Nutrient Intake and CHEI Scores
3.3. Association Between Nutrients, CHEI Score or Its Component Score, and the Occurrence of CRF in Breast Cancer Patients
3.4. Plasma TRP and KYN Levels
3.5. GM Diversity
3.6. GM Composition
3.7. Association Between GM and the Occurrence of CRF or Dietary Intake
3.8. Association Between Total CHEI Score or Nutrients and the Occurrence of CRF with GM as a Mediator
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Manir, K.S.; Bhadra, K.; Kumar, G.; Manna, A.; Patra, N.B.; Sarkar, S.K. Fatigue in breast cancer patients on adjuvant treatment: Course and prevalence. Indian J. Palliat. Care 2012, 18, 109–116. [Google Scholar] [CrossRef]
- Gupta, A.; Hussain, S.M.; Nayyar, H.K.; Sonthwal, N.; Manaktala, R.; Chaturvedi, H. Perception, magnitude, and implications of cancer-related fatigue in breast cancer survivors: Study from a developing country. J. Cancer Res. Ther. 2021, 17, 998–1002. [Google Scholar] [CrossRef] [PubMed]
- Zacharakis, M.; Xynos, I.D.; Lazaris, A.; Smaro, T.; Kosmas, C.; Dokou, A.; Felekouras, E.; Antoniou, E.; Polyzos, A.; Sarantonis, J.; et al. Predictors of Survival in Stage IV Metastatic Colorectal Cancer. Anticancer Res. 2010, 30, 653–660. [Google Scholar]
- Gu, S.; Xu, Y.; Zhu, X.; Lam, A.; Yi, D.; Gong, L.; Wang, J.; Guo, X.; Fu, L.; Shi, J.; et al. Characteristics of cancer-related fatigue and its correlation with anxiety, depression, and stress-related hormones among Chinese cancer survivors: A cross-sectional study. Front. Oncol. 2023, 13, 1194673. [Google Scholar] [CrossRef]
- Fabi, A.; Bhargava, R.; Fatigoni, S.; Guglielmo, M.; Horneber, M.; Roila, F.; Weis, J.; Jordan, K.; Ripamonti, C.I. Cancer-related fatigue: ESMO Clinical Practice Guidelines for diagnosis and treatment. Ann. Oncol. 2020, 31, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Casado, A.; Álvarez-Bustos, A.; de Pedro, C.G.; Méndez-Otero, M.; Romero-Elías, M. Cancer-related Fatigue in Breast Cancer Survivors: A Review. Clin. Breast Cancer 2021, 21, 10–25. [Google Scholar] [CrossRef]
- Kenkhuis, M.-F.; van Duijnhoven, F.J.B.; van Roekel, E.H.; Breedveld-Peters, J.J.L.; Breukink, S.O.; Janssen-Heijnen, M.L.; Keulen, E.T.P.; Mols, F.; Weijenberg, M.P.; Bours, M.J.L. Longitudinal associations of fiber, vegetable, and fruit intake with quality of life and fatigue in colorectal cancer survivors up to 24 months posttreatment. Am. J. Clin. Nutr. 2022, 115, 822–832. [Google Scholar] [CrossRef] [PubMed]
- Alfano, C.M.; Imayama, I.; Neuhouser, M.L.; Kiecolt-Glaser, J.K.; Smith, A.W.; Meeske, K.; McTiernan, A.; Bernstein, L.; Baumgartner, K.B.; Ulrich, C.M.; et al. Fatigue, Inflammation, and ω-3 and ω-6 Fatty Acid Intake Among Breast Cancer Survivors. J. Clin. Oncol. 2012, 30, 1280–1287. [Google Scholar] [CrossRef] [PubMed]
- Stobäus, N.; Müller, M.J.; Küpferling, S.; Schulzke, J.-D.; Norman, K. Low Recent Protein Intake Predicts Cancer-Related Fatigue and Increased Mortality in Patients with Advanced Tumor Disease Undergoing Chemotherapy. Nutr. Cancer 2015, 67, 818–824. [Google Scholar] [CrossRef] [PubMed]
- Inglis, J.E.; Lin, P.-J.; Kerns, S.L.; Kleckner, I.R.; Kleckner, A.S.; Castillo, D.A.; Mustian, K.M.; Peppone, L.J. Nutritional Interventions for Treating Cancer-Related Fatigue: A Qualitative Review. Nutr. Cancer 2019, 71, 21–40. [Google Scholar] [CrossRef] [PubMed]
- Haß, U.; Herpich, C.; Norman, K. Anti-Inflammatory Diets and Fatigue. Nutrients 2019, 11, 2315. [Google Scholar] [CrossRef] [PubMed]
- George, S.M.; Alfano, C.M.; Neuhouser, M.L.; Smith, A.W.; Baumgartner, R.N.; Baumgartner, K.B.; Bernstein, L.; Ballard-Barbash, R. Better postdiagnosis diet quality is associated with less cancer-related fatigue in breast cancer survivors. J. Cancer Surviv. 2014, 8, 680–687. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.Q.; Li, F.; Wu, H.; Wang, Y.C.; Chen, J.S.; He, G.S.; Li, S.G.; Chen, B. Evaluation of the Validity and Reliability of the Chinese Healthy Eating Index. Nutrients 2018, 10, 114. [Google Scholar] [CrossRef]
- Zhu, Y.; Jeong, S.; Wu, M.; Zhou, J.Y.; Jin, Z.Y.; Han, R.Q.; Yang, J.; Zhang, X.F.; Wang, X.S.; Liu, A.M.; et al. Index-based dietary patterns and stomach cancer in a Chinese population. Eur. J. Cancer Prev. 2021, 30, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, F.; Yin, X.; Wu, B.; Li, H.; Peng, F.; Cheng, M.; Li, J.; Xiang, J.; Yao, P.; et al. Chinese Healthy Eating Index (CHEI) and risk of diabetes in Chinese adults: A prospective cohort study. Eur. J. Nutr. 2024, 63, 939–949. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Wu, H.; He, G.; Li, S.; Chen, B. Association between Dietary Patterns and Frailty Prevalence in Shanghai Suburban Elders: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2021, 18, 10852. [Google Scholar] [CrossRef]
- Li, H.; Lockwood, M.B.; Schlaeger, J.M.; Liu, T.; Danciu, O.C.; Doorenbos, A.Z. Tryptophan and Kynurenine Pathway Metabolites and Psychoneurological Symptoms Among Breast Cancer Survivors. Pain Manag. Nurs. 2023, 24, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Platten, M.; Kurz, K.; Fiegl, M.; Holzner, B.; Giesinger, J.; Pircher, M.; Weiss, G.; Denz, H.A.; Fuchs, D. Fatigue in Patients with Lung Cancer Is Related with Accelerated Tryptophan Breakdown. PLoS ONE 2012, 7, e36956. [Google Scholar] [CrossRef]
- Hou, Y.; Li, J.; Ying, S. Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolites 2023, 13, 1166. [Google Scholar] [CrossRef]
- Zmora, N.; Suez, J.; Elinav, E. You are what you eat: Diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 35–56. [Google Scholar] [CrossRef] [PubMed]
- Muscaritoli, M.; Molfino, A.; Scala, F.; Christoforidi, K.; Manneh-Vangramberen, I.; De Lorenzo, F. Nutritional and metabolic derangements in Mediterranean cancer patients and survivors: The ECPC 2016 survey. J. Cachexia Sarcopenia Muscle 2019, 10, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Al Maqbali, M.; Al Sinani, M.; Al Naamani, Z.; Al Badi, K.; Tanash, M.a.I. Prevalence of Fatigue in Patients with Cancer: A Systematic Review and Meta-Analysis. J. Pain Symptom Manag. 2021, 61, 167–189. [Google Scholar] [CrossRef]
- Cella, D.; Davis, K.; Breitbart, W.; Curt, G. Cancer-related fatigue: Prevalence of proposed diagnostic criteria in a United States sample of cancer survivors. J. Clin. Oncol. 2001, 19, 3385–3391. [Google Scholar] [CrossRef]
- Yeh, E.T.; Lau, S.C.; Su, W.J.; Tsai, D.J.; Tu, Y.Y.; Lai, Y.L. An examination of cancer-related fatigue through proposed diagnostic criteria in a sample of cancer patients in Taiwan. BMC Cancer 2011, 11, 387. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.Q.; Li, F.; Dong, R.H.; Chen, J.S.; He, G.S.; Li, S.G.; Chen, B. The Development of a Chinese Healthy Eating Index and Its Application in the General Population. Nutrients 2017, 9, 977. [Google Scholar] [CrossRef] [PubMed]
- eCristiani, C.M.; Capone, M.; Garofalo, C.; Madonna, G.; Mallardo, D.; Tuffanelli, M.; Vanella, V.; Greco, M.; Foti, D.P.; Viglietto, G.; et al. Altered Frequencies and Functions of Innate Lymphoid Cells in Melanoma Patients Are Modulated by Immune Checkpoints Inhibitors. Front. Immunol. 2022, 13, 811131. [Google Scholar] [CrossRef]
- Arndt, V.; Stegmaier, C.; Ziegler, H.; Brenner, H. A population-based study of the impact of specific symptoms on quality of life in women with breast cancer 1 year after diagnosis. Cancer 2006, 107, 2496–2503. [Google Scholar] [CrossRef]
- Hajj, A.; Chamoun, R.; Salameh, P.; Khoury, R.; Hachem, R.; Sacre, H.; Chahine, G.; Kattan, J.; Rabbaa Khabbaz, L. Fatigue in breast cancer patients on chemotherapy: A cross-sectional study exploring clinical, biological, and genetic factors. BMC Cancer 2022, 22, 16. [Google Scholar] [CrossRef]
- Schmidt, M.E.; Chang-Claude, J.; Seibold, P.; Vrieling, A.; Heinz, J.; Flesch-Janys, D.; Steindorf, K. Determinants of long-term fatigue in breast cancer survivors: Results of a prospective patient cohort study. Psychooncology 2015, 24, 40–46. [Google Scholar] [CrossRef]
- Kim, S.H.; Son, B.H.; Hwang, S.Y.; Han, W.; Yang, J.H.; Lee, S.; Yun, Y.H. Fatigue and depression in disease-free breast cancer survivors: Prevalence, correlates, and association with quality of life. J. Pain Symptom Manag. 2008, 35, 644–655. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Xu, H.; Li, W.; Guo, Z.; Lin, Y.; Shi, Y.; Hu, W.; Ba, Y.; Li, S.; Li, Z.; et al. Nutritional assessment and risk factors associated to malnutrition in patients with esophageal cancer. Curr. Probl. Cancer 2021, 45, 100638. [Google Scholar] [CrossRef] [PubMed]
- Baracos, V.E. Cancer-associated malnutrition. Eur. J. Clin. Nutr. 2018, 72, 1255–1259. [Google Scholar] [CrossRef] [PubMed]
- Guest, D.D.; Evans, E.M.; Rogers, L.Q. Diet components associated with perceived fatigue in breast cancer survivors. Eur. J. Cancer Care Engl. 2013, 22, 51–59. [Google Scholar] [CrossRef]
- Shams-White, M.M.; Brockton, N.T.; Mitrou, P.; Romaguera, D.; Brown, S.; Bender, A.; Kahle, L.L.; Reedy, J. Operationalizing the 2018 World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) Cancer Prevention Recommendations: A Standardized Scoring System. Nutrients 2019, 11, 1572. [Google Scholar] [CrossRef]
- Barnish, M.; Sheikh, M.; Scholey, A. Nutrient Therapy for the Improvement of Fatigue Symptoms. Nutrients 2023, 15, 2154. [Google Scholar] [CrossRef]
- Davis, B.; Liu, Y.H.; Stampley, J.; Wood, G.C.; Mitchell, D.C.; Jensen, G.L.; Gao, X.; Glynn, N.W.; Still, C.D.; Irving, B.A. The Association between Poor Diet Quality, Physical Fatigability and Physical Function in the Oldest-Old from the Geisinger Rural Aging Study. Geriatrics 2021, 6, 41. [Google Scholar] [CrossRef] [PubMed]
- Sayed, R.; El Wakeel, L.; Saad, A.S.; Kelany, M.; El-Hamamsy, M. Pentoxifylline and vitamin E reduce the severity of radiotherapy-induced oral mucositis and dysphagia in head and neck cancer patients: A randomized, controlled study. Med. Oncol. 2019, 37, 8. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, K.R.; Light, S.; Bittoni, A.M.; Zick, S.; Orchard, T.S. A remote Whole Food Dietary Intervention to Reduce Fatigue and Improve Diet Quality in Lymphoma Survivors: Results of a Feasibility Pilot Study. Nutr. Cancer 2023, 75, 937–947. [Google Scholar] [CrossRef]
- Giloteaux, L.; Goodrich, J.K.; Walters, W.A.; Levine, S.M.; Ley, R.E.; Hanson, M.R. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome 2016, 4, 30. [Google Scholar] [CrossRef]
- Heiss, C.N.; Olofsson, L.E. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. J. Neuroendocrinol. 2019, 31, e12684. [Google Scholar] [CrossRef]
- Maitiniyazi, G.; Cao, X.; Chen, Y.; Zhang, R.; Liu, Y.; Li, Z.; Gu, D.; Li, T.; Xia, S. Impact of Gut Microbiota on the Association between Diet and Depressive Symptoms in Breast Cancer. Nutrients 2022, 14, 1186. [Google Scholar] [CrossRef]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Fedirko, V.; Beitler, J.; Bai, J.; Peng, G.; Zhou, C.; Gu, J.; Zhao, H.; Lin, I.H.; Chico, C.E.; et al. The role of the gut microbiome in cancer-related fatigue: Pilot study on epigenetic mechanisms. Support Care Cancer 2021, 29, 3173–3182. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, J.A.; Ptacek, T.S.; Carter, S.J.; Liu, N.; Kumar, R.; Hyndman, L.; Lefkowitz, E.J.; Morrow, C.D.; Rogers, L.Q. Gut microbiota composition associated with alterations in cardiorespiratory fitness and psychosocial outcomes among breast cancer survivors. Support Care Cancer 2017, 25, 1563–1570. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Mercado, V.J.; Perez-Santiago, J.; Lyon, D.; Dilan-Pantojas, I.; Henderson, W.; McMillan, S.; Groer, M.; Kane, B.; Marrero, S.; Pedro, E.; et al. The Role of Gut Microbiome Perturbation in Fatigue Induced by Repeated Stress from Chemoradiotherapy: A Proof of Concept Study. Adv. Med. 2020, 2020, 6375876. [Google Scholar] [CrossRef]
- Zhu, L.B.; Zhang, Y.C.; Huang, H.H.; Lin, J. Prospects for clinical applications of butyrate-producing bacteria. World J. Clin. Pediatr. 2021, 10, 84–92. [Google Scholar] [CrossRef]
- Riviere, A.; Selak, M.; Lantin, D.; Leroy, F.; De Vuyst, L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front. Microbiol. 2016, 7, 979. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Qian, L.; Chu, J.; Liu, Y.; Maitiniyazi, G.; Chen, Y.; Cheng, X.; He, J.; Cheng, L.; Ou, M.; et al. Diet Is Associated with Frailty in Lung Cancer: A Possible Role of Gut Microbiota. Nutrients 2023, 15, 4298. [Google Scholar] [CrossRef]
- Clos-Garcia, M.; Andres-Marin, N.; Fernandez-Eulate, G.; Abecia, L.; Lavin, J.L.; van Liempd, S.; Cabrera, D.; Royo, F.; Valero, A.; Errazquin, N.; et al. Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia. EBioMedicine 2019, 46, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.M. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology 2017, 151, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Hofer, U. Microbiome: Pro-inflammatory Prevotella? Nat. Reviews. Microbiol. 2014, 12, 5. [Google Scholar] [CrossRef]
- Bower, J.E.; Lamkin, D.M. Inflammation and cancer-related fatigue: Mechanisms, contributing factors, and treatment implications. Brain Behav. Immun. 2013, 30, S48–S57. [Google Scholar] [CrossRef] [PubMed]
- Guillemin, G.J.; Fosså, A.; Smeland, K.H.; Fluge, Ø.; Tronstad, K.J.; Loge, J.H.; Midttun, Ø.; Ueland, P.M.; Kiserud, C.E. Metabolic analysis of amino acids and vitamin B6 pathways in lymphoma survivors with cancer related chronic fatigue. PLoS ONE 2020, 15, e0227384. [Google Scholar] [CrossRef]
- Xia, S.; Maitiniyazi, G.; Liu, Y.; Chen, Y.; Guo, M.; He, J.; Tao, W.; Li, Z. Whey protein isolate attenuates depression-like behavior developed in a mouse model of breast tumor. Food Res. Int. 2023, 169, 112849. [Google Scholar] [CrossRef]
- Gazi, M.A.; Siddique, M.A.; Alam, M.A.; Hossaini, F.; Hasan, M.M.; Fahim, S.M.; Wahid, B.Z.; Kabir, M.M.; Das, S.; Mahfuz, M.; et al. Plasma Kynurenine to Tryptophan Ratio Is Not Associated with Undernutrition in Adults but Reduced after Nutrition Intervention: Results from a Community-Based Study in Bangladesh. Nutrients 2022, 14, 1708. [Google Scholar] [CrossRef]
- Chen, T.; Chen, X.; Zhang, S.; Zhu, J.; Tang, B.; Wang, A.; Dong, L.; Zhang, Z.; Yu, C.; Sun, Y.; et al. The Genome Sequence Archive Family: Toward Explosive Data Growth and Diverse Data Types. Genom. Proteom. Bioinform. 2021, 19, 578–583. [Google Scholar] [CrossRef]
- Xue, Y.; Bao, Y.; Zhang, Z.; Zhao, W.; Xiao, J.; He, S.; Zhang, G.; Li, Y.; Zhao, G.; Chen, R.; et al. Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2022. Nucleic Acids Res. 2022, 50, D27–D38. [Google Scholar] [CrossRef]
Variables | NCRF (n = 193) | CRF (n = 149) | p |
---|---|---|---|
Age (years) a | 53.2 ± 10.7 | 55.6 ± 11.1 | 0.045 |
BMI (kg/m2) b | 23.8 (21.9, 25.6) | 24.2 (22.1, 26.4) | 0.424 |
VAS score b | 0.0 (0.0, 1.0) | 0.0 (0.0, 2.0) | 0.005 |
Menopausal status, n (%) c | |||
Pre-menopausal | 74 (38.3) | 48 (32.2) | 0.241 |
Post-menopausal | 119 (61.7) | 101 (67.8) | |
Marital status, n (%) c | |||
Widowed/divorced/single | 3 (1.6) | 9 (6.0) | 0.025 |
Married | 190 (98.4) | 140 (94.0) | |
Education level, n (%) c | |||
Primary school or lower | 38 (19.7) | 35 (23.5) | 0.027 |
Middle school | 69 (35.8) | 45 (30.2) | |
High school/secondary school | 33 (17.1) | 42 (28.2) | |
Junior college or higher | 53 (27.4) | 27 (18.1) | |
Employment, n (%) c | |||
Employed | 52 (26.9) | 38 (25.5) | 0.515 |
Unemployed | 32 (16.6) | 32 (21.5) | |
Retired | 109 (56.5) | 79 (53.0) | |
Residence, n (%) c | |||
Rural areas | 22 (11.4) | 28 (18.8) | 0.132 |
Towns | 24 (12.4) | 14 (9.4) | |
Urban areas | 147 (76.2) | 107 (71.8) | |
Family monthly income (RMB), n (%) c | |||
<3000 | 13 (6.7) | 23 (15.4) | < 0.001 |
3000–5000 | 68 (35.2) | 72 (48.3) | |
>5000 | 112 (58.1) | 54 (36.3) | |
Family history of cancer, n (%) c | |||
No | 177 (91.7) | 130 (87.2) | 0.177 |
Yes | 16 (8.3) | 19 (12.8) | |
Presence of comorbidities, n (%) c | |||
No | 128 (66.3) | 97 (65.1) | 0.813 |
Yes | 65 (33.7) | 52 (34.9) | |
Smoking status, n (%) d | |||
Never | 183 (94.8) | 139 (93.3) | 0.550 |
Former/current | 10 (5.2) | 10 (6.7) | |
Physical activity level, n (%) c | |||
Low | 40 (20.7) | 42 (28.2) | 0.172 |
Moderate | 143 (74.1) | 103 (69.1) | |
High | 10 (5.2) | 4 (2.7) | |
Sleep disorders, n (%) c | |||
No | 146 (75.6) | 67 (45.0) | < 0.001 |
Yes | 47 (24.4) | 82 (55.0) | |
Anxiety, n (%) c | |||
No | 177 (91.7) | 101 (67.8) | < 0.001 |
Yes | 16 (8.3) | 48 (32.2) | |
Depression, n (%) c | |||
No | 179 (92.7) | 104 (69.8) | < 0.001 |
Yes | 14 (7.3) | 45 (30.2) | |
Location of diseases, n (%) e | |||
Left breast cancer | 91 (47.2) | 75 (50.3) | 0.557 |
Right breast cancer | 96 (49.7) | 72 (48.3) | |
Double breast cancer | 6 (3.1) | 2 (1.4) | |
Cancer stage, n (%) c | |||
I | 69 (35.7) | 44 (29.5) | 0.319 |
II | 108 (56.0) | 87 (58.4) | |
III | 16 (8.3) | 18 (12.1) | |
Type of surgery, n (%) c | |||
Mastectomy | 118 (61.1) | 99 (66.4) | 0.313 |
Lumpectomy | 75 (38.9) | 50 (33.6) | |
Number of chemotherapy cycles b | 2.0 (2.0, 4.0) | 2.0 (1.0, 4.0) | 0.936 |
Presence of anemia, n (%) c | |||
No | 151 (78.2) | 118 (79.2) | 0.831 |
Yes | 42 (21.8) | 31 (20.8) |
Variables | NCRF (n = 193) | CRF (n = 149) | p |
---|---|---|---|
Energy (kcal/day) | 1354.0 (1116.5, 1577.5) | 1169.0 (946.0, 1467.0) | <0.001 |
Protein (g/day) | 67.0 (51.5, 88.9) | 56.8 (42.3, 72.2) | <0.001 |
Fat (g/day) | 49.4 (36.1, 65.3) | 43.5 (30.6, 63.7) | 0.018 |
Carbohydrate (g/day) | 151.0 (123.3, 190.9) | 133.0 (104.7, 167.3) | <0.001 |
Dietary fiber (g/day) | 9.7 (7.1, 13.3) | 7.5 (5.5, 10.0) | <0.001 |
Cholesterol (mg/day) | 587.0 (411.5, 794.5) | 551.0 (402.5, 739.5) | 0.252 |
Vitamin A (µgRAE/day) | 458.0 (320.5, 637.0) | 376.0 (290.5, 514.5) | 0.001 |
Vitamin D (µg/day) | 1.5 (0.3, 4.8) | 2.0 (1.0, 4.1) | 0.602 |
Vitamin E (mg/day) | 16.7 (13.3, 21.4) | 14.2 (10.0, 18.1) | <0.001 |
Vitamin B1 (mg/day) | 0.7 (0.5, 0.9) | 0.6 (0.4, 0.8) | 0.003 |
Vitamin B2 (mg/day) | 1.0 (0.8, 1.4) | 0.9 (0.7, 1.2) | 0.010 |
Vitamin B6 (mg/day) | 0.2 (0.1, 0.3) | 0.1 (0.1, 0.2) | 0.001 |
Vitamin C (mg/day) | 116.6 (78.7, 176.5) | 89.0 (49.6, 135.7) | <0.001 |
Folate (µg/day) | 109.6 (67.3, 168.4) | 95.6 (57.8, 136.3) | 0.029 |
Niacin (mg/day) | 13.3 (10.2, 17.0) | 10.7 (8.4, 14.7) | <0.001 |
Calcium (mg/day) | 596.0 (386.0, 835.5) | 485.0 (295.5, 679.5) | 0.002 |
Phosphorus (mg/day) | 937.6 (737.6, 1219.4) | 821.5 (616.2, 1023.4) | <0.001 |
Potassium (mg/day) | 1928.3 (1545.0, 2392.9) | 1620.7 (1160.1, 2018.1) | <0.001 |
Sodium (mg/day) | 3803.6 (3011.6, 4689.5) | 3315.7 (2523.6, 4045.0) | <0.001 |
Magnesium (mg/day) | 281.0 (219.0, 351.0) | 227.0 (179.0, 276.5) | <0.001 |
Iron (mg/day) | 17.0 (13.9, 22.3) | 14.9 (11.4, 19.2) | <0.001 |
Iodine (µg/day) | 21.5 (13.6, 31.9) | 20.7 (14.1, 29.3) | 0.211 |
Zinc (mg/day) | 9.9 (7.7, 12.3) | 8.4 (6.2, 11.1) | <0.001 |
Selenium (µg/day) | 55.4 (34.9, 78.1) | 44.9 (29.3, 66.6) | 0.010 |
Copper (mg/day) | 1.7 (1.0, 3.0) | 1.1 (0.8, 2.2) | <0.001 |
Manganese (mg/day) | 3.6 (2.7, 4.9) | 3.0 (2.1, 4.3) | 0.001 |
Choline (mg/day) | 19.1 (11.1, 33.0) | 14.4 (4.9, 24.4) | 0.001 |
Biotin (µg/day) | 4.0 (1.9, 7.0) | 3.0 (1.4, 5.4) | 0.011 |
β-Carotene (µg/day) | 1489.4 (793.5, 2790.7) | 1254.5 (731.2, 2042.7) | 0.113 |
SFA (g/day) | 14.2 (10.7, 19.3) | 13.8 (8.6, 19.4) | 0.147 |
MUFA (g/day) | 17.4 (12.7, 23.8) | 15.8 (10.6, 23.2) | 0.101 |
PUFA (g/day) | 8.8 (6.3, 12.5) | 7.4 (5.3, 10.1) | 0.001 |
Omega-3 fatty acids (mg/day) | 117.5 (77.1, 173.2) | 103.2 (61.8, 138.4) | 0.007 |
Omega-6 fatty acids (mg/day) | 731.4 (500.4, 1095.5) | 603.2 (433.1, 869.7) | 0.002 |
Tryptophan (mg/day) | 649.9 (498.3, 892.2) | 599.6 (446.8, 746.3) | 0.018 |
Variables | NCRF (n = 193) | CRF (n = 149) | p |
---|---|---|---|
Total CHEI score a | 62.0 ± 8.9 | 58.3 ± 8.4 | <0.001 |
Total grains b | 3.4 (2.4, 4.6) | 3.5 (2.2, 5.0) | 0.567 |
Whole grains and mixed beans b | 0.0 (0.0, 4.0) | 0.0 (0.0, 2.8) | 0.009 |
Tubers b | 0.0 (0.0, 5.0) | 0.0 (0.0, 3.0) | 0.262 |
Total vegetables b | 4.1 (2.4, 5.0) | 3.5 (2.0, 5.0) | 0.062 |
Dark vegetables b | 5.0 (2.8, 5.0) | 4.0 (2.2, 5.0) | 0.006 |
Fruits b | 10.0 (10.0, 10.0) | 10.0 (8.3, 10.0) | 0.171 |
Poultry b | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | 0.813 |
Red meat b | 3.2 (0.5, 5.0) | 3.1 (0.1, 5.0) | 0.424 |
Fish and seafood b | 5.0 (0.0, 5.0) | 5.0 (0.0, 5.0) | 0.116 |
Eggs b | 5.0 (2.3, 5.0) | 5.0 (5.0, 5.0) | 0.215 |
Dairy b | 2.8 (0.0, 5.0) | 0.0 (0.0, 5.0) | 0.673 |
Soybeans b | 0.0 (0.0, 4.2) | 0.0 (0.0, 0.0) | 0.022 |
Seeds and nuts b | 0.0 (0.0, 0.0) | 0.0 (0.0, 0.0) | 0.020 |
Cooking oils b | 10.0 (10.0, 10.0) | 10.0 (10.0, 10.0) | 0.421 |
Sodium b | 3.0 (0.8, 5.3) | 3.1 (1.1, 4.9) | 0.804 |
Alcohol b | 5.0 (5.0, 5.0) | 5.0 (5.0, 5.0) | 1.000 |
Added sugars b | 5.0 (5.0, 5.0) | 5.0 (5.0, 5.0) | 1.000 |
Variables | OR | 95% CI | p |
---|---|---|---|
Protein | 0.98 | 0.97, 0.99 | 0.016 |
Fat | 1.01 | 0.99, 1.03 | 0.199 |
Carbohydrate | 0.99 | 0.99, 1.01 | 0.831 |
Dietary fiber | 0.94 | 0.88, 0.99 | 0.024 |
Vitamin A | 0.99 | 0.99, 1.00 | 0.006 |
Vitamin E | 0.94 | 0.90, 0.98 | 0.003 |
Vitamin B1 | 1.26 | 0.35, 4.54 | 0.727 |
Vitamin B2 | 0.79 | 0.54, 1.16 | 0.231 |
Vitamin B6 | 0.23 | 0.05, 1.13 | 0.070 |
Vitamin C | 0.99 | 0.99, 1.00 | 0.113 |
Folate | 0.99 | 0.99, 1.00 | 0.701 |
Niacin | 0.96 | 0.91, 1.01 | 0.147 |
Calcium | 0.99 | 0.99, 1.00 | 0.153 |
Phosphorus | 0.99 | 0.99, 1.00 | 0.021 |
Potassium | 0.99 | 0.99, 1.00 | 0.018 |
Sodium | 0.99 | 0.99, 1.00 | 0.124 |
Magnesium | 0.99 | 0.99, 1.00 | 0.008 |
Iron | 0.95 | 0.90, 0.99 | 0.039 |
Zinc | 0.95 | 0.87, 1.03 | 0.183 |
Selenium | 0.99 | 0.99, 1.00 | 0.089 |
Copper | 0.75 | 0.60, 0.95 | 0.018 |
Manganese | 0.99 | 0.94, 1.06 | 0.933 |
Choline | 1.00 | 0.99, 1.00 | 0.973 |
Biotin | 0.99 | 0.98, 1.02 | 0.728 |
PUFA | 0.96 | 0.89, 1.02 | 0.197 |
Omega-3 fatty acids | 0.99 | 0.99, 1.00 | 0.498 |
Omega-6 fatty acids | 0.99 | 0.99, 1.00 | 0.240 |
Tryptophan | 0.99 | 0.99, 1.00 | 0.654 |
Variables | OR | 95% CI | p |
---|---|---|---|
Total CHEI score | 0.95 | 0.93, 0.98 | 0.002 |
Whole grains and mixed beans | 0.85 | 0.75, 0.96 | 0.010 |
Dark vegetables | 0.88 | 0.76, 1.02 | 0.092 |
Soybeans | 0.90 | 0.79, 1.01 | 0.081 |
Seeds and nuts | 0.89 | 0.76, 1.04 | 0.153 |
Variables | NCRF (n = 72) | CRF (n = 34) | p |
---|---|---|---|
TRP (μmol/L) | 24.77 (23.38, 27.42) | 23.14 (19.18, 25.20) | 0.001 |
KYN (μmol/L) | 7.54 (6.51, 8.30) | 7.04 (6.54, 8.44) | 0.488 |
KYN/TRP | 0.30 (0.26, 0.33) | 0.35 (0.29, 0.38) | <0.001 |
Variables | ATE | ADE | ACME | ||||||
---|---|---|---|---|---|---|---|---|---|
Estimate | 95% CI | p | Estimate | 95% CI | p | Estimate | 95% CI | p | |
Total CHEI score a | |||||||||
Sobs index | −0.0007 | −0.0047, −0.0001 | 0.010 | −0.0001 | −0.0023, 0.0014 | 0.100 | −0.0005 | −0.0051, −0.0001 | 0.034 |
Chao index | −0.0007 | −0.0047, −0.0001 | 0.013 | −0.0002 | −0.0023, 0.0013 | 0.090 | −0.0005 | −0.0050, −0.0001 | 0.033 |
Shannon index | −0.0006 | −0.0047, −0.0001 | 0.034 | −0.0003 | −0.0053, 0.0019 | 0.107 | −0.0002 | −0.0048, 0.0022 | 0.296 |
PC1 | −0.0012 | −0.0057, −0.0001 | 0.032 | −0.0003 | −0.0037, 0.0042 | 0.171 | −0.0009 | −0.0068, 0.0001 | 0.086 |
Bacteroidota | −0.0007 | −0.0050, −0.0001 | 0.037 | −0.0002 | −0.1847, 1.2703 | 0.112 | −0.0005 | −0.0052, 0.0001 | 0.086 |
unclassified_k_norank_d_Bacteria | −0.0008 | −0.0051, −0.0001 | 0.032 | −0.0005 | −0.0054, 0.0018 | 0.088 | −0.0003 | −0.0051, 0.0019 | 0.448 |
Vitamin A b | |||||||||
Sobs index | −0.0004 | −0.0007, 0.0001 | 0.058 | −0.0003 | −0.0006, 0.0001 | 0.118 | −0.0001 | −0.0003, 0.0001 | 0.226 |
Shannon index | −0.0003 | −0.0007, 0.0001 | 0.084 | −0.0003 | −0.0006, 0.0001 | 0.121 | −0.0001 | −0.0003, 0.0001 | 0.376 |
Desulfobacterota | −0.0004 | −0.0007, 0.0001 | 0.052 | −0.0002 | −0.0006, 0.0001 | 0.106 | −0.0001 | −0.0004, 0.0002 | 0.322 |
Phosphorus b | |||||||||
Desulfobacterota | −0.0002 | −0.0005, 0.0002 | 0.140 | −0.0001 | −0.0005, 0.0001 | 0.140 | −0.0001 | −0.0003, 0.0003 | 0.400 |
Copper b | |||||||||
Proteobacteria | −0.1274 | −0.2408, 0.0068 | 0.064 | −0.1079 | −0.2336, 0.0228 | 0.117 | −0.0196 | −0.0779, 0.0389 | 0.476 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Cheng, L.; Cheng, X.; Wang, Y.; Lin, X.; Xia, S. The Mediating Role of Gut Microbiota on the Association Between Dietary Quality and Cancer-Related Fatigue Among Breast Cancer Patients: A Cross-Sectional Study. Nutrients 2024, 16, 4371. https://doi.org/10.3390/nu16244371
He J, Cheng L, Cheng X, Wang Y, Lin X, Xia S. The Mediating Role of Gut Microbiota on the Association Between Dietary Quality and Cancer-Related Fatigue Among Breast Cancer Patients: A Cross-Sectional Study. Nutrients. 2024; 16(24):4371. https://doi.org/10.3390/nu16244371
Chicago/Turabian StyleHe, Jianyun, Lan Cheng, Xinxin Cheng, Yuting Wang, Xiaoxia Lin, and Shufang Xia. 2024. "The Mediating Role of Gut Microbiota on the Association Between Dietary Quality and Cancer-Related Fatigue Among Breast Cancer Patients: A Cross-Sectional Study" Nutrients 16, no. 24: 4371. https://doi.org/10.3390/nu16244371
APA StyleHe, J., Cheng, L., Cheng, X., Wang, Y., Lin, X., & Xia, S. (2024). The Mediating Role of Gut Microbiota on the Association Between Dietary Quality and Cancer-Related Fatigue Among Breast Cancer Patients: A Cross-Sectional Study. Nutrients, 16(24), 4371. https://doi.org/10.3390/nu16244371