An Optical Classification Tool for Global Lake Waters
"> Figure 1
<p>Total remote sensing reflectance, <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mi>λ</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> data after quality control.</p> "> Figure 2
<p>OWT mean spectra for the non-normalized (left) and PAR-normalized (right) clusters. (Normalization as explained in text.) Open circles indicate bands used in the clustering.</p> "> Figure 3
<p>Distribution of individual <math display="inline"> <semantics> <mrow> <msub> <mi>R</mi> <mrow> <mi>r</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mi>λ</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> across the clusters (OWT 1, top; OWT-6, bottom) for the non-normalized (left column) and PAR-normalized (middle column) schemes. The right column shows the same data for the middle column, but not normalized.</p> "> Figure 4
<p>Boxplots for Chl-a, CDOM and TSM across the OWTs for 6C (top row) and 6CN (bottom row).</p> "> Figure 5
<p>Processing chain for MERIS scenes.</p> "> Figure 6
<p>Classification of Italian lakes: Lake Maggiore (<b>A</b>), Lake Lugano (<b>B</b>), Lake Como (<b>C</b>), Lake Iseo (<b>D</b>), Lake Idro (<b>E</b>) and Lake Garda (<b>F</b>). MERIS 2009-09-11 (yyyy-mm-dd) , ICOL + CC2R. No flagging applied. Top: 6C; bottom: 6CN.</p> "> Figure 7
<p>Estonian Lake Peipsi (<b>A</b>) and Lake Võrtsjärv (<b>B</b>). MERIS 18 July 2005 ICOL + CC2R. Flagged data in black with L2R (Level-2 reflectances) suspect. Left: 6C; right: 6CN.</p> "> Figure 8
<p>Dutch lakes IJsselmeer (<b>A</b>) (north of the dike) and Markermeer (<b>B</b>) (south of the dam). MERIS 23 April 2011, ICOL + CC2R. Left: 6C; right: 6CN.</p> "> Figure 9
<p>Finnish Lakes: Päijänne (<b>A</b>), Pääjärvi, (<b>B</b>) and Vesijärvi (<b>C</b>). MERIS 2006-05-09, ICOL + CC2R. Left: 6C no flagging; center: 6C ‘L2R invalid’ flagged out; right: 6CN with flagging.</p> "> Figure 10
<p>Classification of Swedish Lakes: Lake Vänern (<b>A</b>), Lake Vättern (<b>B</b>) and the bay of Dättern (<b>C</b>). MERIS 25 June 2009, ICOL + CC2R. Only cloud (white), cloud shadow (partly transparent white) and “L2R suspect” flagging applied. Left: 6C; right: 6CN.</p> "> Figure 11
<p>Matrix of non-normalized (GLaSS6C) (rows) and normalized (GLaSS6CN) (columns) clusters with remote sensing reflectance (Rrs) spectra sorted into respective OWT.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Situ Data Sources
2.2. Development of the GLaSS Optical Water Types
2.3. BEAM/SNAP Implementation and the Membership Function
2.4. Characteristics of Remote Sensing Data
3. Results
3.1. Properties of the GLaSS OWTs
3.2. The GLaSS Lakes Case Studies
3.2.1. Italian Lakes: Deep and Clear
3.2.2. The Estonian and Dutch Lakes: Shallow-Turbid and Shallow Phytoplankton-Dominated Lakes
3.2.3. The Finnish and Swedish Lakes: High Absorbing, Low Reflecting Waters
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef]
- Moore, T.S.; Dowell, M.D.; Bradt, S.; Ruiz-Verdú, A. An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters. Remote Sens. Environ. 2014, 143, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Hommersom, A.; Wernand, M.R.; Peters, S.; Eleveld, M.A.; van der Woerd, H.J.; de Boer, J. Spectra of a shallow sea-unmixing for class identification and monitoring of coastal waters. Ocean Dyn. 2011, 61, 463–480. [Google Scholar] [CrossRef]
- Wernand, M.R.; Hommersom, A.; van der Woerd, H.J. MERIS-based ocean colour classification with the discrete Forel-Ule scale. Ocean Sci. 2013, 9, 477–487. [Google Scholar] [CrossRef]
- Jerlov, N.G. Marine Optics; Elsevier: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Jerlov, N.G. Optical Studies of Ocean Waters; Elanders boktr.: Gothenburg, Sweden, 1957. [Google Scholar]
- Aas, E.; Hojerslev, N.; Hokedal, J.; Sorensen, K. Optical water types of the Nordic Seas and adjacent areas. Oceanologia 2013, 55, 471–482. [Google Scholar] [CrossRef]
- Solonenko, M.; Mobley, C. Inherent optical properties of Jerlov water types. Appl. Opt. 2015, 54, 5392–5401. [Google Scholar] [CrossRef] [PubMed]
- Brewin, R.; Ciavatta, S.; Sathyendrenath, S.; Jackson, T.; Tilstone, G.; Curran, K.; Airs, R.; Cummings, D.; Brotas, V.; Organelli, E.; et al. Uncertainty in ocean-colour estimates of chlorophyll for phytoplankton groups. Front. Mar. Sci. 2017, 4, 104. [Google Scholar] [CrossRef]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Zhang, H. Remote estimation of chlorophyll a in optically complex waters based on optical classification. Remote Sens. Environ. 2011, 115, 725–737. [Google Scholar] [CrossRef]
- Moore, T.S.; Campbell, J.W.; Dowell, M.D. A class-based approach to characterizing and mapping the uncertainty of the MODIS ocean chlorophyll product. Remote Sens. Environ. 2009, 113, 2424–2430. [Google Scholar] [CrossRef]
- Mélin, F.; Vantrepotte, V. How optically diverse is the coastal ocean? Remote Sens. Environ. 2015, 160, 235–251. [Google Scholar] [CrossRef]
- Trochta, J.; Mouw, C.; Moore, T. Remote sensing of physical cycles in Lake Superior using a spatio-temporal analysis of optical water typologies. Remote Sens. Environ. 2015, 171, 149–161. [Google Scholar] [CrossRef]
- Moore, T.; Dowell, M.; Franz, B. Detection of coccolithophore blooms in ocean color satellite imagery: A generalized approach for use with multiple sensors. Remote Sens. Environ. 2012, 117, 249–263. [Google Scholar] [CrossRef]
- Bradt, S.R. Development of Bio-Optical Algorithms to Estimate Chlorophyll in the Great Salt Lake and New England Lakes Using In Situ Hyperspectral Measurements. Ph.D. Thesis, The University of New Hampshire, Durham, NH, USA, 2012. [Google Scholar]
- Ruiz-Verdú, A.; Simis, S.G.; de Hoyos, C.; Gons, H.J.; Peña-Martinez, R. An evaluation of algorithms for the remote sensing of cyanobacterial biomass. Remote Sens. Environ. 2008, 112, 3996–4008. [Google Scholar] [CrossRef]
- Mueller, J.L.; Morel, A.; Frouin, R.; Davis, C.; Arnone, R.; Carder, K.; Lee, Z.P.; Steward, R.G.; Hooker, S.; Mobley, C.D. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Radiometric Measurements and Data Analysis Protocols; Tech. Memo 2003-21621; Goddard Space Flight Center: Greenbelt, MD, USA, 2003.
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef] [PubMed]
- Webb, A. Statistical Pattern Recognition; John Wiley and Sons, Ltd.: Hoboken, NJ, USA, 2002. [Google Scholar]
- Bezdek, J. Patter Recognition with Fuzzy Objective Function Algorithms; Springer: New York, NY, USA, 1981. [Google Scholar]
- Lee, Z.; Carder, K.L.; Arnone, R.A. Deriving inherent optical properties from water color: A multiband quasi-analytical algorithm for optically deep waters. Appl. Opt. 2002, 41, 5755–5772. [Google Scholar] [CrossRef] [PubMed]
- Vantrepotte, V.; Loisel, H.; Mélin, F.; Desailly, D.; Duforêt-Gaurier, L. Global particulate matter pool temporal variability over the SeaWiFS period (1997–2007). Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Eleveld, M.A. Wind-induced resuspension in a shallow lake from Medium Resolution Imaging Spectrometer (MERIS) full-resolution reflectances. Water Resour. Res. 2012. [Google Scholar] [CrossRef]
- Vidot, J.; Santer, R. Atmospheric correction for inland waters application to SeaWiFS. Int. J. Remote Sens. 2005, 26, 3663–3682. [Google Scholar] [CrossRef]
- Doerffer, R.; Schiller, H. The MERIS Case 2 water algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [Google Scholar] [CrossRef]
- Doerffer, R.; Brockmann, C. Consensus Case 2 Regional Algorithm Protocols; Technical Report; Brockmann Consult: Geesthacht, Germany, 2014. [Google Scholar]
- Heege, T.; Kiselev, V.; Wettle, M.; Hung, N.N. Operational multi-sensor monitoring of turbidity for the entire Mekong Delta. Int. J. Remote Sens. 2014, 35, 2910–2926. [Google Scholar] [CrossRef]
- Heege, T.; Fischer, J. Mapping of water constituents in Lake Constance using multispectral airborne scanner data and a physically based processing scheme. Can. J. Remote Sens. 2004, 30, 77–86. [Google Scholar] [CrossRef]
- Heege, T.; Häse, C.; Bogner, A.; Pinnel, N. Airborne Multi-spectral Sensing in Shallow and Deep Waters. Backscatter 2003, 14, 17–19. [Google Scholar]
- GLaSS Deliverable D3.2. Global Lakes Sentinel Services, D3.2: Harmonized Atmospheric Correction Method. 2014. Available online: http://www.glass-project.eu/downloads (accessed on 28 February 2017).
- Guanter, L.; Ruiz-Verdú, A.; Odermatt, D.; Giardino, C.; Simis, S.; Estellés, V.; Heege, T.; Domínguez-Gómez, J.A.; Moreno, J. Atmospheric correction of ENVISAT/MERIS data over inland waters: Validation for European lakes. Remote Sens. Environ. 2010, 114, 467–480. [Google Scholar] [CrossRef]
- Schroeder, T.; Schaale, M.; Fischer, J. Retrieval of atmospheric and oceanic properties from MERIS measurements: A new Case 2 water processor for BEAM. Int. J. Remote Sens. 2007, 28, 5627–5632. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F.; Matarrese, R.; Frank, J.; Klemm, J. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 2006, 45, 6762–6774. [Google Scholar] [CrossRef] [PubMed]
- Kotchenova, S.Y.; Vermote, E.F. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces. Appl. Opt. 2007, 46, 4455–4464. [Google Scholar] [CrossRef] [PubMed]
- Berk, A.; Bernstein, L.S.; Anderson, G.P.; Acharya, P.K.; Robertson, D.C.; Chetwynd, J.H.; Adler-Golden, S.M. MODTRAN cloud and multiple scattering upgrades with application to AVIRIS. Remote Sens. Environ. 1998, 65, 367–375. [Google Scholar] [CrossRef]
- Bresciani, M.; Stroppiana, D.; Odermatt, D.; Morabito, G.; Giardino, C. Assessing remotely sensed chlorophyll-a for the implementation of the Water Framework Directive in European perialpine lakes. Sci. Total Environ. 2011, 409, 3083–3091. [Google Scholar] [CrossRef] [PubMed]
- Bresciani, M.; Bolpagni, R.; Laini, A.; Matta, E.; Bartoli, M.; Giardino, C. Multitemporal analysis of algal blooms with MERIS images in deep meromictic lake. Eur. J. Remote Sens. 2013, 46, 445–458. [Google Scholar] [CrossRef]
- Giardino, C.; Bresciani, M.; Stroppiana, D.; Oggioni, A.; Morabito, G. Optical remote sensing of lakes: An overview on Lake Maggiore. J. Limnol. 2014, 73. [Google Scholar] [CrossRef]
- Alikas, K.; Reinart, A. Validation of the MERIS products on large european lakes: Peipsi, Vanern and Vattern. Hydrobiologia 2008, 599, 161–168. [Google Scholar] [CrossRef]
- Alikas, K.; Kratzer, S.; Reinart, A.; Kauer, T.; Paavel, B. Robust remote sensing algorithms to derive the diffuse attenuation coefficient for lakes and coastal waters. Limnol. Oceanogr. Methods 2015, 13, 402–415. [Google Scholar] [CrossRef]
- Asuküll, E. Measuring Dissolved Organic Matter From Satellites. Master’s Thesis, Tartu University, Tartu, Estonia, 2013. [Google Scholar]
- Kallio, K.; Koponen, S.; Ylöstalo, P.; Kervinen, M.; Pyhälahti, T.; Attila, J. Validation of {MERIS} spectral inversion processors using reflectance, {IOP} and water quality measurements in boreal lakes. Remote Sens. Environ. 2015, 157, 147–157. [Google Scholar] [CrossRef]
- Philipson, P.; Kratzer, S.; Ben Mustapha, S.; Strombeck, N.; Stelzer, K. Satellite-based water quality monitoring in Lake Vanern, Sweden. Int. J. Remote Sens. 2016, 37, 3938–3960. [Google Scholar] [CrossRef]
- Vantrepotte, V.; Loisel, H.; Dessailly, D.; Mauriaux, X. Optical classification of contrasted coastal waters. Remote Sens. Environ. 2012, 123, 306–323. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. The NIR-SWIR Combined Atmospheric Correction Approach for MODIS Ocean Color Data Processing. Opt. Express 2007, 15, 15722–15733. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, M. An assessment of the black ocean pixel assumption for MODIS SWIR bands. Remote Sens. Environ. 2009, 113, 1587–1597. [Google Scholar] [CrossRef]
- Werdell, J.; Franz, B.; Bailey, S. Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay. Remote Sens. Environ. 2010, 114, 2238–2247. [Google Scholar] [CrossRef]
- Antoine, D.; Morel, A. A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): Principle and implementation for atmospheres carrying various aerosols including absorbing ones. Int. J. Remote Sens. 1999, 20, 1875–1916. [Google Scholar] [CrossRef]
- Moore, G.; Lavender, S. Algorithm Identification: Case II. S Bright Pixel Atmospheric Correction; Technical Report; ESA: Paris, France, 2011. [Google Scholar]
- Moore, G.F.; Aiken, J.; Lavender, S.J. The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS. Int. J. Remote Sens. 1999, 20, 1713–1733. [Google Scholar] [CrossRef]
- Antoine, D.; Morel, A. Atmospheric Correction of the MERIS Observations over Ocean Case 1 Waters; Technical Report; Laboratoire d’Oceanographie de Villefranche: Villefranche-sur-Mer, France, 2011. [Google Scholar]
- GLaSS Deliverable D5.7. Global Lakes Sentinel Services, D5.7: WFD Reporting Case Study Results. 2015. Available online: http://www.glass-project.eu/assets/Deliverables/GLaSS-D5-7.pdf (accessed on 28 February 2017).
- Schaeffer, B.A.; Schaeffer, K.G.; Keith, D.; Lunetta, R.S.; Conmy, R.; Gould, R.W. Barriers to adopting satellite remote sensing for water quality management. Int. J. Remote Sens. 2013, 34, 7534–7544. [Google Scholar] [CrossRef]
Area | Spectrometers | Spectral | Spectral | Spectral | # Spectra | Range | Range | Range |
---|---|---|---|---|---|---|---|---|
Range (nm) | Resolution in VIS/NIR | Resolution Interpolated | CDOM (443 m−1) | TSM (gm−3) | Chl_a (mgm−3) | |||
Estonia | TriOS RAMSES | 400–800 | 7 nm | 2.5 nm | 34 | 1.7–4.2 | 1.8–18.7 | 2.7–45.3 |
Finland | ASD FieldSpec | 350–2500 | 3 nm | 1 nm | 16 | 0.5–10 | 0.8–3.4 | 1.7–11 |
The Netherlands | WI WISP-3 | 400–800 | 3.9 nm for | 1 nm | 177 | 0.5–1.5 | 1.3–30 | 10–50 |
4.9 nm for | ||||||||
Photo Research PR650 | 380–748 | 4 nm | 5 (L.IJsselmeer) | 13–26 | 33.4–87.3 | |||
3 (L.Markermeer) | 29.7–39.2 | 36.6–42.6 | ||||||
Italy | ASD FieldSpec | 350–2500 | 3 nm | 1 nm | 90 | 0.04–1.25 | 0.1–1.5 | 0.1–10 |
Full Range Pro | ||||||||
SpectraScan | 380–780 | 8 nm | 4 nm | 3 | ||||
Colorimeter | ||||||||
PR650 | ||||||||
WISP-3 | 400–800 | 3.9 nm for | 1 nm | 13 | 0 | |||
4.9 nm for | ||||||||
China | ASD | 350–1000 | 3 nm | 1 nm | 243 | 0.3–2.4 | 10–286 | 5–940 |
TOTAL | 584 | 0.1–10 | 0.1–290 | 1.7–940 |
Non-Normalized: 6 Classes | |||||||
---|---|---|---|---|---|---|---|
OWT Type | |||||||
Source | 1 | 2 | 3 | 4 | 5 | 6 | Total |
Finnish lakes | 0 | 15 | 1 | 0 | 0 | 0 | 16 |
Taihu | 0 | 0 | 1 | 41 | 108 | 84 | 234 |
Peipsi | 0 | 0 | 10 | 21 | 3 | 0 | 34 |
IJsselmeer | 0 | 0 | 50 | 8 | 0 | 0 | 58 |
Markemeer | 0 | 0 | 16 | 57 | 0 | 0 | 73 |
Italian lakes | 93 | 3 | 4 | 3 | 2 | 0 | 105 |
Betuwe | 0 | 8 | 8 | 0 | 0 | 0 | 16 |
New Hampshire (NH) lakes | 32 | 29 | 77 | 39 | 2 | 0 | 179 |
Spanish lakes | 28 | 72 | 19 | 20 | 1 | 0 | 140 |
Lake Erie | 2 | 0 | 4 | 10 | 0 | 0 | 16 |
Total | 155 | 127 | 190 | 199 | 116 | 84 | 871 |
Normalized: 6 Classes | |||||||
---|---|---|---|---|---|---|---|
OWT Type | |||||||
Source | 1 | 2 | 3 | 4 | 5 | 6 | Total |
Finnish lakes | 0 | 11 | 0 | 1 | 4 | 0 | 16 |
Taihu | 0 | 0 | 8 | 79 | 22 | 125 | 234 |
Peipsi | 0 | 0 | 0 | 9 | 25 | 0 | 34 |
IJsselmeer | 0 | 6 | 0 | 12 | 40 | 0 | 58 |
Markemeer | 0 | 8 | 0 | 30 | 35 | 0 | 73 |
Italian lakes | 91 | 12 | 0 | 1 | 1 | 0 | 105 |
Betuwe | 0 | 8 | 0 | 6 | 2 | 0 | 16 |
NH Lakes | 27 | 60 | 26 | 32 | 33 | 1 | 179 |
Spanish lakes | 25 | 52 | 1 | 37 | 25 | 0 | 140 |
Lake Erie | 2 | 7 | 0 | 3 | 4 | 0 | 16 |
Total | 145 | 164 | 35 | 210 | 191 | 126 | 871 |
OWT | Chl | Chl | Chl | CDOM | CDOM | CDOM | TSM | TSM | TSM |
---|---|---|---|---|---|---|---|---|---|
min | median | max | min | median | max | min | median | max | |
1 | 0.1 | 1.6 | 12.3 | 0.04 | 0.17 | 1.03 | 0.15 | 1.34 | 14.70 |
2 | 0.8 | 7.2 | 69.6 | 0.9 | 4.8 | 20.43 | 0.87 | 27.18 | 52.28 |
3 | 1.3 | 24.0 | 33.0 | 0.05 | 2.6 | 8.0 | 0.28 | 16.76 | 208.9 |
4 | 0.9 | 107.0 | 705.0 | 0.27 | 4.2 | 18.67 | 1.70 | 37.65 | 190.07 |
5 | 0.8 | 27.0 | 86.1 | 0.2 | 1.17 | 17.0 | 3.10 | 54.03 | 285.6 |
6 | 7.5 | 22.5 | 450.0 | 0.32 | 0.76 | 1.03 | 1.4 | 67.27 | 250.36 |
OWT | Chl | Chl | Chl | CDOM | CDOM | CDOM | TSM | TSM | TSM |
---|---|---|---|---|---|---|---|---|---|
min | median | max | min | median | max | min | median | max | |
1 | 0.1 | 1.4 | 5.8 | 0.04 | 0.17 | 1.03 | 0.28 | 1.27 | 14.70 |
2 | 0.3 | 8.1 | 69.0 | 0.17 | 1.3 | 2.82 | 0.15 | 16.7 | 52.28 |
3 | 1.6 | 20.5 | 70.0 | 3.33 | 11.4 | 20.43 | 10.32 | 29.95 | 137.0 |
4 | 2.7 | 120.8 | 705.0 | 0.56 | 0.96 | 1.52 | 2.03 | 47.05 | 212.6 |
5 | 1.7 | 20.7 | 450.0 | 0.27 | 1.12 | 12.1 | 1.7 | 54.32 | 227.6 |
6 | 7.5 | 22.5 | 82.0 | 0.32 | 0.85 | 1.83 | 1.4 | 68.3 | 285.6 |
Country | Lakes |
---|---|
Estonia | Lake Peipsi, Lake Võrtsjärv |
Finland | Lake Päijänne, lake Pääjärvi, Lake Vesijärvi |
Italy | Lake Garda, Lake Maggiore, Lake Lugano, lake Idro |
The Netherlands | Lake IJsselmeer, lake Markermeer |
Sweden | Lake Vättern, Lake Vänern |
Lake | Date | Atmospheric Correction |
---|---|---|
yyyy-mm-dd | Method | |
Estonia | 2005-07-18 | CC2R |
Estonia | 2011-07-27 | MIP |
Finland | 2004-08-05 | C2R and CC2R |
Finland | 2006-05-09 | C2R and CC2R |
Finland | 2007-06-01 | CC2R |
Finland | 2007-08-23 | MIP |
Italy | 2009-09-11 | CC2R |
Italy | 2008-05-06 | MIP |
The Netherlands | 2011-04-15 | C2R |
The Netherlands | 2011-04-23 | CC2R |
The Netherlands | 2011-09-28 | MIP |
Sweden | 2003-08-29 | CC2R |
Sweden | 2009-06-26 | MIP |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eleveld, M.A.; Ruescas, A.B.; Hommersom, A.; Moore, T.S.; Peters, S.W.M.; Brockmann, C. An Optical Classification Tool for Global Lake Waters. Remote Sens. 2017, 9, 420. https://doi.org/10.3390/rs9050420
Eleveld MA, Ruescas AB, Hommersom A, Moore TS, Peters SWM, Brockmann C. An Optical Classification Tool for Global Lake Waters. Remote Sensing. 2017; 9(5):420. https://doi.org/10.3390/rs9050420
Chicago/Turabian StyleEleveld, Marieke A., Ana B. Ruescas, Annelies Hommersom, Timothy S. Moore, Steef W. M. Peters, and Carsten Brockmann. 2017. "An Optical Classification Tool for Global Lake Waters" Remote Sensing 9, no. 5: 420. https://doi.org/10.3390/rs9050420
APA StyleEleveld, M. A., Ruescas, A. B., Hommersom, A., Moore, T. S., Peters, S. W. M., & Brockmann, C. (2017). An Optical Classification Tool for Global Lake Waters. Remote Sensing, 9(5), 420. https://doi.org/10.3390/rs9050420