A Glacier Surge of Bivachny Glacier, Pamir Mountains, Observed by a Time Series of High-Resolution Digital Elevation Models and Glacier Velocities
"> Figure 1
<p>Bivachny Glacier with its tributaries, Pamir Mountains. Background image: Landsat 7 (24 August 2000), glacier outline in black, longitudinal profile in red, contour lines from the shuttle radar topography mission (SRTM) 2000 in grey. Inset shows location map.</p> "> Figure 2
<p>The displacement of surface features during the recent surge of Bivachny Glacier as seen in optical satellite images: (<b>a</b>) EO-1 image of the year 2011; (<b>b</b>) Landsat 8 image of the year 2015. The looped moraines downstream of MGU Glacier are marked in white and black, respectively.</p> "> Figure 3
<p>Longitudinal elevation profile of the Bivachny Glacier central flowline in 2000 (SRTM in black), 2011 (TanDEM-X in blue) and 2015 (TanDEM-X in red) and the reconstructed bedrock topography based on equation 1 in brown. The brown arrow marks the bedrock bump mentioned in the text, black arrows mark the position of the MGU Glacier and Oshanin Glacier confluences, respectively.</p> "> Figure 4
<p>(<b>a</b>) Surface velocity and (<b>b</b>) elevation change along the central flowline (see <a href="#remotesensing-09-00388-f001" class="html-fig">Figure 1</a>) for selected periods.</p> "> Figure 5
<p>Total elevation difference from August 2011 to October 2015. Colour scale is from blue for elevation loss to red for elevation gain. Background image: Landsat 8.</p> "> Figure 6
<p>The confluence of Bivachny Glacier flowing from upper right into Fedchenko Glacier flowing from the left towards the observer in August 2015 (Photo: A. Lambrecht).</p> "> Figure 7
<p>Estimated ice volume flux along the central flowline shown in <a href="#remotesensing-09-00388-f001" class="html-fig">Figure 1</a>.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. InSAR-Derived Digital Elevation Models
2.2. Feature Tracking of Optical and SAR Data
3. Results
3.1. Previous Surge
3.2. Pre-Surge Conditions
3.3. Surge Build-Up
3.4. The Surge
3.5. Surge Termination
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Post, A. Distribution of surging glaciers in western North America. J. Glaciol. 1969, 8, 229–240. [Google Scholar] [CrossRef]
- Meier, M.F.; Post, A. What are glacier surges? Can. J. Earth Sci. 1969, 6, 807–817. [Google Scholar] [CrossRef]
- Jiskoot, H.; Murray, T.; Boyle, P. Controls on the distribution of surge-type glaciers in Svalbard. J. Glaciol. 2000, 46, 412–422. [Google Scholar] [CrossRef]
- Copland, L.; Sylvestre, T.; Bishop, M.P.; Shroder, J.F.; Seong, Y.B.; Owen, L.A.; Bush, A.; Kamp, U. Expanded and recently increased glacier surging in the Karakoram. Arct. Antarct. Alp. Res. 2011, 43, 503–516. [Google Scholar] [CrossRef]
- Kotlyakov, V.; Osipova, G.; Tsvetkov, D. Monitoring surging glaciers of the Pamirs, central Asia, from space. Ann. Glaciol. 2008, 48, 125–134. [Google Scholar] [CrossRef]
- Sevestre, H.; Benn, D.I. Climatic and geometric controls on the global distribution of surge-type glaciers: Implications for a unifying model of surging. J. Glaciol. 2015, 61, 646–662. [Google Scholar] [CrossRef]
- Kamb, B.; Raymond, C.F.; Harrison, W.D.; Engelhardt, H.; Echelmeyer, K.A.; Humphrey, N.; Brugman, M.M.; Pfeffer, T. Glacier Surge Mechanism: 1982–1983 Surge of Variegated Glacier, Alaska. Science 1985, 277, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Eisen, O.; Harrison, W.; Raymond, C. The surges of Variegated Glacier, Alaska, USA, and their connection to climate and mass balance. J. Glaciol. 2001, 47, 351–358. [Google Scholar] [CrossRef]
- Osipova, G.B.; Tsvetkov, D.G. Kinematics of the surface of a surging glacier (comparison of the Medvezhiy and Variegated Glaciers). In Proceedings of the International Symposium Glaciers-ocean-Atmosphere Interactions, St. Petersburg, Russia, 24–29 September 1990. [Google Scholar]
- Luckman, A.; Murray, T.; Strozzi, T. Surface flow evolution throughout a glacier surge measured by satellite radar interferometry. Geophys. Res. Lett. 2002, 29, 2095. [Google Scholar] [CrossRef]
- Murray, T.; James, T.D.; Macheret, Y.; Lavrentiev, I.; Glazovsky, A.; Sykes, H. Geometric changes in a tidewater glacier in Svalbard during its surge cycle. Arct. Antarct. Alp. Res. 2012, 44, 359–367. [Google Scholar] [CrossRef]
- Osipova, G.B.; Tsvetkov, D.G.; Shchetinnikov, A.S.; Rudak, M.S. Inventory of surging glaciers of the Pamirs. Mater. Glyatsiol. Issled 1998, 85, 3–136. (In Russian) [Google Scholar]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef]
- Rankl, M.; Kienholz, C.; Braun, M. Glacier changes in the Karakoram region mapped by multimission satellite imagery. Cryosphere 2014, 8, 977–989. [Google Scholar] [CrossRef]
- Mayer, C.; Fowler, A.C.; Lambrecht, A.; Scharrer, K. A surge of North Gasherbrum Glacier, Karakoram, China. J. Glaciol. 2011, 57, 904–916. [Google Scholar] [CrossRef]
- Yasuda, T.; Furuya, M. Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet. J. Geophys. Res. Earth Surf. 2015, 120, 2393–2405. [Google Scholar] [CrossRef]
- Quincey, D.J.; Glasser, N.F.; Cook, S.J.; Luckman, A. Heterogeneity in Karakoram glacier surges. J. Geophys. Res. Earth Surf. 2015, 120, 1288–1300. [Google Scholar] [CrossRef]
- Round, V.; Leinss, S.; Huss, M.; Haemmig, C.; Hajnsek, I. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram. Cryosphere 2017, 11, 723–739. [Google Scholar] [CrossRef]
- Burgess, E.W.; Forster, R.R.; Larsen, C.F.; Braun, M. Surge dynamics on Bering Glacier, Alaska, in 2008—2011. Cryosphere 2012, 6, 1251–1262. [Google Scholar] [CrossRef]
- Pitte, P.; Berthier, E.; Masiokas, M.H.; Cabot, V.; Ruiz, L.; Ferri Hidalgo, L.; Gargantini, H.; Zalazar, L. Geometric evolution of the Horcones Inferior Glacier (Mount Aconcagua, Central Andes) during the 2002–2006 surge. J. Geophys. Res. Earth Surf. 2016, 121, 111–127. [Google Scholar] [CrossRef]
- Bliss, A.; Hock, R.; Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth Surf. 2014, 119, 717–730. [Google Scholar] [CrossRef]
- Van der Veen, C.J. Fundamentals of Glacier Dynamics, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Fowler, A.C.; Murray, T.; Ng, F.S.L. Thermally controlled glacier surging. J. Glaciol. 2001, 47, 527–538. [Google Scholar] [CrossRef]
- Murray, T.; Strozzi, T.; Luckman, A.; Jiskoot, H.; Christakos, P. Is there a single surge mechanism? Contrasts in dynamics between glacier surges in Svalbard and other regions. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef]
- Kamb, B. Glacier surge mechanism based on linked cavity configuration of the basal water conduit system. J. Geophys. Res. B 1987, 92, 9083–9100. [Google Scholar] [CrossRef]
- Fowler, A.C. A theory of glacier surges. J. Geophys. Res. B 1987, 92, 9111–9120. [Google Scholar] [CrossRef]
- Osipova, G.B. Fifty years of studying the Medvezhiy Glacier (West Pamirs) by the Institute of Geography, RAS. Ljod y Sneg 2015, 129, 129–140. (In Russian) [Google Scholar] [CrossRef]
- Kotlyakov, V.M.; Desinov, L.V.; Rudakov, V.A. Surge of the Bivachny Glacier in 2012–2015. Ljod y Sneg 2015, 130, 133–140. (In Russian) [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Willis, M.J.; Melkonian, A.K.; Pritchard, M.E.; Ramage, J.M. Ice loss rates at the Northern Patagonian Icefield derived using a decade of satellite remote sensing. Remote Sens. Environ. 2012, 117, 184–198. [Google Scholar] [CrossRef]
- Holzer, N.; Vijay, S.; Yao, T.; Xu, B.; Buchroithner, M.; Bolch, T. Four decades of glacier variations at Muztagh Ata (eastern Pamir): A multi-sensor study including Hexagon KH-9 and Pléiades data. Cryosphere 2015, 9, 2071–2088. [Google Scholar] [CrossRef]
- Rodriguez, E.; Morris, C.S.; Belz, J.E. A global assessment of the SRTM performance. Photogramm. Eng. Remote Sens. 2006, 72, 249–260. [Google Scholar] [CrossRef]
- Mätzler, C. Applications of the interaction of microwaves with the natural snow cover. Remote Sens. Rev. 1987, 2, 259–387. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol. 2012, 58, 419–422. [Google Scholar] [CrossRef]
- Rignot, E.; Echelmeyer, K.; Krabill, W. Penetration depth of interferometric synthetic-aperture radar signals in snow and ice. Geophys. Res. Lett. 2001, 28, 3501–3504. [Google Scholar] [CrossRef]
- Hoen, E.W.; Zebker, H.A. Penetration depths inferred from interferometric volume decorrelation observed over the Greenland ice sheet. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2571–2583. [Google Scholar]
- Rossi, C.; Rodriguez Gonzalez, F.; Fritz, T.; Yague-Martinez, N.; Eineder, M. TanDEM-X calibrated raw DEM generation. ISPRS J. Photogramm. Remote Sens. 2012, 73, 12–20. [Google Scholar] [CrossRef]
- Lachaise, M.; Fritz, T.; Balss, U.; Bamler, R.; Eineder, M. Phase unwrapping correction with dual-baseline data for the TanDEM-X mission. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 5566–5569. [Google Scholar]
- Heid, T.; Kääb, A. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sens. Environ. 2012, 118, 339–355. [Google Scholar] [CrossRef]
- Scambos, T.A.; Dutkiewicz, M.J.; Wilson, J.C.; Bindschadler, R.A. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens. Environ. 1992, 42, 177–186. [Google Scholar] [CrossRef]
- Wuite, J.; Rott, H.; Hetzenecker, M.; Floricioiu, D.; De Rydt, J.; Gudmundsson, G.; Nagler, T.; Kern, M. Evolution of surface velocities and ice discharge of Larsen B outlet glaciers from 1995 to 2013. Cryosphere 2015, 9, 957–969. [Google Scholar] [CrossRef]
- Storey, J.; Choate, M.; Lee, K. Geometric performance comparison between the OLI and the ETM+. In Proceedings of the 17th PECORA Memorial Remote Sensing Symposium, Denver, CO, USA, 16–20 November 2008; Available online: http://info.asprs.org/publications/proceedings/pecora17/0039.pdf (accessed on 23 January 2017).
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Lambrecht, A.; Mayer, C.; Aizen, V.; Floricioiu, D.; Surazakov, A. The evolution of Fedchenko glacier in the Pamir, Tajikistan, during the past eight decades. J. Glaciol. 2014, 60, 233–244. [Google Scholar] [CrossRef]
- Flowers, G.E.; Roux, N.; Pimentel, S.; Schoof, C.G. Present dynamics and future prognosis of a slowly surging glacier. Cryosphere 2011, 5, 299–313. [Google Scholar] [CrossRef]
Date | Orbit Direction | Coherence | Bperp | Ha | RMS |
---|---|---|---|---|---|
2011-08-16 | A | 0.56 | 139.5 | 43.9 | 1.30 |
2012-01-28 | A | 0.55 | 85.4 | 73.1 | 2.29 |
2013-02-16 | A | 0.61 | 121.9 | 52.2 | 1.29 |
2013-05-26 | A | 0.54 | 144.6 | 43.9 | 2.36 |
2013-10-20 | D | 0.62 | 94.5 | −65.0 | 1.83 |
2013-10-31 1 | D | 0.66 | 93.2 | −61.3 | 1.83 |
2014-01-05 | D | 0.62 | 108.4 | −54.6 | 2.05 |
2014-05-13 | A | 0.55 | 181.4 | −35.0 | 1.29 |
2014-09-11 1 | A | 0.70 | 101.8 | 65.3 | 2.10 |
2015-10-16 | D | 0.67 | 23.5 | 257.1 | 7.01 |
2015-12-28 | A | 0.61 | 134.8 | −47.1 | - |
Date 1 | Date 2 | Sensor | Resolution (m) | Time Span (days) | 90th Percentile (m year−1) |
---|---|---|---|---|---|
2000-08-24 | 2001-07-26 | Landsat 7 | 15 | 336 | 10.4 |
2008-07-05 | 2009-08-09 | Landsat 5 | 30 | 399 | 26.0 |
2009-08-09 | 2010-07-27 | Landsat 5 | 30 | 352 | 20.4 |
2010-09-04 | 2011-09-07 | Landsat 5 | 30 | 368 | 16.0 |
2011-07-14 | 2011-10-02 | Landsat 5 | 30 | 80 | 80.3 |
2011-07-20 | 2012-06-17 | EO-1 | 10 | 333 | 13.1 |
2013-02-16 | 2013-05-26 | TanDEM-X | 6 | 99 | 33.7 |
2013-05-16 | 2013-07-19 | Landsat 8 | 15 | 64 | 67.9 |
2013-09-05 | 2013-10-07 | Landsat 8 | 15 | 32 | 84.0 |
2014-05-10 | 2014-06-27 | Landsat 8 | 15 | 48 | 89.2 |
2014-07-22 | 2014-08-23 | Landsat 8 | 15 | 32 | 78.8 |
2015-02-23 | 2015-03-06 | TerraSAR-X | 1.25 | 11 | 34.7 |
2015-08-10 | 2015-10-13 | Landsat 8 | 15 | 64 | 69.4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wendt, A.; Mayer, C.; Lambrecht, A.; Floricioiu, D. A Glacier Surge of Bivachny Glacier, Pamir Mountains, Observed by a Time Series of High-Resolution Digital Elevation Models and Glacier Velocities. Remote Sens. 2017, 9, 388. https://doi.org/10.3390/rs9040388
Wendt A, Mayer C, Lambrecht A, Floricioiu D. A Glacier Surge of Bivachny Glacier, Pamir Mountains, Observed by a Time Series of High-Resolution Digital Elevation Models and Glacier Velocities. Remote Sensing. 2017; 9(4):388. https://doi.org/10.3390/rs9040388
Chicago/Turabian StyleWendt, Anja, Christoph Mayer, Astrid Lambrecht, and Dana Floricioiu. 2017. "A Glacier Surge of Bivachny Glacier, Pamir Mountains, Observed by a Time Series of High-Resolution Digital Elevation Models and Glacier Velocities" Remote Sensing 9, no. 4: 388. https://doi.org/10.3390/rs9040388
APA StyleWendt, A., Mayer, C., Lambrecht, A., & Floricioiu, D. (2017). A Glacier Surge of Bivachny Glacier, Pamir Mountains, Observed by a Time Series of High-Resolution Digital Elevation Models and Glacier Velocities. Remote Sensing, 9(4), 388. https://doi.org/10.3390/rs9040388