Detection of Absorbing Aerosol Using Single Near-UV Radiance Measurements from a Cloud and Aerosol Imager
"> Figure 1
<p>Comparison of model-simulated UVAI and SAI with respect to AOD, SSA, aerosol types, and aerosol layer height using VLIDORT. Solid lines indicate UVAI (354, 388 nm) and dashed lines indicate SAI (388 nm) using Equations (1) and (2). The aerosol’s SSA are indicated at top left. The surface albedo and terrain pressure are 0.05 and 1014 mb, respectively. The three aerosol types (smoke, dust, and NA) and their optical properties were obtained from AERONET lv.2 Inversion data using the aerosol classifying method of Lee et al. [<a href="#B27-remotesensing-09-00378" class="html-bibr">27</a>].</p> "> Figure 2
<p>A single path of OMI UVAI data is projected for all OMI data for the Korean Peninsula and surroundings (<b>top</b>). MODIS True Color image (<b>bottom</b>) with an 8 min time difference compared with OMI, showing a severe dust storm over the Korean Peninsula, which originated in north China. Highly absorbing aerosols within the dust storm were detected by OMI UVAI with values greater than 1.5.</p> "> Figure 3
<p>Flowchart of the SAI retrieval algorithm using the 388 nm instrument channel of OMI. To avoid bias in the algorithms, measurement quality flags of zero, pixel quality flags of zero, and final algorithm flags of zero and one are used in the OMI lv.2 data.</p> "> Figure 4
<p>(<b>a</b>–<b>j</b>) Frequency distribution of background AIs from <a href="#remotesensing-09-00378-t004" class="html-table">Table 4</a>. Upper panel shows results for 8 April 2006 and lower panel for 23 April 2006. From left to right, the frequency distributions show each background AI with cloud minimum M0 (<b>a</b>,<b>f</b>), without cloud minimum M0 (<b>b</b>,<b>g</b>), without cloud mean M0 (<b>c</b>,<b>h</b>), without cloud median M0 (<b>d</b>,<b>i</b>), and without cloud absolute minimum M0 (<b>e</b>,<b>j</b>). (<b>e</b>,<b>j</b>) plotted on a log scale on the y-axis. Among the five empirical background AI models, the minimum M0 (<b>b</b>), (<b>g</b>) shape is most likely to have a Gaussian distribution and is evenly distributed.</p> "> Figure 5
<p>Scatter plot of SAIs (388 nm) versus OMI lv.2 SSA for 8 April 2006. The empirical model of SAIs from (<b>a</b>) to (<b>f</b>) is the same as that listed in <a href="#remotesensing-09-00378-t004" class="html-table">Table 4</a>. These scatterplots use an AOD criterion of greater than 0.5 and a UVAI criterion of greater than 0.5 pixels. Among the five empirical SAI models, the M2 (<b>c</b>) has the smallest RMSE value.</p> "> Figure 6
<p>(<b>a</b>) MODIS RGB has an 8-min time difference compared with OMI. (<b>b</b>) OMI UVAI, (<b>c</b>) OMI SSA, and (<b>d</b>) calculated SAIs over the Korean Peninsula, comparing UTC 0319 and UTC 0458 on 23 April 2006. PM<sub>10</sub> concentrations were between 50 and 400 µg/m<sup>3</sup> on this day.</p> "> Figure 7
<p>(<b>a</b>–<b>i</b>) Results of an agreement and false detection test of OMI UVAI and OMI SAI for 8 April (Case 1) and 23 April (Case 2, Case 3) 2006, respectively. The x-axis indicates the SAI absorbing threshold ranging from −0.5 to 1.5. The different line styles indicate different UVAI threshold values. The SAI value of 0.5 corresponds to a UVAI value of 0.7. The false detection rate is constant, indicating that the current SAI algorithm correctly defines the absorbing aerosol pixels.</p> "> Figure 8
<p>OMI UVAI, SSA, and calculated TANSO-CAI SAI for UTC 04:29 on March 17 2012 over the Korean Peninsula. (<b>a</b>) MODIS RGB has an 8-min time difference compared with OMI; (<b>b</b>) A single path of OMI lv.2 UVAI (354 and 388 nm) data is projected; (<b>c</b>) OMI lv.2 SSA 388 nm (<b>d</b>) SAI calculated from TANSO-CAI has a 30-min time difference compared with OMI.</p> "> Figure 9
<p>OMI UVAI, SSA, and calculated CAI-SAI for UTC 04:40 on April 25 2012 over the Korean Peninsula. (<b>a</b>) MODIS RGB has an 8-min time difference compared with OMI; (<b>b</b>) A single path of OMI lv.2 UVAI (354 and 388 nm) data is projected. A sun-glint area near the south coast of China was removed because this area has a brighter surface than other ocean surface areas; (<b>c</b>) OMI lv.2 SSA 388 nm (<b>d</b>) SAI calculated from TANSO-CAI with a 30-min time difference compared with OMI.</p> "> Figure 10
<p>(<b>a</b>–<b>d</b>) Results of an agreement and false detection test of OMI UVAI and TANSO-CAI SAI for 17 March and 25 April 2012, respectively. The left column shows the results for OMI SSA values less than 1.0, while the right column shows the results for SSA values less than 0.95. The SAI value of 0.5 corresponds to a UVAI value of 0.7. The false detection rate is constant for moderate absorbing aerosol cases.</p> ">
Abstract
:1. Introduction
2. Data
2.1. OMI
2.2. GOSAT TANSO-CAI
3. Sensitivity Analysis Test of UVAI and SAI Using Theoretical Model Simulations with a Radiative Transfer Model
4. Results
4.1. Inter-Comparisons of SAI Obtained from Empirical Models
4.2. Performance of SAI Obtained from OMI (Including Validation with UVAI)
4.3. Performance of SAI Obtained from TANSO-CAI (Including Validation with UVAI)
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Appendix A
Use of Spherical Particle Approximation in Mineral Dust Aerosols
References
- Myhre, G.; Berglen, T.; Johnsrud, M.; Hoyle, C.; Berntsen, T.; Christopher, S.; Fahey, D.; Isaksen, I.S.; Jones, T.; Kahn, R. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation. Atmos. Chem. Phys. 2009, 9, 1365–1392. [Google Scholar] [CrossRef]
- Russell, P.; Bergstrom, R.; Shinozuka, Y.; Clarke, A.; DeCarlo, P.; Jimenez, J.; Livingston, J.; Redemann, J.; Dubovik, O.; Strawa, A. Absorption angstrom exponent in aeronet and related data as an indicator of aerosol composition. Atmos. Chem. Phys. 2010, 10, 1155–1169. [Google Scholar] [CrossRef]
- Solomon, S. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Higurashi, A.; Nakajima, T. Detection of aerosol types over the east china sea near japan from four-channel satellite data. Geophys. Res. Lett. 2002, 29, 17:1–17:4. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Lee, H.C.; Higurashi, A.; Takemura, T.; Song, C.H. Consistency of the aerosol type classification from satellite remote sensing during the atmospheric brown cloud–East Asia regional experiment campaign. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Torres, O.; Tanskanen, A.; Veihelmann, B.; Ahn, C.; Braak, R.; Bhartia, P.K.; Veefkind, P.; Levelt, P. Aerosols and surface uv products from ozone monitoring instrument observations: An overview. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Li, Q.; Li, C.; Mao, J. Evaluation of atmospheric aerosol optical depth products at ultraviolet bands derived from MODIS products. Aerosol Sci. Technol. 2012, 46, 1025–1034. [Google Scholar] [CrossRef]
- Herman, J.; Bhartia, P.; Torres, O.; Hsu, C.; Seftor, C.; Celarier, E. Global distribution of UV-absorbing aerosols from nimbus 7/toms data. J. Geophys. Res. Atmos. 1997, 102, 16911–16922. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements. J. Geophys. Res. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Torres, O.; Bhartia, P.; Herman, J.; Ahmad, Z.; Gleason, J. Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. J. Geophys. Res. Atmos. 1998, 103, 17099–17110. [Google Scholar] [CrossRef]
- Higurashi, A.; Nakajima, T. Development of a two-channel aerosol retrieval algorithm on a global scale using noaa avhrr. J. Atmos. Sci. 1999, 56, 924–941. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Fraser, R.S.; Ferrare, R.A. Satellite measurements of large-scale air pollution: Methods. J. Geophys. Res. Atmos. 1990, 95, 9895–9909. [Google Scholar] [CrossRef]
- Jeong, M.J.; Li, Z. Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and total ozone mapping spectrometer. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Jung, Y.; Kim, J.; Kim, W.; Boesch, H.; Lee, H.; Cho, C.; Goo, T.-Y. Impact of aerosol property on the accuracy of a CO2 retrieval algorithm from satellite remote sensing. Remote Sens. 2016, 8, 322. [Google Scholar] [CrossRef]
- Dobber, M.; Kleipool, Q.; Dirksen, R.; Levelt, P.; Jaross, G.; Taylor, S.; Kelly, T.; Flynn, L.; Leppelmeier, G.; Rozemeijer, N. Validation of ozone monitoring instrument level 1b data products. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Levelt, P.F.; Van den Oord, G.H.; Dobber, M.R.; Malkki, A.; Visser, H.; De Vries, J.; Stammes, P.; Lundell, J.O.; Saari, H. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Torres, O.; Ahn, C.; Chen, Z. Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations. Atmos. Meas. Tech. 2013, 6, 3257–3270. [Google Scholar] [CrossRef]
- Jethva, H.; Torres, O.; Ahn, C. Global assessment of omi aerosol single-scattering albedo using ground-based aeronet inversion. J. Geophys. Res. Atmos. 2014, 119, 9020–9040. [Google Scholar] [CrossRef]
- Yokota, T.; Yoshida, Y.; Eguchi, N.; Ota, Y.; Tanaka, T.; Watanabe, H.; Maksyutov, S. Global concentrations of CO2 and CH4 retrieved from gosat: First preliminary results. Sola 2009, 5, 160–163. [Google Scholar] [CrossRef]
- Kuze, A.; Suto, H.; Nakajima, M.; Hamazaki, T. Thermal and near infrared sensor for carbon observation fourier-transform spectrometer on the greenhouse gases observing satellite for greenhouse gases monitoring. Appl. Opt. 2009, 48, 6716–6733. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Ota, Y.; Eguchi, N.; Kikuchi, N.; Nobuta, K.; Tran, H.; Morino, I.; Yokota, T. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the greenhouse gases observing satellite. Atmos. Meas. Tech. 2011, 4, 717–734. [Google Scholar] [CrossRef]
- Fukuda, S.; Nakajima, T.; Takenaka, H.; Higurashi, A.; Kikuchi, N.; Nakajima, T.Y.; Ishida, H. New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the gosat/tanso-cloud and aerosol imager. J. Geophys. Res. Atmos. 2013, 118. [Google Scholar] [CrossRef]
- Kuze, A.; Suto, H.; Shiomi, K.; Urabe, T.; Nakajima, M.; Yoshida, J.; Kawashima, T.; Yamamoto, Y.; Kataoka, F.; Buijs, H. Level 1 algorithms for TANSO on GOSAT: Processing and on-orbit calibrations. Atmos. Meas. Tech. 2012, 5, 2447–2467. [Google Scholar] [CrossRef]
- Spurr, R. Lidort and vlidort: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems. In Light Scattering Reviews 3; Springer: Heidelberg, Germany, 2008; pp. 229–275. [Google Scholar]
- De Rooij, W.; Van der Stap, C. Expansion of Mie scattering matrices in generalized spherical functions. Astron. Astrophys. 1984, 131, 237–248. [Google Scholar]
- Dubovik, O.; Sinyuk, A.; Lapyonok, T.; Holben, B.N.; Mishchenko, M.; Yang, P.; Eck, T.F.; Volten, H.; Munoz, O.; Veihelmann, B. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Song, C.; Kim, S.; Chun, Y.; Sohn, B.; Holben, B. Characteristics of aerosol types from aeronet sunphotometer measurements. Atmos. Environ. 2010, 44, 3110–3117. [Google Scholar] [CrossRef]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Mok, J.; Krotkov, N.A.; Arola, A.; Torres, O.; Jethva, H.; Andrade, M.; Labow, G.; Eck, T.F.; Li, Z.; Dickerson, R.R. Impacts of brown carbon from biomass burning on surface uv and ozone photochemistry in the Amazon Basin. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.; Ajtai, T.; Kandler, K.; Lieke, K.; Linke, C.; Müller, T.; Schnaiter, M.; Vragel, M. Complex refractive indices of Saharan dust samples at visible and near UV wavelengths: A laboratory study. Atmos. Chem. Phys. 2012, 12, 2491–2512. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.; Wong, M.S.; Yoon, J.; Lee, J.; Wu, D.; Chan, P.; Nichol, J.E.; Chung, C.-Y.; Ou, M.-L. Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction. Remote Sens. Environ. 2014, 142, 176–187. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.; Song, C.H.; Ryu, J.-H.; Ahn, Y.-H.; Song, C. Algorithm for retrieval of aerosol optical properties over the ocean from the geostationary ocean color imager. Remote Sens. Environ. 2010, 114, 1077–1088. [Google Scholar] [CrossRef]
- Park, S.S.; Kim, J.; Lee, J.; Lee, S.; Kim, J.S.; Chang, L.S.; Ou, S. Combined dust detection algorithm by using MODIS infrared channels over East Asia. Remote Sens. Environ. 2014, 141, 24–39. [Google Scholar] [CrossRef]
- Kahnert, M.; Kylling, A. Radiance and flux simulations for mineral dust aerosols: Assessing the error due to using spherical or spheroidal model particles. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Yi, B.; Hsu, C.N.; Yang, P.; Tsay, S.-C. Radiative transfer simulation of dust-like aerosols: Uncertainties from particle shape and refractive index. J. Aerosol Sci. 2011, 42, 631–644. [Google Scholar] [CrossRef]
- Meng, Z.; Yang, P.; Kattawar, G.W.; Bi, L.; Liou, K.; Laszlo, I. Single-scattering properties of tri-axial ellipsoidal mineral dust aerosols: A database for application to radiative transfer calculations. J. Aerosol Sci. 2010, 41, 501–512. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Kahn, R.A.; West, R.A. Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J. Geophys. Res. Atmos. 1997, 102, 16831–16847. [Google Scholar] [CrossRef]
- Gassó, S.; Torres, O. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the omi near-uv retrievals over the ocean. Atmos. Meas. Tech. 2016, 9, 3031–3052. [Google Scholar] [CrossRef]
- Krotkov, N.A.; Flittner, D.; Krueger, A.; Kostinski, A.; Riley, C.; Rose, W.; Torres, O. Effect of particle non-sphericity on satellite monitoring of drifting volcanic ash clouds. J. Quant. Spectrosc. Radiat. Transf. 1999, 63, 613–630. [Google Scholar] [CrossRef]
- Van de Hulst, H.C.; Twersky, V. Light scattering by small particles. Phys. Today 1957, 10, 28–30. [Google Scholar] [CrossRef]
TYPE | rm1 | rm2 | σm1 | σm2 | Fraction of m1 | Re(RI) (443 nm) |
---|---|---|---|---|---|---|
SMOKE | 0.080 | 1.005 | 1.644 | 1.849 | 0.9997 | 1.45 |
DUST | 0.065 | 0.832 | 1.451 | 1.820 | 0.9978 | 1.52 |
NA | 0.087 | 0.741 | 1.772 | 1.976 | 0.9997 | 1.42 |
Variable | No. of Entries | Entries |
---|---|---|
Surface elevation | 3 | 0, 3, 6 km |
Aerosol peak height | 5 | 0.5, 1.5, 3.0, 4.5, 6.0 km |
AOD | 4 | 0, 1, 2, 3 |
SSA (ref_wav = 443 nm) | 7 (SMOKE, DUST) 8 (NA) | 0.82, 0.85, 0.88, 0.91, 0.94, 0.96, 0.98 0.90, 0.92, 0.94, 0.96, 0.97, 0.98, 0.99, 1.0 |
Wavelength | 2 | 354, 388 nm |
Surface reflectance | 8 | 0.0, 0.01, 0.025, 0.05, 0.1, 0.3, 0.55, 0.8 |
Variable | No. of Entries | Entries |
---|---|---|
SZA | 8 | 0, 10, ..., 70 |
RAA | 7 | 0, 30, ..., 180 |
VZA | 8 | 0, 10, ..., 70 |
Surface pressure | 6 | 600, 700, 800, 900, 1000, 1014 mb |
AOD | 1 | 0 |
Wavelength (OMI) Wavelength (CAI) | 2 41 | 354, 388 nm 360,361, ..., 400 nm |
Surface reflectance | 8 | 0.0, 0.025, 0.05, 0.12, 0.25, 0.4, 0.55, 0.7 |
No. | Day | Before Cloud Screening | After Cloud Screening | ||||
---|---|---|---|---|---|---|---|
(a) M0 | (b) M1: M0-minM0 | (c) M2: M0-minM0 | (d) M3: M0-meanM0 | (e) M4: M0-medianM0 | (f) M5: M0-min(absM0) | ||
1 | 20060408 t0400 | y = −0.026x + 0.894 | y = −0.015x + 0.997 | y = −0.019x + 0.938 | y = −0.023x + 0.913 | y = −0.022x + 0.910 | y = −0.026x + 0.891 |
R2 = 0.525 | R2= 0.427 | R2 = 0.399 | R2= 0.544 | R2 = 0.538 | R2 = 0.514 | ||
2 | 20060423 t0319 | y = −0.031x + 0.869 | y = −0.025x + 1.039 | y = −0.038x + 0.939 | y = −0.03x + 0.892 | y = −0.027x + 0.890 | y = −0.033x + 0.861 |
R2 = 0.357 | R2 = 0.340 | R2 = 0.540 | R2 = 0.372 | R2 = 0.341 | R2 = 0.429 | ||
3 | 20060408 t0458 | y = −0.056x + 0.872 | y = −0.033x + 1.096 | y = −0.038x + 0.967 | y = −0.050x + 0.909 | y = −0.048x + 0.901 | y = −0.056x + 0.868 |
R2 = 0.603 | R2 = 0.348 | R2 = 0.626 | R2 = 0.597 | R2 = 0.571 | R2 = 0.643 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Go, S.; Kim, M.; Kim, J.; Park, S.S.; Jeong, U.; Choi, M. Detection of Absorbing Aerosol Using Single Near-UV Radiance Measurements from a Cloud and Aerosol Imager. Remote Sens. 2017, 9, 378. https://doi.org/10.3390/rs9040378
Go S, Kim M, Kim J, Park SS, Jeong U, Choi M. Detection of Absorbing Aerosol Using Single Near-UV Radiance Measurements from a Cloud and Aerosol Imager. Remote Sensing. 2017; 9(4):378. https://doi.org/10.3390/rs9040378
Chicago/Turabian StyleGo, Sujung, Mijin Kim, Jhoon Kim, Sang Seo Park, Ukkyo Jeong, and Myungje Choi. 2017. "Detection of Absorbing Aerosol Using Single Near-UV Radiance Measurements from a Cloud and Aerosol Imager" Remote Sensing 9, no. 4: 378. https://doi.org/10.3390/rs9040378
APA StyleGo, S., Kim, M., Kim, J., Park, S. S., Jeong, U., & Choi, M. (2017). Detection of Absorbing Aerosol Using Single Near-UV Radiance Measurements from a Cloud and Aerosol Imager. Remote Sensing, 9(4), 378. https://doi.org/10.3390/rs9040378