Mapping Plastic-Mulched Farmland with C-Band Full Polarization SAR Remote Sensing Data
"> Figure 1
<p>The location of the study areas ((<b>a</b>) is the location of the study area in Guyuan; and (<b>b</b>) is the location of the study area in Jizhou).</p> "> Figure 2
<p>The distribution of collected samples: (<b>a</b>) samples of land cover types in Guyuan; (<b>b</b>) samples of land cover types in Jizhou; two scenes of GF-1 images are displayed in false color composition (R: NIR, G: red, B: green).</p> "> Figure 3
<p>Workflow of this study (H denotes Entropy from H/A/Alpha decomposition and A denotes Anisotropy from H/A/Alpha decomposition).</p> "> Figure 4
<p>The backscattering intensity of land cover types on Radarsat-2 images in Jizhou.</p> "> Figure 5
<p>The backscattering intensity of land cover types on Radarsat-2 images in Guyuan.</p> "> Figure 6
<p>Bar graph (including the standard deviation) showing the SAR features’ importance assessed by RF for mapping PMF in Jizhou and Guyuan.</p> "> Figure 7
<p>The images of H/A/Alpha polarization decomposition (the red dashed rectangle represents the main PMF region).</p> "> Figure 8
<p>The spatial distribution of PMF in Jizhou ((<b>a</b>) result from RF using backscattering intensity of four polarizations, (<b>b</b>) result from RF using all features, (<b>c</b>) result from SVM using all features).</p> "> Figure 9
<p>The spatial distribution of PMF in Guyuan ((<b>a</b>) result from RF using backscattering intensity of four polarizations, (<b>b</b>) result from RF using all features, (<b>c</b>) result from SVM using all features).</p> "> Figure 10
<p>The photo and GF-1 image showing PMF in Jizhou and Guyuan: (<b>a</b>) field photo of PMF in Guyuan; (<b>b</b>) field photo of PMF in Jizhou; (<b>c</b>) GF-1 image of PMF in Guyuan; (<b>d</b>) GF-1 image of PMF in Jizhou; two GF-1 images are displayed in false color composite (R: NIR, G: red, B: green).</p> ">
Abstract
:1. Introduction
2. Study Areas and Data
2.1. Study Areas
2.2. Data
2.2.1. Remote Sensing Data and Preprocessing
2.2.2. Field Survey Data
3. Methodology
3.1. Separability Analysis
3.2. Polarimetric Decomposition
3.3. Machine Learning Algorithms and Accuracy Assessment
3.3.1. Random Forest
3.3.2. Support Vector Machine
3.3.3. Accuracy Assessment
3.4. Input Feature Selection
4. Results
4.1. Importance of SAR Features for Mapping PMF
4.2. Classification Accuracy of PMF with Radarsat-2 Data
5. Discussion
5.1. The Data and Features
5.2. The Differences of Classifiers
5.3. Difference in Regions
5.4. Comparison with Previous Studies
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bai, L.; Hai, J.; Han, Q.; Jia, Z. Effects of mulching with different kinds of plastic film on growth and water use efficiency of winter wheat in Weibei Highland. Agric. Res. Arid Areas 2010, 28, 135–139. [Google Scholar]
- Yan, C.; Mei, X.; He, W.; Zheng, S. Present situation of residue pollution of mulching plastic film and controlling measures. Trans. Chin. Soc. Agric. Eng. 2006, 22, 269–272. [Google Scholar]
- Zhang, D. Study on collection of used plastic film in fields. J. China Agric. Univ. 1998, 3, 103–106. [Google Scholar]
- Lu, L.; Di, L.; Ye, Y. A Decision-Tree Classifier for Extracting Transparent Plastic-Mulched Landcover from Landsat-5 TM Images. IEEE J.-STARS 2014, 7, 4548–4558. [Google Scholar] [CrossRef]
- Yan, C.; Liu, E.; Shu, F.; Liu, Q.; Liu, S.; He, W. Review of agricultural plastic mulching and its residual pollution and prevention measures in China. J. Agric. Resour. Environ. 2014, 31, 95–102. [Google Scholar]
- Nordberg, M.L.; Evertson, J. Monitoring change in mountainous dry-heath vegetation at a regional scale using multitemporal Landsat TM data. AMBIO 2003, 32, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Subramaniam, S.; Babu, A.V.S.; Roy, P.S. Automated Water Spread Mapping Using ResourceSat-1 AWiFS Data for Water Bodies Information System. IEEE J.-STARS 2011, 4, 205–215. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, J.; Shen, Z.; Hu, X.; Yang, H. Multiscale Water Body Extraction in Urban Environments from Satellite Images. IEEE J.-STARS 2014, 7, 4301–4312. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Lin, H. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sens. Environ. 2014, 141, 155–167. [Google Scholar] [CrossRef]
- Makynen, M.; Simila, M. Thin Ice Detection in the Barents and Kara Seas With AMSR-E and SSMIS Radiometer Data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5036–5053. [Google Scholar] [CrossRef]
- Thompson, J.A.; Paull, D.J.; Lees, B.G. Using phase-spaces to characterize land surface phenology in a seasonally snow-covered landscape. Remote Sens. Environ. 2015, 166, 178–190. [Google Scholar] [CrossRef]
- Nijland, W.; Addink, E.A.; De Jong, S.M.; Van der Meer, F.D. Optimizing spatial image support for quantitative mapping of natural vegetation. Remote Sens. Environ. 2009, 113, 771–780. [Google Scholar] [CrossRef]
- Agüera, F.; Aguilar, M.A.; Aguilar, F.J. Detecting greenhouse changes from QuickBird imagery on the Mediterranean coast. Int. J. Remote Sens. 2006, 27, 4751–4767. [Google Scholar] [CrossRef]
- Agüera, F.; Liu, J.G. Automatic greenhouse delineation from QuickBird and Ikonos satellite images. Comput. Electron. Agric. 2009, 66, 191–200. [Google Scholar] [CrossRef]
- Carvajal, F.; Agüera, F.; Aguilar, F.J.; Aguilar, M.A. Relationship between atmospheric corrections and training-site strategy with respect to accuracy of greenhouse detection process from very high resolution imagery. Int. J. Remote Sens. 2010, 31, 2977–2994. [Google Scholar] [CrossRef]
- Arcidiacono, C.; Porto, S.M.C. A model to manage crop-shelter spatial development by multi-temporal coverage analysis and spatial indicators. Biosyst. Eng. 2010, 107, 107–122. [Google Scholar] [CrossRef]
- Arcidiacono, C.; Porto, S.M.C.; Cascone, G. Accuracy of crop-shelter thematic maps: A case study of maps obtained by spectral and textural classification of high-resolution satellite images. J. Food Agric. Environ. 2012, 10, 1071–1074. [Google Scholar]
- Koc-San, D. Evaluation of different classification techniques for the detection of glass and plastic greenhouses from WorldView-2 satellite imagery. J. Appl. Remote Sens. 2013, 7. [Google Scholar] [CrossRef]
- Aguilar, M.; Vallario, A.; Aguilar, F.; Lorca, A.; Parente, C. Object-Based Greenhouse Horticultural Crop Identification from Multi-Temporal Satellite Imagery: A Case Study in Almeria, Spain. Remote Sens. 2015, 7, 7378–7401. [Google Scholar] [CrossRef]
- Aguilar, M.; Bianconi, F.; Aguilar, F.; Fernández, I. Object-Based Greenhouse Classification from GeoEye-1 and WorldView-2 Stereo Imagery. Remote Sens. 2014, 6, 3554–3582. [Google Scholar] [CrossRef]
- Aguilar, M.; Nemmaoui, A.; Novelli, A.; Aguilar, F.; García Lorca, A. Object-Based Greenhouse Mapping Using Very High Resolution Satellite Data and Landsat 8 Time Series. Remote Sens. 2016, 8, 513. [Google Scholar] [CrossRef]
- Novelli, A.; Aguilar, M.A.; Nemmaoui, A.; Aguilar, F.J.; Tarantino, E. Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: A case study from Almería (Spain). Int. J. Appl. Earth Obs. 2016, 52, 403–411. [Google Scholar] [CrossRef]
- Wu, C.F.; Deng, J.S.; Ke, W.; Ma, L.G.; Tahmassebi, A.R.S. Object-based classification approach for greenhouse mapping using Landsat-8 imagery. Int. J. Agric. Biol. Eng. 2016, 9, 79. [Google Scholar]
- Yang, D.D.; Chen, J.; Zhou, Y.; Chen, X.; Chen, X.; Cao, X. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index. ISPRS J. Photogramm. 2017, 128, 47–60. [Google Scholar] [CrossRef]
- Levin, N.; Lugass, R.; Ramon, U.; Braun, O.; Ben-Dor, E. Remote sensing as a tool for monitoring plasticulture in agricultural landscapes. Int. J. Remote Sens. 2007, 28, 183–202. [Google Scholar] [CrossRef]
- Lu, L.; Hang, D.; Di, L. Threshold model for detecting transparent plastic-mulched landcover using moderate-resolution imaging spectroradiometer time series data: A case study in southern Xinjiang, China. J. Appl. Remote Sens. 2015, 9. [Google Scholar] [CrossRef]
- Hasituya; Chen, Z.X.; Wang, L.M.; Wu, W.B.; Jiang, Z.W.; Li, H. Monitoring Plastic-Mulched Farmland by Landsat-8 OLI Imagery Using Spectral and Textural Features. Remote Sens. 2016, 8, 353. [Google Scholar] [CrossRef]
- Hasituya; Chen, Z.X. Mapping Plastic-Mulched Farmland with Multi-Temporal Landsat-8 Data. Remote Sens. 2017, 9, 557. [Google Scholar] [CrossRef]
- Hasituya; Chen, Z.X.; Wang, L.M.; Liu, J. Selecting Appropriate Spatial Scale for Mapping Plastic-Mulched Farmland with Satellite Remote Sensing Imagery. Remote Sens. 2017. [Google Scholar] [CrossRef]
- Lanorte, A.; De Santis, F.; Nolè, G.; Blanco, I.; Loisi, R.V.; Schettini, E.; Vox, G. Agricultural plastic waste spatial estimation by Landsat 8 satellite images. Comput. Electron. Agric. 2017, 141, 35–45. [Google Scholar] [CrossRef]
- Yang, H.; Chen, E.; Li, Z.; Zhao, C.; Yang, G.; Pignatti, S.; Casa, R.; Zhao, L. Wheat lodging monitoring using polarimetric index from RADARSAT-2 data. Int. J. Appl. Earth Obs. 2015, 34, 157–166. [Google Scholar] [CrossRef]
- Maher, I.S.; Faten, H.N.; Faez, H.B.; Biswajeet, P.; Mohamed Shariff, A.R.B. A refined classification approach by integrating Landsat Operational Land Imager (OLI) and RADARSAT-2 imagery for land-use and land-cover mapping in a tropical area. Int. J. Remote Sens. 2016, 37, 2358–2375. [Google Scholar]
- Qi, Z.; Yeh, A.G.; Li, X.; Lin, Z. A novel algorithm for land use and land cover classification using RADARSAT-2 polarimetric SAR data. Remote Sens. Environ. 2012, 118, 21–39. [Google Scholar] [CrossRef]
- Heine, I.; Jagdhuber, T.; Itzerott, S. Classification and Monitoring of Reed Belts Using Dual-Polarimetric TerraSAR-X Time Series. Remote Sens. 2016, 8, 552. [Google Scholar] [CrossRef]
- Koppe, W.; Gnyp, M.L.; Huett, C.; Yao, Y.; Miao, Y.; Chen, X.; Bareth, G. Rice monitoring with multi-temporal and dual-polarimetric TerraSAR-X data. Int. J. Appl. Earth Obs. 2013, 21, 568–576. [Google Scholar] [CrossRef]
- Liu, C.; Shang, J.; Vachon, P.W.; McNairn, H. Multiyear Crop Monitoring Using Polarimetric Radarsat-2 Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2227–2240. [Google Scholar] [CrossRef]
- Lopez-Sanchez, J.M.; Vicente-Guijalba, F.; Ballester-Berman, J.D.; Cloude, S.R. Polarimetric Response of Rice Fields at C-Band: Analysis and Phenology Retrieval. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2977–2993. [Google Scholar] [CrossRef] [Green Version]
- Hajnsek, I.; Jagdhuber, T.; Schcoen, H.; Papathanassiou, K.P. Potential of Estimating Soil Moisture Under Vegetation Cover by Means of PolSAR. IEEE Trans. Geosci. Remote Sens. 2009, 47, 442–454. [Google Scholar] [CrossRef] [Green Version]
- Insom, P.; Cao, C.; Boonsrimuang, P.; Liu, D.; Saokarn, A.; Yomwan, P.; Xu, Y. A Support Vector Machine-Based Particle Filter Method for Improved Flooding Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1943–1947. [Google Scholar] [CrossRef]
- Liu, C.; Yin, J.; Yang, J. Coastline detection in polarimetric SAR images based on mixed edge detection. Syst. Eng. Electron. 2016, 38, 1262–1267. [Google Scholar]
- Nunziata, F.; Buono, A.; Migliaccio, M.; Benassai, G. Dual-Polarimetric C- and X-Band SAR Data for Coastline Extraction. IEEE J.-STARS 2016, 9, 4921–4928. [Google Scholar] [CrossRef]
- Zhang, G.; Perrie, W.; Li, X.; Zhang, J.A. A Hurricane Morphology and Sea Surface Wind Vector Estimation Model Based on C-Band Cross-Polarization SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1743–1751. [Google Scholar] [CrossRef]
- Ivonin, D.V.; Skrunes, S.; Brekke, C.; Ivanov, A.Y. 1 Interpreting sea surface slicks on the basis of the normalized radar cross-section model using RADARSAT-2 copolarization dual-channel SAR images. Geophys. Res. Lett. 2016, 43, 2748–2757. [Google Scholar] [CrossRef]
- You, B. Analysis and Application of Target’s Scattering Property in Polarimetric SAR Images. Ph.D. Thesis, Tsinghua University, Beijing, China, 2014. [Google Scholar]
- Shang, B. Quality Inspection and Quality Analysis of Hebei Province Jizhou City Environment. Master’s Thesis, Northwest Agriculture & Forestry University, Xianyang, China, 2014. [Google Scholar]
- Huang, X.; Wang, J.; Shang, J.; Liao, C.; Liu, J. Application of polarization signature to land cover scattering mechanism analysis and classification using multi-temporal C-band polarimetric RADARSAT-2 imagery. Remote Sens. Environ. 2017, 193, 11–28. [Google Scholar] [CrossRef]
- Moran, M.S.; Alonso, L.; Moreno, J.F.; Cendrero Mateo, M.P.; de la Cruz, D.F.; Montoro, A. A RADARSAT-2 Quad-Polarized Time Series for Monitoring Crop and Soil Conditions in Barrax, Spain. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1057–1070. [Google Scholar] [CrossRef]
- European Space Agency PolSARpro. V. 4.2. Available online: http://earth.eo.esa.int/polsarpro/ (accessed on 1 November 2013).
- Wang, W.; Wang, J.; Mao, S.; Li, H. Ship detection based on classification of polarimetric SAR images. Signal Process. 2007, 23, 676–679. [Google Scholar]
- Van Beijma, S.; Comber, A.; Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 2014, 149, 118–129. [Google Scholar] [CrossRef]
- You, B.; Yang, J.; Yin, J.; Xu, B. Decomposition of the Kennaugh Matrix Based on a New Norm. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1000–1004. [Google Scholar] [CrossRef]
- Krogager, E.; Boerner, W.M.; Madsen, S.N. Feature-motivated Sinclair matrix (sphere/diplane/helix) decomposition and its application to target sorting for land feature classification. In Proceedings of the SPIE Conference on Wideband Interferometric Sensing and Imaging Polarimetry, San Diego, CA, USA, 23 December 1997; Volume 3120, pp. 144–154. [Google Scholar]
- Duguay, Y.; Bernier, M.; Lévesque, E.; Domine, F. Land Cover Classification in SubArctic Regions Using Fully Polarimetric Radarsat-2 Data. Remote Sens. 2016, 8, 697. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Pal, M. Support vector machine-based feature selection for land cover classification: A case study with DAIS hyperspectral data. Int. J. Remote Sens. 2006, 27, 2877–2894. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dube, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Heinzel, J.; Koch, B. Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation. Int. J. Appl. Earth Obs. 2012, 18, 101–110. [Google Scholar] [CrossRef]
- Yousefi, S.; Tazeh, M.; Mirzaee, S.; Moradi, H.R.; Tavangar, S.H. Comparison of different classification algorithms in satellite imagery to produce land use maps (Case study: Noor city). J. Appl. RS GIS Tech. Nat. Resour. Sci. 2011, 2, 15–25. [Google Scholar]
- Feng, Q.; Zhou, L.; Chen, E.; Liang, X.; Zhao, L.; Zhou, Y. The Performance of Airborne C-Band PolInSAR Data on Forest Growth Stage Types Classification. Remote Sens. 2017, 9, 955. [Google Scholar] [CrossRef]
- Waske, B.; van der Linden, S.; Benediktsson, J.A.; Rabe, A.; Hostert, P. Sensitivity of Support Vector Machines to Random Feature Selection in Classification of Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2880–2889. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Lin, Z. Optimizing Subspace SVM Ensemble for Hyperspectral Imagery Classification. IEEE J.-STARS 2014, 7, 1295–1305. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.; Taylor & Francis Group: New York, NY, USA, 2009. [Google Scholar]
- KopeĿ, D.; Michalska-Hejduk, D.; Sſawik, S.; Berezowski, T.; Borowski, M.; Rosadziſski, S.; Chormaſski, J. Application of multisensoral remote sensing data in the mapping of alkaline fens Natura 2000 habitat. Ecol. Indic. 2016, 70, 196–208. [Google Scholar] [CrossRef]
- Guan, H.; Li, J.; Chapman, M.; Deng, F.; Ji, Z.; Yang, X. Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests. Int. J. Remote Sens. 2013, 34, 5166–5186. [Google Scholar] [CrossRef]
- Xu, L.; Li, J.; Brenning, A. A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery. Remote Sens. Environ. 2014, 141, 14–23. [Google Scholar] [CrossRef]
Parameters of Radarsat-2 | Jizhou | Guyuan |
---|---|---|
Nominal swatch width | 25 km | 25 km |
Wavelength/frequency | C-band (5.405 GHz, 5.54 cm) | C-band (5.405 GHz, 5.54 cm) |
Polarization | Full quad-polarization HH + VV + HV + VH | Full quad-polarization HH + VV + HV + VH |
Resolution of range | 4.73 m | 9.14 m |
Resolution of azimuth | 4.74 m | 5.18 m |
Incidence angle | 25.91° | 30.42° |
Repeated cycle | 24 days | 24 days |
Acquired date | 25 April 2015 | 27 April 2015 |
Image center | 37°37′N/115°27′E | 36°03′N/106°07′E |
Upper left corner | 37°43′N/115°18′E | 36°09′N/105°58′E |
Upper right corner | 37°29′N/115°21′E | 35°54′N/106°01′E |
Lower left corner | 37°46′N/115°34′E | 36°11′N/106°13′E |
Lower right corner | 37°32′N/115°37′E | 35°57′N/106°17′E |
Land Cover Types | Remarks | Number of Samples | |
---|---|---|---|
Jizhou | Guyuan | ||
Plastic-Mulched Farmland (PMF) | White Plastic Film | 189 | 161 |
Impervious Surface (IS) | Buildings, Factories, Road, and Dam Boundaries | 165 | 139 |
Vegetation Cover (VC) | Crop, Vegetable Field, Grassland, Woodland | 197 | 101 |
Water Body (WB) | Rivers, Lakes and Irrigation Canals | 64 | 30 |
Bare Soil (BS) | Bare Land, Fallow land and Abandoned Land | 93 | 71 |
Plastic Greenhouse (PG) | Walk-in or Medium Plastic Tunnel | - | 30 |
Mountain Area (MA) | Mountain Area | - | 121 |
Sum of Samples | - | 708 | 653 |
Polarimetric Decomposition Methods | Polarimetric Decomposition Descriptors | Abbreviation |
---|---|---|
Yamaguchi4 | Yamaguchi4_Dbl | Y_Dbl |
Yamaguchi4_Hlx | Y_Hlx | |
Yamaguchi4_Odd | Y_Odd | |
Yamaguchi4_Vol | Y_Vol | |
Freeman | Freeman_Dbl | F_Dbl |
Freeman_Odd | F_Odd | |
Freeman_Vol | F_Vol | |
H/A/Alpha | Alpha | Alpha |
Anisotropy | Anisotropy | |
Entropy | Entropy_ | |
Combination_1mH1mA | C_1mH1mA | |
Combination_1mHA | C_1mHA | |
Combination_H1mA | C_H1mA | |
Combination_HA | C_HA | |
Krogager | Krogager_Ks | K_Ks |
Krogager_Kh | K_Kh | |
Krogager_Kd | K_Kd |
Classifiers | Features | Jizhou | Guyuan | ||||||
---|---|---|---|---|---|---|---|---|---|
OA | CI of OA | PA | UA | OA | CI of OA | PA | UA | ||
RF | 100% | 74.82 | 74.00–75.64 | 85.31 | 66.73 | 64.21 | 63.67–64.75 | 74.49 | 51.93 |
90% | 73.81 | 72.98–74.64 | 80.73 | 67.56 | 63.49 | 62.95–64.03 | 72.80 | 51.88 | |
80% | 73.36 | 72.53–74.19 | 79.82 | 67.46 | 63.26 | 62.72–63.80 | 72.29 | 52.14 | |
Backscattering Intensity | 59.75 | 58.83–60.67 | 68.29 | 52.71 | 56.83 | 55.28–57.38 | 65.43 | 49.69 | |
SVM | 100% | 73.45 | 72.62– 74.28 | 84.51 | 66.44 | 63.97 | 63.43–64.51 | 70.85 | 51.13 |
90% | 73.06 | 72.22– 73.90 | 81.99 | 65.84 | 62.81 | 62.27–63.35 | 69.57 | 50.92 | |
80% | 73.14 | 72.30– 73.98 | 78.79 | 67.24 | 62.11 | 61.57–62.65 | 69.56 | 50.32 | |
Backscattering Intensity | 58.25 | 57.32– 59.18 | 66.21 | 50.73 | 53.97 | 53.41–54.53 | 67.54 | 49.53 |
Classifiers | Features | Kappa | Z Statistic | p | ||
---|---|---|---|---|---|---|
Jizhou | Guyuan | Jizhou | Guyuan | |||
RF | with the highest accuracy | 0.667 | 0.531 | 163.56 | 7.19 | <0.005 |
with the worst accuracy | 0.469 | 0.439 | 101.38 | 16.95 | <0.005 | |
SVM | with the highest accuracy | 0.649 | 0.649 | 156.25 | 6.84 | <0.005 |
with the worst accuracy | 0.401 | 0.411 | 99.26 | 5.63 | <0.005 |
Pairwise Comparison | Z Statistic | p | |
---|---|---|---|
Jizhou | Guyuan | ||
The highest accuracy of RF vs. The worst accuracy of RF | 32.13 | 19.32 | <0.005 |
The highest accuracy of SVM vs. The worst accuracy of SVM | 29.83 | 17.56 | <0.005 |
The highest accuracy of RF vs. The highest accuracy of SVM | 3.07 | 2.99 | <0.005 |
The worst accuracy of RF vs. The worst accuracy of SVM | 28.99 | 16.83 | <0.005 |
Features | OA: 59.75 | PA: 68.29 | UA: 52.71 | CI: 58.83–60.67 | |||
Land Cover Types | WB | VC | PMF | BS | IS | Total | |
Backscattering Intensity of four polarizations | WB | 560 | 52 | 157 | 91 | 7 | 867 |
VC | 103 | 1985 | 379 | 246 | 500 | 3213 | |
PMF | 267 | 454 | 1790 | 726 | 159 | 3396 | |
BS | 44 | 77 | 214 | 100 | 54 | 489 | |
IS | 54 | 561 | 81 | 131 | 2032 | 2859 | |
Total | 1028 | 3129 | 2621 | 1294 | 2752 | 10,824 | |
Optimized Feature Set | OA: 74.82 | PA: 85.31 | UA: 66.73 | CI: 74.00–75.64 | |||
Land Cover Types | WB | VC | PMF | BS | IS | Total | |
WB | 643 | 34 | 62 | 72 | 14 | 825 | |
VC | 110 | 2587 | 145 | 224 | 211 | 3277 | |
PMF | 181 | 88 | 2236 | 827 | 19 | 3351 | |
BS | 28 | 72 | 165 | 146 | 21 | 432 | |
IS | 66 | 348 | 13 | 25 | 2487 | 2939 | |
Total | 1028 | 3129 | 2621 | 1294 | 2752 | 10,824 |
Features | OA: 56.83 | PA: 65.43 | UA: 49.69 | CI: 55.28–57.38 | |||||
Land Cover Types | WB | VC | PMF | MA | PG | IS | BS | Total | |
Backscattering Intensity of four polarizations | WB | 888 | 77 | 38 | 117 | 174 | 291 | 25 | 1610 |
VC | 0 | 1057 | 447 | 1100 | 48 | 515 | 136 | 3303 | |
PMF | 0 | 597 | 2968 | 861 | 16 | 78 | 1453 | 5973 | |
MA | 0 | 1018 | 382 | 7192 | 386 | 1622 | 173 | 10,773 | |
PG | 0 | 9 | 26 | 46 | 71 | 184 | 1 | 337 | |
IS | 90 | 475 | 150 | 1130 | 609 | 5144 | 18 | 7616 | |
BS | 0 | 209 | 525 | 202 | 7 | 20 | 128 | 1091 | |
Total | 978 | 3442 | 4536 | 10,648 | 1311 | 7854 | 1934 | 30,703 | |
Optimized Feature Set | OA: 64.21 | PA: 74.49 | UA: 51.93 | CI: 63.67–64.75 | |||||
Land Cover Types | WB | VC | PMF | MA | PG | IS | BS | Total | |
WB | 377 | 3 | 0 | 16 | 35 | 147 | 0 | 578 | |
VC | 510 | 1637 | 306 | 658 | 30 | 441 | 83 | 3665 | |
PMF | 0 | 639 | 3379 | 846 | 10 | 34 | 1599 | 6507 | |
MA | 0 | 751 | 320 | 8143 | 185 | 1064 | 142 | 10,605 | |
PG | 0 | 6 | 0 | 6 | 84 | 168 | 4 | 268 | |
IS | 90 | 355 | 136 | 847 | 967 | 5999 | 10 | 8404 | |
BS | 1 | 51 | 395 | 132 | 0 | 1 | 96 | 676 | |
Total | 978 | 3442 | 4536 | 10,648 | 1311 | 7854 | 1934 | 30,703 |
No. | Order of Features | |||
---|---|---|---|---|
Jizhou | Guyuan | |||
RF | SVM | RF | SVM | |
1 | Alpha | VH | Alpha | HV |
2 | F_Vol | F_Vol | VH | VH |
3 | Entropy | HH | HH | Alpha |
4 | Y_Vol | Anisotropy | VV | Entropy |
5 | VH | VV | HV | C_H1mA |
6 | HH | Alpha | Entropy | F_Vol |
7 | Y_Odd | c_HA | C_H1mA | Anisotropy |
8 | c_H1mA | HV | C_1mH1mA | HH |
9 | F_Odd | Entropy | C_1mHA | VV |
10 | c_1mH1mA | c_H1mA | C_HA | C_1mHA |
11 | c_1mHA | Y_Hlx | Anisotropy | C_1mH1mA |
12 | VV | K_Ks | T22 | C_HA |
13 | Anisotropy | c_1mH1mA | T33 | Y_Vol |
14 | c_HA | F_Dbl | F_Vol | T22 |
15 | Y_Hlx | Y_Vol | T11 | T33 |
16 | Y_Dbl | T11 | K_Ks | F_Odd |
17 | HH | F_Odd | K_Kd | T11 |
18 | T33 | Y_Dbl | Y_Odd | Y_Odd |
19 | T22 | Y_Odd | Y_Vol | Y_Dbl |
20 | K_Kd | T22 | F_Odd | Y_Hlx |
21 | F_Dbl | T33 | K_Kh | Y_Odd |
22 | K_Kh | K_Kd | Y_Dbl | F_Dbl |
23 | T11 | c_1mHA | Y_Hlx | K_Kh |
24 | K_Ks | K_Kh | F_Dbl | K_Ks |
Number of Features | Jizhou | Guyuan | ||
---|---|---|---|---|
RF-RF | SVM-SVM | RF-RF | SVM-SVM | |
24 | 74.82 | 73.14 | 64.21 | 63.57 |
15 | 73.81 | 74.02 | 63.49 | 63.04 |
10 | 73.36 | 72.52 | 63.26 | 62.53 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasituya; Chen, Z.; Li, F.; Hongmei. Mapping Plastic-Mulched Farmland with C-Band Full Polarization SAR Remote Sensing Data. Remote Sens. 2017, 9, 1264. https://doi.org/10.3390/rs9121264
Hasituya, Chen Z, Li F, Hongmei. Mapping Plastic-Mulched Farmland with C-Band Full Polarization SAR Remote Sensing Data. Remote Sensing. 2017; 9(12):1264. https://doi.org/10.3390/rs9121264
Chicago/Turabian StyleHasituya, Zhongxin Chen, Fei Li, and Hongmei. 2017. "Mapping Plastic-Mulched Farmland with C-Band Full Polarization SAR Remote Sensing Data" Remote Sensing 9, no. 12: 1264. https://doi.org/10.3390/rs9121264
APA StyleHasituya, Chen, Z., Li, F., & Hongmei. (2017). Mapping Plastic-Mulched Farmland with C-Band Full Polarization SAR Remote Sensing Data. Remote Sensing, 9(12), 1264. https://doi.org/10.3390/rs9121264