Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic
"> Figure 1
<p>Location of the study sites (yellow border) with position of hyperspectral images.</p> "> Figure 2
<p>Scheme of the method for soil erosion assessment.</p> "> Figure 3
<p>Comparison of predicted and observed values in the validation set of sampling points: (<b>a</b>) SOC; (<b>b</b>) sand; (<b>c</b>) silt; (<b>d</b>) clay; (<b>e</b>) Fe<sub>ox</sub>; (<b>f</b>) Fe<sub>d</sub>; and (<b>g</b>) CaCO<sub>3</sub>. Colour of the points identifies the study site: (red) Přestavlky; (dark blue) Šardice; (light blue) Nová Ves; (green) Jičín.</p> "> Figure 4
<p>Spatial distribution of soil properties at the study sites based on multivariate prediction using the best performing model.</p> "> Figure 5
<p>Maps of erosion classes at the study sites as derived by means of fuzzy C-means method using the mean values of selected soil properties as class centres: (<b>a</b>) Přestavlky; (<b>b</b>) Šardice; (<b>c</b>) Nová Ves; and (<b>d</b>) Jičín.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Settings
2.2. Flight Campaign (Imaging Spectroscopy) and Image Pre-Processing
2.3. Data Collection and Soil Analysis
2.4. Statistical Analysis of Soil Properties
2.4.1. Pre-Processing
2.4.2. Calibration and Validation
2.4.3. Multivariate Techniques
2.5. Assessment of Soil Erosion Classes
2.5.1. Definition of Groups of Site-Specific Erosion Classes
2.5.2. Assessment of Soil Properties for Erosion Classes Distinguishing
2.5.3. Classification of Spatial Data into Erosion Classes
2.5.4. Validation of Results
3. Results and Discussion
3.1. Descriptive Statistics of Soil Samples
3.2. Prediction of Soil Properties by Imaging Spectroscopy
3.3. Assessment of Soil Erosion Classes
3.3.1. Assessment of Soil Properties for Erosion Classes Distinguishing
3.3.2. Classification of Spatial Data into Erosion Classes
3.3.3. Validation of Results
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Panagos, P.; Borrelli, P.; Poesen, J.; Ballabio, C.; Lugato, E.; Meusburger, K.; Montanarella, L.; Alewell, C. The new assessment of soil loss by water erosion in Europe. Environ. Sci. Policy 2015, 54, 438–447. [Google Scholar] [CrossRef]
- Dostál, T.; Janeček, M.; Kliment, Z.; Krása, J.; Langhammer, J.; Vrána, K. Czech Republic. In Soil Erosion in Europe; Boardman, J., Poesen, J., Eds.; John Wiley & Sons: Chichester, UK, 2007; pp. 107–116. [Google Scholar]
- Novotný, I.; Žížala, D.; Kapička, J.; Beitlerová, H.; Mistr, M.; Kristenová, H.; Papaj, V. Adjusting the CP max factor in the Universal Soil Loss Equation (USLE): Areas in need of soil erosion protection in the Czech Republic. J. Maps 2016, 12, 1–5. [Google Scholar] [CrossRef]
- Janeček, M.; Dostál, T.; Kozlovsky-Dufková, J.; Dumbrovský, M.; Hůla, J.; Kadlec, V.; Konečná, J.; Kovář, P.; Krása, J.; Kubátová, E.; et al. Ochrana Zemědělské Půdy Před Erozí Protection of Agricultural Soils from the Soil Erosion; Powerprint: Praha, Czech Republic, 2012. [Google Scholar]
- Gobin, A.; Jones, R.; Kirkby, M.; Campling, P.; Govers, G.; Kosmas, C.; Gentile, A.R. Indicators for pan-European assessment and monitoring of soil erosion by water. Environ. Sci. Policy 2004, 7, 25–38. [Google Scholar] [CrossRef]
- Van der Knijff, J.M.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk Assessment in Europe; Space Applications Institute: Penteli, Greece, 2000.
- Watson, A.; Evans, R. A comparison of estimates of soil erosion made in the field and from photographs. Soil Tillage Res. 1991, 19, 17–27. [Google Scholar] [CrossRef]
- Žížala, D.; Kapička, J.; Novotný, I. Monitoring soil erosion of agricultural land in Czech Republic and data assessment of erosion events from spatial database. In Proceedings of the International Conference Soil—The Non-Renewable Environmental Resource, Brno, Czech Republic, 7–9 September 2015; pp. 354–370.
- Prasuhn, V. Soil erosion in the Swiss midlands: Results of a 10-year field survey. Geomorphology 2011, 126, 32–41. [Google Scholar] [CrossRef]
- Hoper, H.; Meesenburg, H. Tagungsband 20 Jahre Bodendauerbeobachtung in Niedersachsen. GeoBerichte 2012, 23, 6–18. [Google Scholar]
- Poreba, G.J. Caesium-137 as a soil erosion tracer: A review. Geochronometria 2006, 25, 37–46. [Google Scholar]
- Vandekerckhove, L.; Arnoldussen, A.; Bazzoffi, P.; Böken, H.; Castillo, V.; Crescimanno, G.; Düwel, O.; Esteve, J.F.; Imeson, A.; Jarman, R.; et al. Working Group on Soil Erosion Task Group III on Impacts of Soil Erosion. Available online: http://s3.amazonaws.com/academia.edu.documents/40429096/finalreporttg3.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=1483088793&Signature=mO3jNVZxvex1o3slqWwMgAc7fDQ%3D&response-content-disposition=inline%3B%20filename%3DWorking_Group_on_Soil_Erosion_Task_Group.pdf (accessed on 30 December 2016).
- Vrieling, A. Satellite remote sensing for water erosion assessment: A review. Catena 2006, 65, 2–18. [Google Scholar] [CrossRef]
- Shoshany, M.; Goldshleger, N.; Chudnovsky, A. Monitoring of agricultural soil degradation by remote-sensing methods: A review. Int. J. Remote Sens. 2013, 34, 6152–6181. [Google Scholar] [CrossRef]
- Demattê, J.A.M.; Morgan, C.L.S.; Chabrillat, S.; Rizzo, R.; Franceschini, M.H.D.; Terra, F.D.; Vasques, G.M.; Wetterlind, J. Spectral sensing from ground to space in soil science: State of the art, applications, potential and perspectives. In Land Resources Monitoring, Modeling, and Mapping with Remote Sensing; Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 661–732. [Google Scholar]
- Li, X.; Wu, T.; Liu, K.; Li, Y.; Zhang, L. Evaluation of the Chinese fine spatial resolution hyperspectral satellite TianGong-1 in urban land-cover classification. Remote Sens. 2016, 8, 438. [Google Scholar] [CrossRef]
- Vrieling, A. Mapping Erosion from Space; Wageningen University: Wageningen, The Netherlands, 2007. [Google Scholar]
- Luleva, M.I. Tracing Soil Particle Movement. Towards A Spectral Approach to Spatial Monitoring of Soil Erosion. Ph.D. Dissertation, University of Twente, Enschede, The Netherlands, 2013. [Google Scholar]
- Fadul, H.M.; Salih, A.A.; Ali, I.A.; Inanaga, S. Use of remote sensing to map gully erosion along the Atbara River, Sudan. Int. J. Appl. Earth Obs. Geoinf. 1999, 1, 175–180. [Google Scholar] [CrossRef]
- Fulajtár, E. Identification of severely eroded soils from remote sensing data tested in Riš ň ovce, Slovakia. In Sustaining the Global Farm. Selected Papers from the 10th International Soil Conservation Organization Meeting, Held 24–29 May 1999; Stott, D.E., Mohtar, R.H., Steinhardt, G.C., Eds.; Purdue University and the USDA-ARS National Soil Erosion Research Laboratory: West Lafayette, Indiana, 2001; pp. 1075–1081. [Google Scholar]
- Šarapatka, B.; Netopil, P. Erosion processes on intensively farmed land in the Czech Republic: Comparison of alternative research methods. In Proceedings of the 2010 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; pp. 47–50.
- Kolejka, J.; Manakos, J. Integrace dat DPZ a GIS při identifikaci erozního poškození půdy. In Sborník Příspěvků z Konference s Mezinárodní Účastí. GIS… Ostrava 2000; VŠB: Ostrava, Czech Republic, 2000; p. 15. [Google Scholar]
- Alatorre, L.C.; Beguería, S. Identification of eroded areas using remote sensing in a badlands landscape on marls in the central Spanish Pyrenees. Catena 2009, 76, 182–190. [Google Scholar] [CrossRef]
- Mohammadi, T.A.; Nikkami, D. Methodologies of preparing erosion features map by using RS and GIS. Int. J. Sediment Res. 2008, 23, 130–137. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A. A spatial information technology approach for the mapping and quantification of gully erosion. Catena 2003, 50, 293–308. [Google Scholar] [CrossRef]
- Warner, T.; Foody, G.; Nellis, M. Remote sensing of soils. Remote Sens. Soils 2014, 1, 1–71. [Google Scholar]
- Gholizadeh, A.; Luboš, B.; Saberioon, M.; Vašát, R. Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: State-of-the-art and key issues. Appl. Spectrosc. 2013, 67, 1349–1362. [Google Scholar] [CrossRef] [PubMed]
- Demattê, J.A.M.; Focht, D. Detecção de solos erodidos pela avaliação de dados espectrais. Detection of soil erosion by spectral reflectance. Braz. J. Soil Sci. 1999, 3, 401–413. [Google Scholar]
- Schmid, T.; Palacios-Orueta, A.; Chabrillat, S.; Bendor, E.; Plaza, A.; Rodriguez, M.; Huesca, M.; Pelayo, M.; Pascual, C.; Escribano, P.; et al. Spectral characterisation of land surface composition to determine soil erosion within semiarid rainfed cultivated areas. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 7082–7085.
- Schmid, T.; Rodriguez-Rastrero, M.; Escribano, P.; Palacios-Orueta, A.; Ben-Dor, E.; Plaza, A.; Milewski, R.; Huesca, M.; Bracken, A.; Cicuendez, V.; et al. Characterization of soil erosion indicators using hyperspectral data from a Mediterranean rainfed cultivated region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 845–860. [Google Scholar] [CrossRef]
- Lin, C.; Zhou, S.; Wu, S.; Zhu, Q.; Dang, Q. Spectral response of different eroded soils in subtropical china: A case study in Changting County, China. J. Mt. Sci. 2014, 11, 697–707. [Google Scholar] [CrossRef]
- Conforti, M.; Buttafuoco, G.; Leone, A.P.; Aucelli, P.P.C.; Robustelli, G.; Scarciglia, F. Studying the relationship between water-induced soil erosion and soil organic matter using VIS-NIR spectroscopy and geomorphological analysis: A case study in southern Italy. Catena 2013, 110, 44–58. [Google Scholar] [CrossRef]
- Chabrillat, S.; Milewski, R.; Schmid, T.; Rodriguez, M.; Escribano, P.; Pelayo, M.; Palacios-Orueta, A. Potential of hyperspectral imagery for the spatial assessment of soil erosion stages in agricultural semi-arid Spain at different scales. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 2918–2921.
- Chappell, A.; Zobeck, T.M.; Brunner, G. Using on-nadir spectral reflectance to detect soil surface changes induced by simulated rainfall and wind tunnel abrasion. Earth Surf. Process. Landf. 2005, 30, 489–511. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.J.; Demattê, J.A.M.; Shepherd, K.D.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Demattê, J.A.M. Remote sensing of soil in the optical domains. In Land Resources Monitoring, Modeling, and Mapping with Remote Sensing; Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 733–787. [Google Scholar]
- Nocita, M.; Stevens, A.; Van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barth, B.; Csorba, A.; Dardenne, P.; Demattê, J.A.M.; Genot, V. Soil spectroscopy: An alternative to wet chemistry for soil monitoring. Adv. Agron. 2015, 132, 1–21. [Google Scholar]
- Ben-Dor, E.; Irons, J.R.; Epema, G.F. Soil reflectante. In Manual of Remote Sensing: Remote Sensing for Earth Science; Rencz, A.N., Ryerson, R.A., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 1999; Volume 3, pp. 111–187. [Google Scholar]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Visible and near infrared spectroscopy in soil science. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2010; Volume 107, pp. 163–215. [Google Scholar]
- Chabrillat, S.; Ben-Dor, E.; Rossel, R.A.V.; Dematt, J.A.M. Quantitative soil spectroscopy. Appl. Environ. Soil Sci. 2013, 2013, 4–6. [Google Scholar] [CrossRef]
- Chabrillat, S. Land Degradation Indicators: Spectral indices. Ann. Arid Zone 2006, 45, 331–354. [Google Scholar]
- Hill, J.; Schütt, B. Mapping complex patterns of erosion and stability in dry mediterranean ecosystems. Remote Sens. Environ. 2000, 74, 557–569. [Google Scholar] [CrossRef]
- Schmid, T.; Koch, M.; Gumuzzio, J.; Medel, I. Field and Imaging spectroscopy to determine soil degradation stages in semi-arid terrestrial ecosystems. In Proceedings of the 4th EARSeL Workshop on Imaging Spectroscopy. New Quality in Environmental Studies, Warsaw, Poland, 26–29 April 2005; Zagajewski, B., Sobczak, M., Wrzesien, M., Eds.; EARSeL and Warsaw University: Warsaw, Poland, 2005. [Google Scholar]
- Mathieu, R.; Cervelle, B.; Rémy, D.; Pouget, M. Field-based and spectral indicators for soil erosion mapping in semi-arid mediterranean environments (Coastal Cordillera of central Chile). Earth Surf. Process. Landf. 2007, 32, 13–31. [Google Scholar] [CrossRef]
- Lin, C.; Zhou, S.L.; Wu, S.H. Using hyperspectral reflectance to detect different soil erosion status in the Subtropical Hilly Region of Southern China: A case study of Changting, Fujian Province. Environ. Earth Sci. 2013, 70, 1661–1670. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Chabrillat, S.; Demattê, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using Imaging Spectroscopy to study soil properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Haubrock, S.; Chabrillat, S.; Kaufmann, H. Application of hyperspectral imaging and laser scanning for the monitoring and assessment of soil erosion in a recultivation mining area. In Remote Sensing and GIS for Environmental Studies: Applications in Geography; Erasmi, S., Cyffka, B., Kappas, M., Eds.; Göttinger Geographische Abhandlungen: Göttingen, Germany, 2004; pp. 230–237. [Google Scholar]
- Haubrock, S.; Chabrillat, S.; Kaufmann, H. Application of hyperspectral imaging for the quantification of surface soil moisture. In Proceedings of the 4th EARSeL Workshop on Imaging Spectroscopy. New Quality in Environmental Studies, Warsaw, Poland, 26–29 April 2005; Zagajewski, B., Sobczak, M., Wrzesień, M., Eds.; EARSeL and Warsaw University: Warsaw, Poland, 2005; pp. 163–171. [Google Scholar]
- Chabrillat, S.; Kaufmann, H.; Merz, B.; Mueller, A.; Bens, O.; Lemmnitz, C. Development of relationships between reflectance and erosion modelling: Test site preliminary field spectral analysis. In Proceedings of the 3rd EARSeL Workshop pn Imaging Spectroscopy, Herrsching, Germany, 13–16 May 2003; pp. 13–16.
- Ben-Dor, E.; Goldshleger, N.; Braun, O.; Kindel, B.; Goetz, A.F.H.; Bonfil, D.; Margalit, N.; Binaymini, Y.; Karnieli, A.; Agassi, M. Monitoring infiltration rates in semiarid soils using airborne hyperspectral technology. Int. J. Remote Sens. 2004, 25, 2607–2624. [Google Scholar] [CrossRef]
- Hill, J.; Mehl, W.; Altherr, M. Land degradation and soil erosion mapping in a Mediterranean ecosystem. In Imaging Spectrometry—A Tool for Environmental Observations; Hill, J., Mégier, J., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 237–260. [Google Scholar]
- Hill, J.; Mégier, J.; Mehl, W. Land degradation, soil erosion and desertification monitoring in Mediterranean ecosystems. Remote Sens. Rev. 1995, 12, 107–130. [Google Scholar] [CrossRef]
- Zádorová, T.; Penížek, V.; Šefrna, L.; Drábek, O.; Mihaljevič, M.; Volf, Š.; Chuman, T. Identification of Neolithic to Modern erosion-sedimentation phases using geochemical approach in a loess covered sub-catchment of South Moravia, Czech Republic. Geoderma 2013, 195–196, 56–69. [Google Scholar] [CrossRef]
- Hanuš, J.; Fabiánek, T.; Kaplan, V.; Homolová, L. Flying Laboratory of Imaging Systems (FLIS) at CzechGlobe. In Proceedings of the SGEM2014 Conference Proceedings, Albena, Bulgaria, 7–26 June 2014; STEF92 Technology: Sofia, Bulgaria, 2014; pp. 177–182. [Google Scholar]
- Hanuš, J.; Fabiánek, T.; Fajmon, L. Potential of airborne imaging spectroscopy at Czechglobe. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; World Forensic Festival: Prague, Czech Republic, 2016; Volume XLI-B1, pp. 15–17. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Minasny, B.; McBratney, A.B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Comput. Geosci. 2006, 32, 1378–1388. [Google Scholar] [CrossRef]
- Tamm, O. Eine Methode zur Bestinmmung der anorganischen Komponenten des Gelkomplexes in Boden. Medd. Från Statens Skogförsöksanstalt 1922, 19, 385–404. [Google Scholar]
- Coffin, D.E. A method for the determination of free iron in soils and clays. Can. J. Soil Sci. 1963, 43, 7–17. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Stevens, A.; Ramirez-Lopez, L. An Introduction to the Prospectr Package 2013. Available online: https://www.researchgate.net/publication/255941339_An_introduction_to_the_prospectr_package (accessed on 30 December 2016).
- Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Kenkel, B.; Benesty, M.; et al. Caret: Classification and Regression Training. Abvailable online: http://adsabs.harvard.edu/abs/2015ascl.soft05003K (accessed on 30 December 2016).
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Schölkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines: And Other Kernel-Based Learning Methods; Cambridge University Press: New York, NY, USA, 2000. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Behrens, T.; Förster, H.; Scholten, T.; Steinrücken, U.; Spies, E.-D.; Goldschmitt, M. Digital soil mapping using artificial neural networks. J. Plant Nutr. Soil Sci. 2005, 168, 21–33. [Google Scholar] [CrossRef]
- Heung, B.; Ho, H.C.; Zhang, J.; Knudby, A.; Bulmer, C.E.; Schmidt, M.G. An overview and comparison of machine-learning techniques for classification purposes in digital soil mapping. Geoderma 2016, 265, 62–77. [Google Scholar] [CrossRef]
- Vasques, G.M.; Grunwald, S.; Sickman, J.O. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 2008, 146, 14–25. [Google Scholar] [CrossRef]
- Zádorová, T.; Penížek, V.; Vašát, R.; Žížala, D.; Chuman, T.; Vaněk, A. Colluvial soils as a soil organic carbon pool in different soil regions. Geoderma 2015, 253–254, 122–134. [Google Scholar] [CrossRef]
- Zádorová, T.; Žížala, D.; Penížek, V.; Čejková, Š. Relating extent of colluvial soils to topographic derivatives and soil variables in a Luvisol Sub-Catchment, Central Bohemia, Czech Republic. Soil Water Res. 2014, 9, 47–57. [Google Scholar]
- Brodský, L.; Zádorová, T.; Klement, A.; Jakšík, O.; Borůvka, L. Utilization of VNIR diffuse reflectance spectroscopy to map soil erosion Study on two arable fields. In The Second Global Workshop on Proximal Soil Sensing; Adamchuk, V.I., Viscarra Rossel, R.A., Eds.; McGill University: Montreal, QC, Canada, 2011; pp. 84–87. [Google Scholar]
- Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [Google Scholar] [CrossRef]
- Dimitriadou, E.; Hornik, K.; Leisch, F.; Meyer, D.; Weingessel, A. e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. Available online: https://www.r-project.org/ (accessed on 30 December 2016).
- Stevens, A.; Miralles, I.; van Wesemael, B. Soil Organic Carbon Predictions by Airborne Imaging Spectroscopy: Comparing Cross-Validation and Validation. Soil Sci. Soc. Am. J. 2012, 76, 2174. [Google Scholar] [CrossRef]
- Denis, A.; Stevens, A.; van Wesemael, B.; Udelhoven, T.; Tychon, B. Soil organic carbon assessment by field and airborne spectrometry in bare croplands: Accounting for soil surface roughness. Geoderma 2014, 226–227, 94–102. [Google Scholar] [CrossRef]
- Hbirkou, C.; Pätzold, S.; Mahlein, A.K.; Welp, G. Airborne hyperspectral imaging of spatial soil organic carbon heterogeneity at the field-scale. Geoderma 2012, 175–176, 21–28. [Google Scholar] [CrossRef]
- Hively, W.D.; McCarty, G.W.; Reeves, J.B.; Lang, M.W.; Oesterling, R.A.; Delwiche, S.R. Use of airborne hyperspectral imagery to map soil properties in tilled agricultural fields. Appl. Environ. Soil Sci. 2011, 2011, 1–13. [Google Scholar] [CrossRef]
- Casa, R.; Castaldi, F.; Pascucci, S.; Palombo, A.; Pignatti, S. A comparison of sensor resolution and calibration strategies for soil texture estimation from hyperspectral remote sensing. Geoderma 2013, 197–198, 17–26. [Google Scholar] [CrossRef]
- Garfagnoli, F.; Ciampalini, A.; Moretti, S.; Chiarantini, L. Mapping of soil properties from hyperspectral remote sensing: The DIGISOIL strategy for soil processes modelling. In Geophysical Research Abstracts; EGU: Wien, Austria, 2011; Volume 13, p. 7120. [Google Scholar]
- Gerighausen, H.; Menz, G.; Kaufmann, H. Spatially explicit estimation of clay and organic carbon content in agricultural soils using multi-annual imaging spectroscopy data. Appl. Environ. Soil Sci. 2012, 2012, 868090. [Google Scholar] [CrossRef]
- Gomez, C.; Lagacherie, P.; Coulouma, G. Continuum removal versus PLSR method for clay and calcium carbonate content estimation from laboratory and airborne hyperspectral measurements. Geoderma 2008, 148, 141–148. [Google Scholar] [CrossRef]
- Gomez, C.; Lagacherie, P.; Coulouma, G. Regional predictions of eight common soil properties and their spatial structures from hyperspectral VIS-NIR data. Geoderma 2012, 189–190, 176–185. [Google Scholar] [CrossRef]
- Selige, T.; Böhner, J.; Schmidhalter, U. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma 2006, 136, 235–244. [Google Scholar] [CrossRef]
- Bartholomeus, H.; Epema, G.; Schaepman, M. Determining iron content in Mediterranean soils in partly vegetated areas, using spectral reflectance and imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Lagacherie, P.; Baret, F.; Feret, J.B.; Madeira Netto, J.; Robbez-Masson, J.M. Estimation of soil clay and calcium carbonate using laboratory, field and airborne hyperspectral measurements. Remote Sens. Environ. 2008, 112, 825–835. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; Noon, C.; van Wesemael, B. Prediction of soil organic carbon for different levels of soil moisture using VIS-NIR spectroscopy. Geoderma 2013, 199, 37–42. [Google Scholar] [CrossRef]
- Ballabio, C.; Panagos, P.; Montanarella, L. Predicting soil organic carbon content in Cyprus using remote sensing and earth observation data. Proc. SPIE 2014, 9229, 9229-0–9229-9. [Google Scholar]
- Stevens, A.; Udelhoven, T.; Denis, A.; Tychon, B.; Lioy, R.; Hoffmann, L.; van Wesemael, B. Measuring soil organic carbon in croplands at regional scale using airborne imaging spectroscopy. Geoderma 2010, 158, 32–45. [Google Scholar] [CrossRef]
- Tiwari, S.K.; Saha, S.K.; Kumar, S. Prediction Modeling and mapping of soil carbon content using artificial neural network, hyperspectral satellite data and field spectroscopy. Adv. Remote Sens. 2015, 4, 63–72. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Kodešová, R.; Vignozzi, N.; Rohošková, M.; Hájková, T.; Kočárek, M.; Pagliai, M.; Kozák, J.; Šimůnek, J. Impact of varying soil structure on transport processes in different diagnostic horizons of three soil types. J. Contam. Hydrol. 2009, 104, 107–125. [Google Scholar] [CrossRef] [PubMed]
- Zádorová, T.; Penížek, V.; Šefrna, L.; Rohošková, M.; Borůvka, L. Spatial delineation of organic carbon-rich Colluvial soils in Chernozem regions by Terrain analysis and fuzzy classification. Catena 2011, 85, 22–33. [Google Scholar] [CrossRef]
- Hu, Y.; Fister, W.; Kuhn, N. Temporal variation of SOC enrichment from interrill erosion over prolonged rainfall simulations. Agriculture 2013, 3, 726–740. [Google Scholar] [CrossRef] [Green Version]
- Müller-Nedebock, D.; Chaplot, V. Soil carbon losses by sheet erosion: A potentially critical contribution to the global carbon cycle. Earth Surf. Process. Landf. 2015, 3758. [Google Scholar] [CrossRef]
- Chaplot, V.; Abdalla, K.; Alexis, M.; Bourennane, H.; Darboux, F.; Dlamini, P.; Everson, C.; Mchunu, C.; Muller-Nedebock, D.; Mutema, M.; et al. Surface organic carbon enrichment to explain greater CO2 emissions from short-term no-tilled soils. Agric. Ecosyst. Environ. 2015, 203, 110–118. [Google Scholar] [CrossRef]
- Schmitt, A.; Rodzik, J.; Zgłobicki, W.; Russok, C.; Dotterweich, M.; Bork, H.R. Time and scale of gully erosion in the Jedliczny Dol gully system, south-east Poland. Catena 2006, 68, 124–132. [Google Scholar] [CrossRef]
- Terhorst, B. The influence of pleistocene landforms on soil-forming processes and soil distribution in a loess landscape of Baden-Wurttemberg (south-west Germany). Catena 2000, 41, 165–179. [Google Scholar] [CrossRef]
Site | Area 1 | Dominant Soil Unit (WRB 2014) | Bedrock/Parent Material | MA 2 | MAP 3 | MAT 4 | R 5 | Soil Loss 6 |
---|---|---|---|---|---|---|---|---|
Přestavlky | 0.73 | Haplic Stagnosol, Haplic and Stagnic Cambisol, Leptosol | Complex of Proterozoic and Paleozoic rocks (schist, granodiorite) | 403 | 650 | 7–8 | 46 | 10 (0–106) |
Šardice | 1.45 | Calcic Chernozem | Pleistocene loess | 218 | 550 | 9–10 | 49 | 29 (0–370) |
Nová Ves | 1.17 | Haplic Cambisol | Permian-Carboniferous rocks (sandstone, siltstone) | 471 | 750 | 6–7 | 54 | 8 (0–89) |
Jičín | 1.34 | Luvisols, Albic Luvisols, Luvic Chernozems | Pleistocene loess | 298 | 650 | 7–8 | 47 | 11 (0–185) |
Site | ToA 1 | SZ 2 | SA 3 | FA 4 | Atmospheric Condition | N. of Strips | HF 5 | SR 6 |
---|---|---|---|---|---|---|---|---|
Přestavlky | 7 May 2015 10:23 | 45° | 131° | 218° | Slightly cloudy (cumulus) visibility 40 km | 1 | ∼2060 | 1, 2 |
Šardice | 21 September 2015 10:52 | 54° | 144° | 143° | Slightly cloudy (cumulus) visibility 40 km | 1 | ∼2575 | 1.2, 3.1 |
Nová Ves | 22 April 2016 11:45 | 49° | 153° | 185° | Slightly cloudy (cumulus), visibility 30 km | 2 | ∼2266 | 1, 2.7 |
Jičín | 22 April 2016 11:15 | 47° | 142° | 159° | 3 | ∼2266 | 1, 2.7 |
Site | EC 1 | Profile Stratigraphy | SD 2 | AHT 3 | WRB 4 |
---|---|---|---|---|---|
Přestavlky | AC | Ap-A-Bw(g)-C | >40 | Haplic Cambisol (Colluvic), Stagnic Cambisol (Colluvic), Haplic Stagnosol (Colluvic) | |
NE | A-Bw(g)-(B/C)-C | >50 | Haplic Cambisol, Stagnic Cambisol, Haplic Stagnosol | ||
ME | Ap-Bw(g)-B/C-C | 35–50 | Haplic Cambisol, Stagnic Cambisol, Haplic Stagnosol | ||
SE | Ap-(B/C)-C | <35 | Skeletic Cambisol, Cambic Leptosol | ||
Šardice | AC | Ap-A-A/C-Ck | >80 | Calcic Chernozem (Colluvic), Calcic Kastanozem (Colluvic) | |
NE | Ap-A-A/C-Ck | 50–80 | Calcic Chernozem | ||
ME | Ap-A/C-Ck | 30–50 | Calcic Chernozem, Calcic Kastanozem | ||
SE | Ap-Ck | <30 | Haplic Calcisol, Calcic Kastanozem | ||
Nová Ves | AC | Ap-A-Bw-C | >40 | Haplic Cambisol (Colluvic) | |
NE | Ap-Bw-(B/C)-C | >50 | Haplic Cambisol | ||
ME | Ap-(Bw)-B/C-C | 35–50 | Haplic Cambisol | ||
SE | Ap-(B/C)-C | <35 | Skeletic Cambisol, Cambic Leptosol | ||
Jičín | AC | Ap-A-Bt-C | >50 | Haplic Luvisol (Colluvic), Luvic Kastanozem (Colluvic), Luvic Phaeozem (Colluvic) | |
NE | Ap-A-Bt-(B/C)-C | >60 | Haplic Luvisol, Luvic Kastanozem | ||
ME | Ap-Bt-(B/C)-C | 40–60 | Haplic Luvisol | ||
SE | Ap-(B/C)-C | >40 | Haplic Calcisol |
Site | SOC (%) | Sand (%) | Silt (%) | Clay (%) | Feox (%) | Fed (%) | CaCO3 (%) | |
---|---|---|---|---|---|---|---|---|
Přestavlky n = 45 | Mean | 1.19 | 38.12 | 49.63 | 12.26 | 0.77 | 3.59 | |
Min | 0.61 | 26.2 | 30.6 | 7.5 | 0.20 | 1.37 | ||
Max | 1.88 | 59.0 | 61.5 | 20.1 | 2.19 | 7.38 | ||
SD | 0.25 | 8.37 | 7.17 | 3.22 | 0.51 | 1.81 | ||
Šardice n = 50 | Mean | 1.44 | 38.91 | 38.49 | 22.6 | 4.07 | ||
Min | 0.84 | 15.2 | 27.5 | 14.2 | 0 | |||
Max | 2.62 | 58.3 | 49.1 | 48.3 | 10.0 | |||
SD | 0.39 | 8.34 | 4.67 | 6.80 | 3.34 | |||
Nová Ves n = 50 | Mean | 1.07 | 51.24 | 37.59 | 11.16 | 0.21 | 1.24 | |
Min | 0.56 | 29.8 | 15.9 | 6.7 | 0.11 | 0.63 | ||
Max | 1.44 | 77.2 | 56.6 | 24.7 | 0.60 | 2.37 | ||
SD | 0.17 | 12.32 | 9.95 | 3.57 | 0.10 | 0.36 | ||
Jičín n = 50 | Mean | 1.03 | 12.24 | 66.12 | 21.64 | 0.01 | ||
Min | 0.70 | 7.7 | 52 | 14.2 | 0 | |||
Max | 1.41 | 18.2 | 75.0 | 32.5 | 0.1 | |||
SD | 0.15 | 2.41 | 5.56 | 5.14 | 0.03 |
Site | SOC | Sand | Silt | Clay | Feox | |
---|---|---|---|---|---|---|
Přestavlky | SOC | |||||
Sand | −0.51 *** | |||||
Silt | 0.61 *** | −0.93 *** | ||||
Clay | −0.04 | −0.54 *** | 0.18 | |||
Feox | 0.6 *** | −0.52 *** | 0.55 *** | 0.13 | ||
Fed | 0.58 *** | −0.3 * | 0.39 ** | −0.07 | 0.73 *** | |
Šardice | SOC | |||||
Sand | −0.26 | |||||
Silt | −0.28 * | −0.58 *** | ||||
Clay | 0.51 *** | −0.83 *** | 0.02 | |||
CaCO3 | −0.74 *** | −0.17 | 0.33 * | −0.02 | ||
Nová Ves | SOC | |||||
Sand | −0.45 ** | |||||
Silt | 0.45 ** | −0.97 *** | ||||
Clay | 0.3 * | −0.75 *** | 0.57 *** | |||
Feox | 0.37 ** | −0.65 *** | 0.57 *** | 0.67 *** | ||
Fed | 0.18 | −0.53 *** | 0.43 ** | 0.61 *** | 0.39 ** | |
Jičín | SOC | |||||
Sand | 0.2 | |||||
Silt | −0.2 | −0.39 ** | ||||
Clay | 0.13 | −0.05 | −0.9 *** | |||
CaCO3 | 0.01 | 0.12 | −0.31 * | 0.28 * |
Site | SOC | Sand | Silt | Clay | Feox | Fed | CaCO3 | |
---|---|---|---|---|---|---|---|---|
Přestavlky n 1 = 36/8 (44) | BM 2 | SVM.l SG (2nd) | ANN log | SVM.p SG (1st) | SVM.r log | SVM.p log | SVM.p log | - |
R2cv | 0.92 | 0.88 | 0.88 | 0.91 | 0.99 | 0.63 | - | |
RMSEcv | 0.08 | 2.92 | 2.78 | 1.34 | 0.05 | 1.10 | - | |
R2P | 0.83 | 0.61 | 0.40 | 0.38 | 0.73 | 0.78 | - | |
RMSEP | 0.12 | 5.87 | 5.05 | 1.96 | 0.44 | 1.10 | - | |
RPD | 2.08 | 1.42 | 1.42 | 1.64 | 1.16 | 1.65 | - | |
n 1 = 36/12 (48) | BM 1 | SVM.p SG (1st) | PLS SG (2nd) | SVM.l SG (1st) | PLS cr | - | - | ANN log |
R2cv | 0.87 | 0.80 | 0.53 | 0.90 | - | - | 0.84 | |
RMSEcv | 0.17 | 3.55 | 3.08 | 1.90 | - | - | 1.32 | |
R2P | 0.80 | 0.67 | 0.49 | 0.89 | - | - | 0.82 | |
RMSEP | 0.16 | 5.06 | 3.82 | 2.88 | - | - | 1.48 | |
RPD | 2.43 | 1.65 | 1.22 | 2.36 | - | - | 2.26 | |
Nová Ves n 1 = 29/8 (37) | BM 1 | SVM.l SG (2nd) | ANN raw | SMV.l log | ANN SG (1st) | SVM.r log | SVM.r raw | - |
R2cv | 0.79 | 0.95 | 0.89 | 0.99 | 0.90 | 0.72 | - | |
RMSEcv | 0.08 | 3.31 | 3.23 | 0.01 | 0.04 | 0.20 | - | |
R2P | 0.80 | 0.41 | 0.69 | 0.41 | 0.89 | 0.59 | - | |
RMSEP | 0.11 | 9.04 | 7.06 | 1.47 | 0.11 | 0.29 | - | |
RPD | 1.55 | 1.36 | 1.41 | 2.43 | 0.91 | 1.24 | - | |
Jičín n 1 = 36/14 (50) | BM 1 | SVM.p SG (2nd) | SVM.p raw | SVM.l snv | SVM.p raw | - | - | - |
R2cv | 0.90 | 0.01 | 0.89 | 0.98 | - | - | - | |
RMSEcv | 0.05 | 2.38 | 1.79 | 0.63 | - | - | - | |
R2P | 0.91 | 0.21 | 0.92 | 0.89 | - | - | - | |
RMSEP | 0.07 | 2.49 | 2.75 | 1.92 | - | - | - | |
RPD | 2.14 | 0.96 | 2.02 | 2.67 | - | - | - |
Site | A Thick. | SOC | Sand | Silt | Clay | Feox | Fed | CaCO3 | |
---|---|---|---|---|---|---|---|---|---|
Přestavlky | NE | * | 1.22 SE | 35 SE | * SE | * SE | - | ||
ME | * | 1.17 | 37 SE | * SE | * SE | - | |||
SE | * | 1.10 NE | 51 NE,ME | * NE,ME | * NE,ME | - | |||
Šardice | AC | 87 NE,ME,SE | 1.32 ME,NE | * ME,NE | * | 17 NE | - | - | 4.6 ME,NE |
NE | 62 AC,ME,SE | 1.94 AC,SE | * AC | * | 26 AC | - | - | 0.2 AC,SE | |
ME | 31 AC,NE | 1.65 AC,SE | * AC | * | 23 | - | - | 1.1 AC,SE | |
SE | 26 AC,NE | 1.18 ME,NE | * AC | * | 23 | - | - | 6.6 NE,ME | |
Nová ves | NE | * | 1.11 SE | * ME,SE | 41 ME,SE | * ME,SE | 0.23 SE | 1.3 ME | - |
ME | * | 0.95 | * NE | 26 NE | * NE | 0.14 | 0.96 NE | - | |
SE | * | 0.89 NE | * NE | 23 NE | * NE | 0.13 NE | 1.01 | - | |
Jičín | AC | 80 NE,ME,SE | * | 68 ME | 20 ME | - | - | - | |
NE | 38 AC | * SE | 66 ME | 21 ME | - | - | - | ||
ME | 31 AC | * | 63 AC,NE | 26 AC,NE | - | - | - | ||
SE | 31 AC | * NE | 65 | 27 | - | - | - |
Observed | Producer Accuracy (%) | User Accuracy (%) | Overal Agreement Rate | |||||
---|---|---|---|---|---|---|---|---|
Site | Predicted | AC | NE | ME | SE | |||
Přestavlky | AC | - | - | - | - | - | - | 51.1% |
NE | - | 17 | 5 | 2 | 58.6 | 70.8 | ||
ME | - | 12 | 2 | 2 | 25 | 12.5 | ||
SE | - | 0 | 1 | 4 | 50 | 80 | ||
Šardice | AC | 8 | 1 | 0 | 0 | 88.8 | 88.9 | 82% |
NE | 0 | 10 | 1 | 0 | 90.9 | 90.9 | ||
ME | 0 | 0 | 6 | 6 | 85.7 | 50 | ||
SE | 1 | 0 | 0 | 17 | 73.9 | 94.4 | ||
Nová Ves | AC | - | - | - | - | - | - | 52.6% |
NE | - | 16 | 0 | 0 | 55.2 | 100 | ||
ME | - | 11 | 4 | 3 | 100 | 22.2 | ||
SE | - | 4 | 0 | 0 | 0 | 0 | ||
Jičín | AC | 6 | 0 | 0 | 0 | 50 | 100 | 67.3% |
NE | 1 | 23 | 3 | 0 | 76.7 | 85.2 | ||
ME | 0 | 6 | 4 | 1 | 57.1 | 36.4 | ||
SE | 5 | 1 | 0 | 0 | 0 | 0 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Žížala, D.; Zádorová, T.; Kapička, J. Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic. Remote Sens. 2017, 9, 28. https://doi.org/10.3390/rs9010028
Žížala D, Zádorová T, Kapička J. Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic. Remote Sensing. 2017; 9(1):28. https://doi.org/10.3390/rs9010028
Chicago/Turabian StyleŽížala, Daniel, Tereza Zádorová, and Jiří Kapička. 2017. "Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic" Remote Sensing 9, no. 1: 28. https://doi.org/10.3390/rs9010028
APA StyleŽížala, D., Zádorová, T., & Kapička, J. (2017). Assessment of Soil Degradation by Erosion Based on Analysis of Soil Properties Using Aerial Hyperspectral Images and Ancillary Data, Czech Republic. Remote Sensing, 9(1), 28. https://doi.org/10.3390/rs9010028