Comment on Gebhardt et al. MAD-MEX: Automatic Wall-to-Wall Land Cover Monitoring for the Mexican REDD-MRV Program Using All Landsat Data. Remote Sens. 2014, 6, 3923–3943
<p>Validation points in the region of Tierra Blanca, Veracruz. Green diamonds correspond to MAD-MEX validation points for agriculture. Blue circles and red squares are validation points for forest that were respectively discarded and kept for MAD-MEX accuracy assessment. The discarded points correspond mainly to a mosaic of agriculture and forest.</p> "> Figure 2
<p>Small area in the Yucatan Peninsula (southeastern Mexico) as classified by MAD-MEX from Landsat imagery. It is clear that the urban area close to the upper-left corner and the road are completely misclassified, that the same type of forest is erroneously classified into deciduous and evergreen forests and that most areas classified as grasslands do not actually coincide with deforestation patches. As a result, the change map obtained by overlaying both MAD-MEX classification shows that most of the area mapped has changed in three years (2005 to 2008), which is clearly not the case looking at both Landsat scenes.</p> "> Figure 3
<p>Comparison between a fully-automatic (MAD-MEX) and a hybrid classification illustrated with a small area in Yucatan Peninsula (southeastern Mexico). The hybrid classification is able to discard most classification errors and to attain higher thematic accuracies than the fully-automatic one. In the context of REDD+, for which the MAD-MEX land cover monitoring system was developed, the difference is outstanding, not only because deforestation could be far more accurately mapped and quantified, but also because degradation and regrowth could be accounted for. Even though we have used SPOT 5 imagery for our analyses, which have higher spatial resolution than Landsat imagery (<a href="#remotesensing-08-00533-f002" class="html-fig">Figure 2</a>), it is clear in the figure that the hybrid approach would have led to much more accurate results if Landsat had been used, because a remote sensing analyst could have easily corrected most classification errors through visual analysis.</p> ">
Abstract
:1. Introduction
2. Bias in Accuracy Assessment
3. Inconsistency in Monitoring Land Cover Change
4. Limitations of a Fully-Automated Digital Classification Approach
5. Implications of Using MAD-MEX for Activity Data Monitoring in a REDD+ MRV System in Mexico and Elsewhere in the Tropics
6. Concluding Remarks
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gebhardt, S.; Wehrmann, T.; Ruiz, M.A.M.N.; Maeda, P.; Bishop, J.; Schramm, M.; Kopeinig, R.; Cartus, O.; Kellndorfer, J.; Ressl, R.; et al. MAD-MEX: Automatic wall-to-wall land cover monitoring for the mexican REDD-MRV program using all Landsat data. Remote Sens. 2014, 6, 3923–3943. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Stehman, S.V. Basic probability sampling designs for thematic map accuracy assessment. Int. J. Remote Sens. 1999, 20, 2423–2441. [Google Scholar] [CrossRef]
- Stehman, S.V.; Czaplewski, R.L. Design and analysis for thematic map accuracy assessment: Fundamental principles. Remote Sens. Environ. 1998, 64, 331–344. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- INEGI. Guía para la Interpretación de Cartografía uso del Suelo y Vegetación, Serie III; INEGI: Aguscalientes, Mexico, 2009; p. 74. [Google Scholar]
- FAO. Evaluación de los Recursos Forestales Mundiales 2010. Informe Principal; Technical Report; Organización de las Naciones Unidas para la Agricultura y la Alimentación: Rome, Italy, 2010. [Google Scholar]
- INEGI. ventario Nacional Forestal y de Suelos 2004–2009. Memorias de la VII Reunión Nacional de Estadística; Instituto Nacional de Estadística, Geografía e Informática: Aguascalientes, Mexico, 2008; p. 432. [Google Scholar]
- Niño Alcocer, M. Aportes del INFyS en la generación de la información de uso del suelo y vegetación escala 1:250,000 serie V. In Primer Encuentro Nacional de Usuarios del Inventario Nacional Forestal y de Suelos, 10a Expo Forestal México Siglo XXI; CONAFOR: Puebla, Pue, 2012. [Google Scholar]
- Gopal, S.; Woodcock, C. Theory and methods for accuracy assessment of thematic maps using fuzzy sets. Photogramm. Eng. Remote Sens. 1994, 60, 181–188. [Google Scholar]
- Laba, M.; Gregory, S.K.; Braden, J.; Ogurcak, D.; Hill, E.; Fegraus, E.; Fiore, J.; DeGloria, S.D. Conventional and fuzzy accuracy assessment of the New York Gap Analysis Project land cover map. Remote Sens. Environ. 2002, 81, 443–455. [Google Scholar] [CrossRef]
- Couturier, S.; Mas, J.F.; López-Granados, E.; Benítez, J.; Coria-Tapia, V.; Vega-Guzmán, A. Accuracy assessment of the Mexican National Forest Inventory map: A study in four ecogeographical areas. Sing. J. Trop. Geogr. 2010, 31, 163–179. [Google Scholar] [CrossRef]
- Couturier, S.; Mas, J.F.; Cuevas, G.; Benítez, J.; Vega-Guzmán, A.; Coria-Tapia, V. An Accuracy Index with Positional and Thematic Fuzzy Bounds for Land-use/Land-cover Maps. Photogramm. Eng. Remote Sens. 2009, 75, 789–805. [Google Scholar] [CrossRef]
- Mertz, O.; Müller, D.; Sikor, T.; Hett, C.; Heinimann, A.; Castella, J.C.; Lestrelin, G.; Ryan, C.M.; Reay, D.S.; Schmidt-Vogt, D.; et al. The forgotten D: Challenges of addressing forest degradation in complex mosaic landscapes under REDD+. Geografisk Tidsskrift-Danish J. Geog. 2012, 112, 63–76. [Google Scholar] [CrossRef]
- Herold, M.; Román-Cuesta, R.; Mollicone, D.; Hirata, Y.; Van Laake, P.; Asner, G.P.; Souza, C.; Skutsch, M.; Avitabile, V.; MacDicken, K. Options for monitoring and estimating historical carbon emissions from forest degradation in the context of REDD+. Carbon Balance Manag. 2011, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Sorani, V.; Alvarez, R. Hybrid maps: Updating Mexico’s forest cartography using landsat tm imagery and land use information. Geocarto Int. 1996, 11, 17–23. [Google Scholar] [CrossRef]
- Mas, J.F.; Velázquez, A.; Palacio-Prieto, J.; Bocco, G.; Peralta, A.; Prado, J. Assessing forest resources in Mexico : Wall-To-Wall land use/cover mapping. Photogramm. Eng. Remote Sens. 2002, 68, 1–7. [Google Scholar]
- Dalal-Clayton, D.B.; Dent, D. Knowledge of the Land: Land Resources Information and Its Use in Rural Development; Oxford University Press: Oxford, UK; New York, NY, USA, 2001; p. 428. [Google Scholar]
- Disperati, L.; Virdis, S.G.P. Assessment of land-use and land-cover changes from 1965 to 2014 in Tam Giang-Cau Hai Lagoon, central Vietnam. App. Geogr. 2015, 58, 48–64. [Google Scholar] [CrossRef]
- Sader, S.A.; Powell, G.V.N.; Rappole, J.H. Migratory bird habitat monitoring through remote sensing. Int. J. Remote Sens. 1991, 12, 363–372. [Google Scholar] [CrossRef]
- Mas, J.F.; Ramírez, I. Comparison of land use classifications obtained by visual interpretation and digital processing. ITC J. 1996, 3, 278–283. [Google Scholar]
- Palacio-Prieto, J.; Luna-González, L. Clasificación espectral automática vs. clasificación visual: Un ejemplo al sur de la ciudad de México. Investig. Geogr. 1994, 29, 25–40. [Google Scholar]
- Van den Broek, A.C.; Smith, A.J.E.; Toet, A. Land use classification of polarimetric SAR data by visual interpretation and comparison with an automatic procedure. Int. J. Remote Sens. 2004, 25, 3573–3591. [Google Scholar] [CrossRef]
- Feranec, J.; Hazeu, G.; Christensen, S.; Jaffrain, G. Corine land cover change detection in Europe (case studies of The Netherlands and Slovakia). Land Use Policy 2007, 24, 234–247. [Google Scholar] [CrossRef]
- Di Gregorio, A.; Latham, J. Africover Land Cover Classification and Mapping Project. In Encyclopedia of Life Support Systems (EOLSS); Verheye, W., Ed.; EOLSS: Paris, France, 2003; pp. 236–254. [Google Scholar]
- Zhang, Z.; Wang, X.; Zhao, X.; Liu, B.; Yi, L.; Zuo, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S. A 2010 update of National Land Use/Cover Database of China at 1:100,000 scale using medium spatial resolution satellite images. Remote Sens. Environ. 2014, 149, 142–154. [Google Scholar] [CrossRef]
- FAO. Forest Resources Assessment 1990: Survey of Tropical Forest Cover and Study of Change Processes; Food and Agriculture Organization of the United Nations: Rome, Italy, 1996; p. 177. [Google Scholar]
- Palacio-Prieto, J.; Bocco, G.; Velázquez, A.; Mas, J.F.; Takaki-Takaki, F.; Victoria, A.; Luna-González, L.; Gómez-Rodríguez, G.; López-García, J.; Palma, M.N.M.; et al. Las condiciones actuales de los recursos forestales en México: resultados del inventario forestal nacional 2000. Investig. Geogr. 2000, 43, 183–203. [Google Scholar]
- Victoria-Hernández, A.; Niño-Alcocer, M.; Alberto, J.; Avalos, R. La serie IV de uso del suelo y INEGI, información del periodo. In Teoría, Métodos y Técnicas del Ordenamiento Ecológico y Territorial; Salazar, M.T.S., Bocco, G., Izquierdo, J.M.C., Eds.; INECC: Mexico City, Mexico, 2013; pp. 243–267. [Google Scholar]
- Radoux, J.; Defourny, P. Automated image-to-map discrepancy detection using iterative trimming. Photogramm. Eng. Remote Sens. 2010, 76, 173–181. [Google Scholar] [CrossRef]
- Asner, G.P.; Knapp, D.E.; Broadbent, E.N.; Oliveira, P.J.C.; Keller, M.; Silva, J.N. Selective logging in the Brazilian Amazon. Science 2005, 310, 480–482. [Google Scholar] [CrossRef] [PubMed]
- Paneque-Gálvez, J.; Mas, J.-F.; Moré, G.; Cristóbal, J.; Orta-Martínez, M.; Luz, A.C.; Guèze, M.; Macía, M.J.; Reyes-García, V. Enhanced land use/cover classification of heterogeneous tropical landscapes using support vector machines and textural homogeneity. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 372–383. [Google Scholar] [CrossRef]
- Reimer, F.; Asner, G.P.; Joseph, S. Advancing reference emission levels in subnational and national REDD+ initiatives: A CLASlite approach. Carbon Balance Manag. 2015, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- García-Barrios, L.; Galván-Miyoshi, Y.M.; Valsieso-Pérez, I.A.; Masera, O.R.; Bocco, G.; Vandermeer, J. Neotropical Forest Conservation, Agricultural Intensification, and Rural Out-migration: The Mexican Experience. BioScience 2009, 59, 863–873. [Google Scholar] [CrossRef]
- Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2007, 2, 045023. [Google Scholar] [CrossRef]
- Pratihast, A.K.; Herold, M.; Avitabile, V.; de Bruin, S.; Bartholomeus, H.; Souza, C.M.; Ribbe, L. Mobile devices for community-based REDD+ monitoring: A case study for Central Vietnam. Sensors 2013, 13, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Paneque-Gálvez, J.; McCall, M.K.; Napoletano, B.M.; Wich, S.A.; Koh, L.P. Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas. Forests 2014, 5, 1481–1507. [Google Scholar] [CrossRef]
- Danielsen, F.; Skutsch, M.; Burgess, N.D.; Jensen, P.M.; Andrianandrasana, H.; Karky, B.; Lewis, R.; Lovett, J.C.; Massao, J.; Ngaga, Y.; et al. At the heart of REDD+: A role for local people in monitoring forests? Conser. Lett. 2011, 4, 158–167. [Google Scholar] [CrossRef]
- Vergara-Asenjo, G.; Sharma, D.; Potvin, C. Engaging stakeholders: Assessing accuracy of participatory mapping of land cover in Panama. Conser. Lett. 2015, 8. [Google Scholar] [CrossRef]
- Pratihast, A.K.; Herold, M.; De Sy, V.; Murdiyarso, D.; Skutsch, M. Linking community-based and national REDD+ monitoring: A review of the potential. Carbon Manag. 2013, 4, 91–104. [Google Scholar] [CrossRef]
Category | M | R | p-Value | Sig. level |
---|---|---|---|---|
Temperate coniferous forest | 1.62 | 1.70 | 0.04 | * |
Temperate deciduous forest | 1.73 | 1.83 | 0.00 | ** |
Temperate mixed forest | 1.75 | 1.75 | 0.50 | n.s. |
Tropical evergreen forest | 1.46 | 1.47 | 0.37 | n.s. |
Tropical deciduous forest | 1.52 | 1.54 | 0.18 | n.s. |
Scrubland | 1.25 | 1.30 | 0.00 | *** |
Wetland vegetation | 1.86 | 1.81 | 0.31 | n.s. |
Agriculture | 1.49 | 1.59 | 0.00 | *** |
Grassland | 1.56 | 1.64 | 0.00 | *** |
Water body | 1.92 | 1.96 | 0.38 | n.s. |
Barren land | 1.54 | 1.69 | 0.06 | n.s. |
Urban area | 2.02 | 2.17 | 0.08 | n.s. |
Category | M | R | p-Value | Sig. level |
---|---|---|---|---|
Temperate coniferous forest | 16.62 | 17.57 | 0.02 | * |
Temperate deciduous forest | 19.61 | 20.15 | 0.09 | n.s. |
Temperate mixed forest | 18.44 | 19.62 | 0.00 | ** |
Tropical evergreen forest | 8.02 | 9.54 | 0.00 | *** |
Tropical deciduous forest | 11.66 | 14.15 | 0.00 | *** |
Scrubland | 5.25 | 5.65 | 0.02 | * |
Wetland vegetation | 0.74 | 0.70 | 0.43 | n.s. |
Agriculture | 3.15 | 4.12 | 0.00 | *** |
Grassland | 4.20 | 5.97 | 0.00 | *** |
Water body | 2.10 | 2.71 | 0.18 | n.s. |
Barren land | 2.43 | 2.48 | 0.47 | n.s. |
Urban area | 1.66 | 3.59 | 0.00 | *** |
Category | Threshold Value | Acc. hom. | Acc. heter. | p-Value | Sig. level |
---|---|---|---|---|---|
All | 2 | 0.83 | 0.50 | 0.00 | *** |
Temperate coniferous forest | 2 | 0.53 | 0.44 | 0.09 | n.s. |
Temperate deciduous forest | 2 | 0.66 | 0.44 | 0.00 | *** |
Temperate mixed forest | 2 | 0.66 | 0.54 | 0.02 | * |
Tropical evergreen forest | 2 | 0.73 | 0.27 | 0.00 | *** |
Tropical deciduous forest | 2 | 0.79 | 0.51 | 0.00 | *** |
Scrubland | 2 | 0.92 | 0.58 | 0.00 | *** |
Wetland vegetation | 2 | 0.36 | 0.12 | 0.00 | ** |
Agriculture | 2 | 0.71 | 0.30 | 0.00 | *** |
Grassland | 2 | 0.67 | 0.35 | 0.00 | *** |
Water body | 2 | 0.62 | 0.32 | 0.01 | ** |
Barren land | 2 | 0.44 | 0.10 | 0.00 | ** |
Urban area | 2 | 0.45 | 0.19 | 0.00 | ** |
Category | Threshold Value | Acc. gentle | Acc. steep | p-value | Sig. level |
---|---|---|---|---|---|
All | 3.17 | 0.75 | 0.65 | 0.00 | *** |
Temperate coniferous forest | 16.22 | 0.56 | 0.48 | 0.03 | * |
Temperate deciduous forest | 20.22 | 0.60 | 0.65 | 0.12 | n.s. |
Temperate mixed forest | 18.04 | 0.67 | 0.61 | 0.08 | n.s. |
Tropical evergreen forest | 2.28 | 0.75 | 0.65 | 0.00 | *** |
Tropical deciduous forest | 10.45 | 0.79 | 0.74 | 0.01 | ** |
Scrubland | 2.08 | 0.88 | 0.95 | 0.00 | *** |
Wetland vegetation | 0.17 | 0.32 | 0.29 | 0.35 | n.s. |
Agriculture | 1.10 | 0.79 | 0.56 | 0.00 | *** |
Grassland | 1.51 | 0.69 | 0.57 | 0.00 | *** |
Water body | 0.31 | 0.62 | 0.48 | 0.09 | n.s. |
Barren land | 0.29 | 0.60 | 0.20 | 0.00 | *** |
Urban area | 0.60 | 0.25 | 0.51 | 0.00 | ** |
Period | Total (km2) | Change (km2) | Change (%) |
---|---|---|---|
1993–1995 | 1,951,803 | 484,992 | 24.8 |
1995 to 2000 | 1,951,494 | 505,595 | 25.9 |
2000 to 2002 | 1,953,276 | 760,281 | 38.9 |
2002 to 2005 | 1,948,914 | 844,959 | 43.4 |
2005 to 2008 | 1,949,405 | 849,397 | 43.6 |
1993 to 2008 | 1,954,090 | 783,880 | 40.1 |
Period | Total Area | Deforestation | Reforestation | ||
---|---|---|---|---|---|
km2 | km2 | % | km2 | % | |
1993 to 1995 | 1,951,803 | 83,181 | 11.4 | 85,638 | 7.0 |
1995 to 2000 | 1,951,494 | 86,395 | 11.8 | 88,155 | 7.2 |
2000 to 2002 | 1,953,276 | 86,843 | 11.9 | 193,780 | 17.4 |
2002 to 2005 | 1,948,914 | 151,192 | 18.0 | 166,231 | 15.2 |
2005 to 2008 | 1,949,405 | 170,907 | 20.0 | 147,469 | 13.2 |
1993 to 2008 | 1,954,090 | 93,413 | 12.8 | 196,518 | 17.5 |
Period | Total (km2) | Change (km2) | Change (%) |
---|---|---|---|
1993 to 1995 | 1,939,506 | 503,694 | 26.0 |
1995 to 2000 | 1,939,356 | 490,048 | 25.3 |
2000 to 2005 | 1,936,507 | 452,031 | 23.3 |
2005 to 2010 | 1,933,164 | 456,085 | 23.6 |
1993 to 2010 | 1,937,645 | 509,837 | 26.3 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mas, J.-F.; Couturier, S.; Paneque-Gálvez, J.; Skutsch, M.; Pérez-Vega, A.; Castillo-Santiago, M.A.; Bocco, G. Comment on Gebhardt et al. MAD-MEX: Automatic Wall-to-Wall Land Cover Monitoring for the Mexican REDD-MRV Program Using All Landsat Data. Remote Sens. 2014, 6, 3923–3943. Remote Sens. 2016, 8, 533. https://doi.org/10.3390/rs8070533
Mas J-F, Couturier S, Paneque-Gálvez J, Skutsch M, Pérez-Vega A, Castillo-Santiago MA, Bocco G. Comment on Gebhardt et al. MAD-MEX: Automatic Wall-to-Wall Land Cover Monitoring for the Mexican REDD-MRV Program Using All Landsat Data. Remote Sens. 2014, 6, 3923–3943. Remote Sensing. 2016; 8(7):533. https://doi.org/10.3390/rs8070533
Chicago/Turabian StyleMas, Jean-François, Stéphane Couturier, Jaime Paneque-Gálvez, Margaret Skutsch, Azucena Pérez-Vega, Miguel Angel Castillo-Santiago, and Gerardo Bocco. 2016. "Comment on Gebhardt et al. MAD-MEX: Automatic Wall-to-Wall Land Cover Monitoring for the Mexican REDD-MRV Program Using All Landsat Data. Remote Sens. 2014, 6, 3923–3943" Remote Sensing 8, no. 7: 533. https://doi.org/10.3390/rs8070533
APA StyleMas, J. -F., Couturier, S., Paneque-Gálvez, J., Skutsch, M., Pérez-Vega, A., Castillo-Santiago, M. A., & Bocco, G. (2016). Comment on Gebhardt et al. MAD-MEX: Automatic Wall-to-Wall Land Cover Monitoring for the Mexican REDD-MRV Program Using All Landsat Data. Remote Sens. 2014, 6, 3923–3943. Remote Sensing, 8(7), 533. https://doi.org/10.3390/rs8070533