MODIS-Based Mapping of Secchi Disk Depth Using a Qualitative Algorithm in the Shallow Arabian Gulf
"> Figure 1
<p>The upper panel shows a map of the Arabian Gulf with surrounding countries annotated. The isobaths of 10, 20, 50, 100, and 200 m are annotated. The bathymetry data are from NOAA with a spatial resolution of ~2 km. Sampling stations along the Abu Dhabi coast are shown in open circles. The red and green circles denote <span class="html-italic">in situ</span> measurements conducted by the Environmental Agency of Abu Dhabi (EAD) and the Masdar Institute of Science and Technology (MIST), respectively. The ‘×’ and ‘+’ indicate stations with matched satellite and <span class="html-italic">in situ</span> data measured by EAD and MIST, respectively.</p> "> Figure 2
<p>Histogram of <span class="html-italic">in situ</span> measured Secchi disk depth (SDD).</p> "> Figure 3
<p>Relationships between <span class="html-italic">in situ</span> measured SDD and satellite-derived K<sub>d</sub>_488_lee (solid red square), K<sub>d</sub>_490_mueller (solid green triangle) and K<sub>d</sub>_490_morel (solid blue circle). The red, green, and blue dashed lines denote the best fits between SDD and K<sub>d</sub>_488_lee, K<sub>d</sub>_490_mueller, and K<sub>d</sub>_490_morel, respectively.</p> "> Figure 4
<p>Examples of SDD maps generated based on Aqua derived K<sub>d</sub>_490_mueller, K<sub>d</sub>_490_morel, and K<sub>d</sub>_488_lee. The two-day scenes from summer and winter, respectively, were chosen randomly. The dates are annotated. The top, middle and bottom panels represent SDD maps from K<sub>d</sub> using the Mueller, Morel, and Lee algorithms, respectively.</p> "> Figure 5
<p>Comparison between the model proposed in our study and those published in the literature as gauged by <span class="html-italic">in situ</span> measured SDD. The dashed line represents the 1:1 relationship.</p> "> Figure 6
<p>Comparisons between Aqua-derived and <span class="html-italic">in situ</span> measured R<sub>rs</sub> for bands centered at 412, 443, 488, 547, and 667 nm. These bands were involved in the QAA algorithm implementation. The default (<b>a</b>) and SWIR (<b>b</b>) atmospheric correction schemes were carried out.</p> "> Figure 7
<p>Seasonal SDD maps during the period of 2002–2015 over the Gulf calculated from Equation (9) using MODIS/Aqua data: (<b>a</b>) spring; (<b>b</b>) summer; (<b>c</b>) fall; (<b>d</b>) winter.</p> "> Figure 8
<p>Time series of monthly mean SDD averaged over the entire Arabian Gulf between 2002 and 2015. The red line denotes climatology of monthly mean SDD.</p> ">
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. In Situ Data Collection
2.3. Background for Existing Kd Algorithms
2.4. Satellite Image Processing and Matchup between Satellite and in Situ Measurements
2.5. Statistical Analysis
3. Results
3.1. In Situ Measured SDD
3.2. Development of New Models to Retrieve SDD from Satellite Derived Kd
4. Discussion
4.1. Comparison with Other Models
4.2. Potential Factors Causing Uncertainties of the Algorithm
- (1)
- The Lee algorithm takes into consideration both absorption and scattering of all optically active components while the Mueller and Morel algorithms are more sensitive to the changes in water absorption [56].
- (2)
- The empirical algorithms are designed for case I waters where CDOM and non-algal particulate co-vary with phytoplankton. Most of these algorithms have failed when applied in turbid case II waters [57,58]. Furthermore, the default parameters used by these algorithms were proposed for global scale applications. For local and regional studies, those parameters must be re-calibrated with new sets of locally collected measurements to improve the performance of these empirical algorithms.
4.3. Seasonal Variations of SDD in the Gulf
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dogliotti, A.I.; Ruddick, K.G.; Nechad, B.; Doxaran, D.; Knaeps, E. A single algorithm to retrieve turbidity from remotely-sensed data in all coastal and estuarine waters. Remote Sens. Environ. 2015, 156, 157–168. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Optical water quality—What does it mean and how should we measure it? J. Water Pollut. Control Fed. 1988, 60, 194–197. [Google Scholar]
- Wilson, P.C. Water Quality Notes: Water Clarity (Turbidity, Suspended Solids, and Color); University of Florida, Institute of Food and Agricultural Sciences (IFAS) and the Florida Cooperation Extension Service: Gainesville, FL, USA, 2013; pp. 1–8. [Google Scholar]
- Liu, W.; Liu, Y.; Mannaerts, C.M.; Wu, G. Monitoring variation of water turbidity and related environmental factors in Poyang Lake national nature reserve, China. Proc. SPIE 2007. [Google Scholar] [CrossRef]
- IOCCG. Remote Sensing of Ocean Color in Coastal, Other Optically-Complex, Waters; IOCCG: Dartmouth, NS, Canada, 2000. [Google Scholar]
- Forget, P.; Ouillon, S.; Lahet, F.; Broche, P. Inversion of reflectance spectra of nonchlorophyllous turbid coastal waters. Remote Sens. Environ. 1999, 68, 264–272. [Google Scholar] [CrossRef]
- Prieur, L.; Sathyendranath, S. An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials1. Limnol. Oceanogr. 1981, 26, 671–689. [Google Scholar] [CrossRef]
- Megard, R.O.; Berman, T. Effects of algae on the secchi transparency of the southeastern mediterranean sea. Limnol. Oceanogr. 1989, 34, 1640–1655. [Google Scholar] [CrossRef]
- Lewis, M.R.; Kuring, N.; Yentsch, C. Global patterns of ocean transparency: Implications for the new production of the open ocean. J. Geophys. Res. Oceans 1988, 93, 6847–6856. [Google Scholar] [CrossRef]
- Garaba, S.; Voß, D.; Zielinski, O. Physical, bio-optical state and correlations in north-western european shelf seas. Remote Sens. 2014, 6, 5042. [Google Scholar] [CrossRef]
- Garaba, S.P.; Friedrichs, A.; Voß, D.; Zielinski, O. Classifying natural waters with the forel-ule colour index system: Results, applications, correlations and crowdsourcing. Int.J. Environ. Res. Public Health 2015, 12, 16096–16109. [Google Scholar] [CrossRef] [PubMed]
- Duntley, S.Q. Light in the sea. J. Opt. Soc. Am. 1963, 53, 214–233. [Google Scholar] [CrossRef]
- Preisendorfer, R.W. Hydrologic Optics; National Technical Invormation Service: Springfield, VA, USA, 1976.
- Zaneveld, J.R.; Pegau, W. Robust underwater visibility parameter. Opt. Express 2003, 11, 2997–3009. [Google Scholar] [CrossRef] [PubMed]
- Aas, E.; Høkedal, J.; Sørensen, K. Secchi depth in the oslofjord-skagerrak area: Theory, experiments and relationships to other quantities. Ocean Sci. 2014, 10, 177–199. [Google Scholar] [CrossRef] [Green Version]
- Holmes, R.W. The secchi disk in turbid coastal waters1. Limnol. Oceanogr. 1970, 15, 688–694. [Google Scholar] [CrossRef]
- Lee, Z.; Shang, S.; Hu, C.; Du, K.; Weidemann, A.; Hou, W.; Lin, J.; Lin, G. Secchi disk depth: A new theory and mechanistic model for underwater visibility. Remote Sens. Environ. 2015, 169, 139–149. [Google Scholar] [CrossRef]
- Koponen, S.; Pulliainen, J.; Kallio, K.; Vepsalainen, J.; Hallikainen, M. Use of Modis Data for Monitoring Turbidity in Finnish Lakes. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, (IGARSS’01), Sydney, Australia, 9–13 July 2001; Volume 2185, pp. 2184–2186.
- Chen, Z.; Muller-Karger, F.E.; Hu, C. Remote sensing of water clarity in tampa bay. Remote Sens. Environ. 2007, 109, 249–259. [Google Scholar] [CrossRef]
- Moreno-Madrinan, M.J.; Al-Hamdan, M.Z.; Rickman, D.L.; Muller-Karger, F.E. Using the surface reflectance MODIS terra product to estimate turbidity in Tampa Bay, Florida. Remote Sens. 2010, 2, 2713–2728. [Google Scholar] [CrossRef]
- Wang, M.; Nim, C.J.; Son, S.; Shi, W. Characterization of turbidity in florida’s lake okeechobee and caloosahatchee and st. Lucie estuaries using MODIS-Aqua measurements. Water Res. 2012, 46, 5410–5422. [Google Scholar] [CrossRef] [PubMed]
- Nehorai, R.; Lensky, I.M.; Hochman, L.; Gertman, I.; Brenner, S.; Muskin, A.; Lensky, N.G. Satellite observations of turbidity in the dead sea. J. Geophys. Res. Oceans 2013, 118, 3146–3160. [Google Scholar] [CrossRef]
- Al-Saadi, H.; Saad, M.; Hadi, R.; Hussain, N. Further investigations on some environmental characteristics of north-west arab gulf. Proc. Indian Natl. Sci. Acad. 1977, 43, 183–192. [Google Scholar]
- Alsahli, M.M.M.; Price, K.P.; Buddemeier, R.; Fautin, D.G.; Egbert, S. Modeling kuwait seawater clarity: A spatial-temporal study using remote sensing and gis. Appl. Remote Sens. J. 2012, 2, 17–33. [Google Scholar]
- Al Kaabi, M.R.; Jun, Z.; Charron, C.; Gherboudj, I.; Lazzarini, M.; Ghedira, H. Developing Satellite-Based Tool for Water Turbidity Mapping in the Arabian Gulf: Abu Dhabi Case Study. In Proceedings of the 2013 Oceans—San Diego, San Diego, CA, USA, 23–27 September 2013; pp. 1–4.
- Chen, Z.; Hu, C.; Muller-Karger, F. Monitoring turbidity in tampa bay using MODIS/Aqua 250-m imagery. Remote Sens. Environ. 2007, 109, 207–220. [Google Scholar] [CrossRef]
- Lee, Z.-P.; Darecki, M.; Carder, K.L.; Davis, C.O.; Stramski, D.; Rhea, W.J. Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods. J. Geophys. Res. Oceans 2005, 110. [Google Scholar] [CrossRef]
- Zhao, J.; Barnes, B.; Melo, N.; English, D.; Lapointe, B.; Muller-Karger, F.; Schaeffer, B.; Hu, C. Assessment of satellite-derived diffuse attenuation coefficients and euphotic depths in south florida coastal waters. Remote Sens. Environ. 2013, 131, 38–50. [Google Scholar] [CrossRef]
- Michael Reynolds, R. Physical oceanography of the gulf, strait of Hormuz, and the gulf of Oman—Results from the Mt Mitchell expedition. Mar. Pollut. Bull. 1993, 27, 35–59. [Google Scholar] [CrossRef]
- Al Shehhi, M.R.; Gherboudj, I.; Ghedira, H. An overview of historical harmful algae blooms outbreaks in the arabian seas. Mar. Pollut. Bull. 2014, 86, 314–324. [Google Scholar] [CrossRef] [PubMed]
- Johns, W.E.; Jacobs, G.A.; Kindle, J.C.; Murray, S.P.; Carron, M. Arabian Marginal Seas and Gulfs: Report of a Workshop Held at Stennis Space Center, Mississipi; University of Miami RSMAS: Miami, FL, USA, 1999. [Google Scholar]
- Allan, T.D. The marine environment. Int. J. Remote Sens. 1992, 13, 1261–1276. [Google Scholar] [CrossRef]
- Subba Rao, D.V.; Al-Yamani, F.; Nageswara Rao, C.V. Eolian dust affects phytoplankton in the waters off kuwait, the arabian gulf. Naturwissenschaften 1999, 86, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Mezhoud, N.; Temimi, M.; Zhao, J.; Al Shehhi, M.R.; Ghedira, H. Analysis of the spatio-temporal variability of seawater quality in the southeastern arabian gulf. Mar. Pollut. Bull. 2016, 106, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Mezher, T.; Fath, H.; Abbas, Z.; Khaled, A. Techno-economic assessment and environmental impacts of desalination technologies. Desalination 2011, 266, 263–273. [Google Scholar] [CrossRef]
- Richlen, M.L.; Morton, S.L.; Jamali, E.A.; Rajan, A.; Anderson, D.M. The catastrophic 2008–2009 red tide in the arabian gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate cochlodinium polykrikoides. Harmful Algae 2010, 9, 163–172. [Google Scholar] [CrossRef]
- Zhao, J.; Ghedira, H. Monitoring red tide with satellite imagery and numerical models: A case study in the arabian gulf. Mar. Pollut. Bull. 2014, 79, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Temimi, M.; Ghedira, H. Characterization of harmful algal blooms (habs) in the arabian gulf and the sea of oman using meris fluorescence data. ISPRS J. Photogramm. Remote Sens. 2015, 101, 125–136. [Google Scholar] [CrossRef]
- Essa, S.; Harahsheh, H.; Shiobara, M.; Nishidai, T. Chapter 3 operational remote sensing for the detection and monitoring of oil pollution in the arabian gulf: Case studies from the United Arab Emirates. In Developments in Earth and Environmental Sciences; Al-Azab, M., El-Shorbagy, W., Eds.; Elsevier: Amsterdam, The Netherlands, 2005; Volume 3, pp. 31–48. [Google Scholar]
- Zhao, J.; Temimi, M.; Ghedira, H.; Hu, C. Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters-a case study in the arabian gulf. Opt. Express 2014, 22, 13755–13772. [Google Scholar] [CrossRef] [PubMed]
- Mueller, J.L.; MOrel, A.; Frouin, R.; Davis, C.; Arnone, R.; Carder, K.L.; Lee, Z.P.; Steward, R.G.; Hooker, S.B.; Holben, B.; et al. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols; NASA, Goddard Space Flight Center: Greenbelt, MD, USA, 2003.
- Zhao, J.; Temimi, M.; Kitbi, S.A.; Mezhoud, N. Monitoring habs in the shallow Arabian Gulf using a qualitative satellite-based index. Int. J. Remote Sens. 2016, 37, 1937–1954. [Google Scholar] [CrossRef]
- Bracchini, L.; Dattilo, A.M.; Hull, V.; Loiselle, S.A.; Tognazzi, A.; Rossi, C. Modelling upwelling irradiance using Secchi disk depth in lake ecosystems. J. Limnol. 2009, 68. [Google Scholar] [CrossRef]
- Tyler, J.E. The secchi disc. Limnol. Oceanogr. 1968, 13, 1–6. [Google Scholar] [CrossRef]
- Mueller, J.L. Seawifs Algorithm for the Diffuse Attenuation Coefficient, k(490), Using Water-Leaving Radiances at 490 and 555 nm; NASA Goddard Space Flight Cent.: Greenbelt, MD, USA, 2000; pp. 24–27.
- Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (case I waters). J. Geophys. Res. Oceans 1988, 93, 10749–10768. [Google Scholar] [CrossRef]
- Morel, A.; Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. Oceans 2001, 106, 7163–7180. [Google Scholar] [CrossRef]
- Bailey, S.W.; Franz, B.A.; Werdell, P.J. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Opt. Express 2010, 18, 7521–7527. [Google Scholar] [CrossRef] [PubMed]
- Goyens, C.; Jamet, C.; Schroeder, T. Evaluation of four atmospheric correction algorithms for MODIS-Aqua images over contrasted coastal waters. Remote Sens. Environ. 2013, 131, 63–75. [Google Scholar] [CrossRef]
- Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Yao, F.; Johns, W.E. A HYCOM modeling study of the Persian Gulf: 1. Model configurations and surface circulation. J. Geophys. Res. Oceans 2010, 115. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Opt. Express 2007, 15, 15722–15733. [Google Scholar] [CrossRef] [PubMed]
- Nezlin, N.P.; Polikarpov, I.G.; Al-Yamani, F.Y.; Subba Rao, D.V.; Ignatov, A.M. Satellite monitoring of climatic factors regulating phytoplankton variability in the Arabian (Persian) Gulf. J. Mar. Syst. 2010, 82, 47–60. [Google Scholar] [CrossRef]
- Pierson, D.C.; Kratzer, S.; Strömbeck, N.; Håkansson, B. Relationship between the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400 nm–700 nm) in the Baltic Sea. Remote Sens. Environ. 2008, 112, 668–680. [Google Scholar] [CrossRef]
- Suresh, T.; Naik, P.; Bandishte, M.; Desa, E.; Mascaranahas, A.; Matondkar, S.G.P. Secchi depth analysis using bio-optical parameters measured in the Arabian Sea. Proc. SPIE 2006, 6406. [Google Scholar] [CrossRef]
- Stramska, M.; Stramski, D.; Hapter, R.; Kaczmarek, S.; Stoń, J. Bio-optical relationships and ocean color algorithms for the north polar region of the Atlantic. J. Geophys. Res. Oceans 2003, 108. [Google Scholar] [CrossRef]
- Yuanzhi, Z.; Hui, L.; Chuqun, C.; Liding, C.; Bing, Z.; Anatoly, A.G. Estimation of chlorophyll-a concentration in estuarine waters: Case study of the Pearl River Estuary, South China Sea. Environ. Res. Lett. 2011, 6, 024016. [Google Scholar]
- Hongtao, D.; Ronghua, M.; Yuanzhi, Z.; Steven Arthur, L.; Jingping, X.; Chenlu, Z.; Lin, Z.; Linlin, S. A new three-band algorithm for estimating chlorophyll concentrations in turbid inland lakes. Environ. Res. Lett. 2010, 5, 044009. [Google Scholar] [CrossRef]
- Barnes, B.B.; Hu, C.; Schaeffer, B.A.; Lee, Z.; Palandro, D.A.; Lehrter, J.C. MODIS-derived spatiotemporal water clarity patterns in optically shallow florida keys waters: A new approach to remove bottom contamination. Remote Sens. Environ. 2013, 134, 377–391. [Google Scholar] [CrossRef]
- Cannizzaro, J.P.; Carder, K.L. Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters. Remote Sens. Environ. 2006, 101, 13–24. [Google Scholar] [CrossRef]
- Wang, M.; Son, S.; Shi, W. Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using seabass data. Remote Sens. Environ. 2009, 113, 635–644. [Google Scholar] [CrossRef]
- Menghua, W.; SeungHyun, S.; Yunlin, Z.; Wei, S. Remote sensing of water optical property for China’s inland Lake Taihu using the SWIR atmospheric correction with 1640 and 2130 nm bands. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2505–2516. [Google Scholar]
- Chen, S.; Zhang, T.; Hu, L. Evaluation of the NIR-SWIR atmospheric correction algorithm for MODIS-Aqua over the Eastern China Seas. Int. J. Remote Sens. 2014, 35, 4239–4251. [Google Scholar] [CrossRef]
- Antón, M.; Valenzuela, A.; Román, R.; Lyamani, H.; Krotkov, N.; Arola, A.; Olmo, F.J.; Alados-Arboledas, L. Influence of desert dust intrusions on ground-based and satellite-derived ultraviolet irradiance in southeastern Spain. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Fukushima, H.; Toratani, M.; Yamamiya, S.; Mitomi, Y. Atmospheric correction algorithms for ADEOS/OCTS ocean colar data: Performance comparison based on ship and buoy measurements. Adv. Space Res. 2000, 25, 1015–1024. [Google Scholar] [CrossRef]
- Gordon, H.R. Atmospheric correction of ocean color imagery in the earth observing system era. J. Geophys. Res. Atmos. 1997, 102, 17081–17106. [Google Scholar] [CrossRef]
- Carder, K.L.; Gregg, W.W.; Costello, D.K.; Haddad, K.; Prospero, J.M. Determination of Saharan dust radiance and chlorophyll from CZCS imagery. J. Geophys. Res. Atmos. 1991, 96, 5369–5378. [Google Scholar] [CrossRef]
- Doxaran, D.; Devred, E.; Babin, M. A 50% increase in the mass of terrestrial particles delivered by the Mackenzie River into the Beaufort Sea (Canadian Arctic Ocean) over the last 10 years. Biogeosciences 2015, 12, 3551–3565. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Zheng, L.; Zhou, Y.; Sun, D.; Wang, S.; Wu, W. Innovative GOCI algorithm to derive turbidity in highly turbid waters: A case study in the Zhejiang coastal area. Opt. Express 2015, 23, A1179–A1193. [Google Scholar] [CrossRef] [PubMed]
- Moradi, M.; Kabiri, K. Red tide detection in the strait of Hormuz (east of the Persian Gulf) using MODIS fluorescence data. Int. J. Remote Sens. 2012, 33, 1015–1028. [Google Scholar] [CrossRef]
- Al Azhar, M.; Temimi, M.; Zhao, J.; Ghedira, H. Modeling of circulation in the Arabian Gulf and the sea of oman: Skill assessment and seasonal thermohaline structure. J. Geophys. Res. Oceans 2016, 121, 1700–1720. [Google Scholar] [CrossRef]
SDD Equation | R2 | Mean Ratio | RMSD (%) | RPD (%) |
---|---|---|---|---|
SDD = 0.9 × 1/Kd_488_lee + 1.01 | 0.62 | 1.06 | 26.68 | 5.86 |
SDD = 0.93 × 1/Kd_490_morel − 3.07 | 0.33 | 1.08 | 34.00 | 8.14 |
SDD = 0.76 × 1/Kd_490_mueller + 0.0018 | 0.52 | 1.11 | 40.82 | 11.02 |
Model | R2 | Mean Ratio | RMSD (%) | RPD (%) | Slope | Intercept |
---|---|---|---|---|---|---|
This study (Equation (9)) | 0.6 | 1.06 | 26.68 | 5.86 | 0.6 | 3.17 |
Chen et al. (2007) [26] | 0.48 | 0.73 | 33.51 | −27.07 | 0.34 | 2.65 |
Pierson et al. (2008) [54] | 0.47 | 1.85 | 97.25 | 84.64 | 1.08 | 5.27 |
Suresh et al. (2006) [55] | 0.47 | 1.44 | 58.12 | 44.42 | 0.84 | 4.12 |
Model | R2 | Mean Ratio | RMSD (%) | RPD (%) | Slope | Intercept |
---|---|---|---|---|---|---|
412 | 0.62 | 0.71 | 17.04 | −28.66 | 0.4 | 0.0014 |
443 | 0.87 | 0.9 | 8.87 | −10.09 | 0.59 | 0.0014 |
488 | 0.98 | 0.88 | 3.12 | −11.57 | 0.76 | 0.0007 |
547 | 1 | 0.92 | 1.37 | −7.91 | 0.86 | 0.0003 |
667 | 0.89 | 0.6 | 17.49 | −39.69 | 0.67 | 0.00008 |
Model | R2 | Mean Ratio | RMSD (%) | RPD (%) | Slope | Intercept |
---|---|---|---|---|---|---|
412 | 0.62 | 0.69 | 17.33 | −30.52 | 0.63 | 0.0002 |
443 | 0.82 | 0.89 | 8.07 | −10.96 | 0.76 | 0.0004 |
488 | 0.95 | 0.88 | 2.92 | −12.28 | 0.86 | 0.00005 |
547 | 0.97 | 0.91 | 1.67 | −8.86 | 0.99 | 0.0004 |
667 | 0.66 | 0.7 | 32.41 | −30.2 | 2.06 | −0.0016 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Kaabi, M.R.; Zhao, J.; Ghedira, H. MODIS-Based Mapping of Secchi Disk Depth Using a Qualitative Algorithm in the Shallow Arabian Gulf. Remote Sens. 2016, 8, 423. https://doi.org/10.3390/rs8050423
Al Kaabi MR, Zhao J, Ghedira H. MODIS-Based Mapping of Secchi Disk Depth Using a Qualitative Algorithm in the Shallow Arabian Gulf. Remote Sensing. 2016; 8(5):423. https://doi.org/10.3390/rs8050423
Chicago/Turabian StyleAl Kaabi, Muna. R., Jun Zhao, and Hosni Ghedira. 2016. "MODIS-Based Mapping of Secchi Disk Depth Using a Qualitative Algorithm in the Shallow Arabian Gulf" Remote Sensing 8, no. 5: 423. https://doi.org/10.3390/rs8050423
APA StyleAl Kaabi, M. R., Zhao, J., & Ghedira, H. (2016). MODIS-Based Mapping of Secchi Disk Depth Using a Qualitative Algorithm in the Shallow Arabian Gulf. Remote Sensing, 8(5), 423. https://doi.org/10.3390/rs8050423