Research on the Contribution of Urban Land Surface Moisture to the Alleviation Effect of Urban Land Surface Heat Based on Landsat 8 Data
"> Figure 1
<p>Location of Jiangsu in China, location of the Xuzhou urban area in Jiangsu, and location of the border of the Xuzhou urban area.</p> "> Figure 2
<p>Comparison between spectral lines with and without atmospheric correction on 21 May 2013. (<b>a</b>) Spectral lines of vegetation. The standard spectral line (Vegetation) was obtained from the ASTER Spectral Library; (<b>b</b>) Spectral lines of water. The standard Spectral Line (Water) was obtained from Yao [<a href="#B36-remotesensing-07-10737" class="html-bibr">36</a>].</p> "> Figure 3
<p>(<b>a</b>) Land surface temperature distribution on 21 May 2013; (<b>b</b>) 03 September 2013; (<b>c</b>) 01 May 2014; (<b>d</b>) 22 September 2014.</p> "> Figure 4
<p>(<b>a</b>) 2D scatterplot of the LST <span class="html-italic">vs.</span> ULSM on 21 May 2013; (<b>b</b>) 03 September 2013; (<b>c</b>) 01 May 2014; (<b>d</b>) 22 September 2014. The blue curve is the fitting curve of polynomial fitting of degree 4.</p> "> Figure 5
<p>Typical areas of “High Efficiency Moisture Areas” and other areas. The pictures were extracted from Google Earth, and the pictures were taken on 14 December 2014.</p> "> Figure 6
<p>(<b>a</b>) Buffer zones of “High Efficiency Moisture Areas” on 21 May 2013; (<b>b</b>) 3 September 2013; (<b>c</b>) 1 May 2014; (<b>d</b>) 22 September 2014.</p> "> Figure 7
<p>Average value of the land surface temperature and urban land surface moisture in core areas and in each layer of the buffer zones. The zero point on the x axis refers to a core area.</p> "> Figure 8
<p>Fitting curve of the LST increasing value <span class="html-italic">vs.</span> the ULSM declining value.</p> "> Figure 9
<p>(<b>a</b>) GVI average value in the core areas and each layer of the buffer zones; (<b>b</b>) SAVI average value in the core areas and each layer of the buffer zones; (<b>c</b>) FVC average value in the core areas and each layer of the buffer zones. The zero points on the x axis refers to core areas.</p> "> Figure 9 Cont.
<p>(<b>a</b>) GVI average value in the core areas and each layer of the buffer zones; (<b>b</b>) SAVI average value in the core areas and each layer of the buffer zones; (<b>c</b>) FVC average value in the core areas and each layer of the buffer zones. The zero points on the x axis refers to core areas.</p> "> Figure 10
<p>(<b>a</b>) Linear regression between LSTI<sub>N</sub> and ULSMD<sub>N</sub>; (<b>b</b>) Linear regression between LSTI<sub>N</sub> and GVID<sub>N</sub>; (<b>c</b>) Linear regression between LSTI<sub>N</sub> and SAVID<sub>N</sub>; (<b>d</b>) Linear regression between LSTI<sub>N</sub> and FVCD<sub>N</sub>.</p> "> Figure 11
<p>Change trends of the LSTI<sub>N</sub> predicted value and the LSTI<sub>N</sub> observation value.</p> "> Figure 12
<p>Performance of the predicted values calculated by four indices (the statistics in the Taylor diagram); an ideal model would have a standard deviation ratio (σ<span class="html-italic"><sub>norm</sub></span>) of 1.0 and a correlation coefficient of 1.0 (REF is the reference point).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source
Scene | Landsat Scene ID | Acquisition Date | Path/Row |
---|---|---|---|
1 | LC81220362013141LGN01 | 21 May 2013 | 122/36 |
2 | LC81210362013246LGN00 | 3 September 2013 | 121/36 |
3 | LC81210362014121LGN00 | 1 May 2014 | 121/36 |
4 | LC81210362014265LGN00 | 22 September 2014 | 121/36 |
2.3. Data Pre-Processing
2.4. Land Surface Temperature Inversion
2.4.1. Brightness Temperature (T10) Inversion
2.4.2. Average Atmospheric Temperature (Ta) Calculation
Satellite Transit Time | Air Temperature of Ground T0 (K) | Average Ground Vapor Pressure e (hpa) | Atmospheric Transmittance e (τ) |
---|---|---|---|
21 May 2013 | 299.25 | 17.7 | 0.6153 |
03 September 2013 | 297.25 | 17.3 | 0.6242 |
01 May 2014 | 296.05 | 17.8 | 0.6131 |
22 September 2014 | 295.65 | 15.5 | 0.6645 |
2.4.3. Land Surface Emissivity (ε) Calculation
2.4.4. Atmospheric Transmittance (τ) Calculation
2.5. Urban Land Surface Moisture Inversion
Component | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 |
---|---|---|---|---|---|---|
Wetness(Moisture) | 0.1511 | 0.1973 | 0.3283 | 0.3407 | −0.7117 | −0.4559 |
Greenness | −0.2941 | −0.243 | −0.5424 | 0.7276 | 0.0713 | −0.1608 |
3. Results
3.1. The Trend of the Influence of Urban Land Surface Moisture on the Land Surface Temperature
Coefficient | a4(x4) | a3(x3) | a2(x2) | a1(x) | a0 | R2 | |
---|---|---|---|---|---|---|---|
Date | |||||||
21 May 2013 | −9.460 × 10−5 | −0.008275 | −0.2269 | −2.0720 | 309.1 | 0.5129 | |
03 September 2013 | −7.8330 × 10−7 | −0.007263 | −0.2017 | −1.618 | 309.0 | 0.5006 | |
01 May 2014 | −1.8850 × 10−4 | −0.0002262 | −0.1283 | −1.519 | 303.1 | 0.5043 | |
22 September 2014 | −7.5600 × 10−4 | 0.01293 | −0.0685 | −1.459 | 302.1 | 0.3599 |
Date | x Value of Extreme Point |
---|---|
21 May 2013 | −6.8903 |
3 September 2013 | −5.5328 |
1 May 2014 | −6.3189 |
22 September 2014 | −5.6224 |
3.2. The Effect of ULSM on the LST of Surrounding Areas
3.2.1. “High Efficiency Moisture Areas” Extraction
Date | The Average Value of ULSM |
---|---|
21 May 2013 | −0.7009 |
03 September 2013 | 0.0628 |
01 May 2014 | −0.3129 |
22 September 2014 | −0.6986 |
3.2.2. The Regression Analysis between the Changes of LST and ULSM in “High Efficiency Moisture Areas” and Their Surrounding Areas
3.3. The LST Alleviation Effect Comparison with Several Commonly Used Indices
3.3.1. Comparative Indicators Selection
3.3.2. Indices Normalized and Univariate Linear Regression Analysis
Index | 21 May 2013 | 03 September 2013 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C-L1 | L1-L2 | L2-L3 | L3-L4 | L4-L5 | C-L1 | L1-L2 | L2-L3 | L3-L4 | L4-L5 | |
ULSMDN | 0.9274 | 0.4549 | 0.1303 | 0.0121 | 0.0473 | 0.8956 | 0.4340 | 0.1253 | 0.0582 | 0.0019 |
GVIDN | 0.7923 | 0.7452 | 0.2729 | 0.0975 | 0.1350 | 0.7319 | 1.0000 | 0.3620 | 0.1822 | 0.0000 |
SAVIDN | 0.9207 | 0.7970 | 0.2640 | 0.0990 | 0.1237 | 0.5966 | 1.0000 | 0.3456 | 0.1718 | 0.0000 |
FVCDN | 1.0000 | 0.4240 | 0.1257 | 0.0645 | 0.0680 | 0.9605 | 0.6231 | 0.1853 | 0.0960 | 0.0000 |
LSTIN | 1.0000 | 0.3048 | 0.1382 | 0.0075 | 0.0485 | 0.7290 | 0.3086 | 0.1564 | 0.0814 | 0.0000 |
Index | 01 May 2014 | 22 September 2014 | ||||||||
C-L1 | L1-L2 | L2-L3 | L3-L4 | L4-L5 | C-L1 | L1-L2 | L2-L3 | L3-L4 | L4-L5 | |
ULSMDN | 1.0000 | 0.4129 | 0.0971 | 0.0463 | 0.0000 | 0.7473 | 0.3324 | 0.1091 | 0.0618 | 0.0286 |
GVIDN | 0.7463 | 0.7175 | 0.2576 | 0.1445 | 0.0431 | 0.1951 | 0.2691 | 0.1907 | 0.1578 | 0.0869 |
SAVIDN | 0.5781 | 0.7439 | 0.2583 | 0.1439 | 0.0392 | 0.3146 | 0.0920 | 0.1058 | 0.1224 | 0.0734 |
FVCDN | 0.8599 | 0.3868 | 0.1235 | 0.0772 | 0.0288 | 0.1631 | 0.1381 | 0.0696 | 0.0664 | 0.0490 |
LSTIN | 0.8840 | 0.2858 | 0.1342 | 0.0681 | 0.0007 | 0.6386 | 0.1961 | 0.1004 | 0.0592 | 0.0182 |
Index | Correlation Coefficient | Regression Equation | RMSE | P-Value |
---|---|---|---|---|
LSTIN vs. ULSMDN | 0.9790 | y1 = 0.8804 x1 − 0.0027 | 0.0642 | 6.99 × 10−14 < 0.05 |
LSTIN vs. GVIDN | 0.7031 | y2 = 0.7035 x2 + 0.0073 | 0.2240 | 5.44 × 10−4 < 0.05 |
LSTIN vs. SAVIDN | 0.6921 | y3 = 0.6725 x3 + 0.0297 | 0.2274 | 7.21 × 10−4 < 0.05 |
LSTIN vs. FVCDN | 0.8939 | y4 = 0.8430 x4 + 0.0256 | 0.1412 | 1.09 × 10−7 < 0.05 |
3.3.3. Grey Relational and Taylor Skill Analysis
k | ξ1(k) | ξ2(k) | ξ3(k) | ξ4(k) |
---|---|---|---|---|
1 | 0.5711 | 0.3626 | 0.4136 | 0.6541 |
2 | 0.7277 | 0.5223 | 0.4872 | 0.7605 |
3 | 0.9057 | 0.8032 | 0.7830 | 0.9763 |
4 | 0.9999 | 0.7846 | 0.7369 | 0.7741 |
5 | 0.9641 | 0.8229 | 0.7948 | 0.8788 |
6 | 0.8144 | 0.5453 | 0.4539 | 0.7000 |
7 | 0.7786 | 0.3812 | 0.3863 | 0.5055 |
8 | 0.8366 | 0.7019 | 0.7016 | 0.9079 |
9 | 0.8841 | 0.8219 | 0.7961 | 0.9087 |
10 | 0.9975 | 0.9730 | 0.8942 | 0.9071 |
11 | 0.9766 | 0.4133 | 0.3472 | 0.6505 |
12 | 0.7684 | 0.5228 | 0.5038 | 0.7903 |
13 | 0.8289 | 0.8213 | 0.7827 | 0.9843 |
14 | 0.8929 | 0.8597 | 0.8105 | 0.9175 |
15 | 0.9882 | 0.8715 | 0.8184 | 0.8348 |
16 | 0.9386 | 0.3339 | 0.3840 | 0.3426 |
17 | 0.7260 | 0.9998 | 0.7038 | 0.8221 |
18 | 0.9738 | 0.8592 | 1.0000 | 0.9409 |
19 | 0.9721 | 0.8085 | 0.8254 | 0.9180 |
20 | 0.9846 | 0.8326 | 0.8036 | 0.8362 |
Average | 0.8765 | 0.7021 | 0.6714 | 0.8005 |
Indicator | y1 | y2 | y3 | y4 |
---|---|---|---|---|
σnorm (σp/σo) | 0.9790 | 0.7031 | 0.6921 | 0.8939 |
Rd (ξ) | 0.8765 | 0.7021 | 0.6714 | 0.8005 |
Taylor skill (S) | 0.9378 | 0.7536 | 0.7320 | 0.8890 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Dewan, A.; Yamaguchi, Y.; Rahman, M.Z. Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh. GeoJournal 2012, 77, 315–330. [Google Scholar] [CrossRef]
- Dewan, A.; Yamaguchi, Y. Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization. Appl. Geogr. 2009, 29, 390–401. [Google Scholar] [CrossRef]
- Odindi, J.O.; Bangamwabo, V.; Mutanga, O. Assessing the value of urban green spaces in Mitigating Multi-Seasonal urban heat using MODIS land surface temperature (LST) and Landsat 8 data. Int. J. Environ. Res. 2015, 9, 9–18. [Google Scholar]
- Dewan, A.; Corner, R. The impact of land use and land cover changes on land surface temperature in a rapidly urbanizing megacity. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012.
- Rizwan, A.M.; Dennis, Y.C.; Liu, C. A review on the generation, determination and mitigation of urban heat island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Oke, T.R. The urban energy balance. Progress Phys. Geogr. 1988, 12, 471–508. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Kuang, W.H.; Liu, Y.; Dou, Y.Y.; Chi, W.F.; Chen, G.S.; Gao, C.F.; Yang, T.R.; Liu, J.Y.; Zhang, R.H. What are hot and what are not in an urban landscape: quantifying and explaining the land surface temperature pattern in Beijing, China. Landsc. Ecol. 2015, 30, 357–373. [Google Scholar] [CrossRef]
- Li, J.X.; Song, C.H.; Cao, L.; Zhu, F.G.; Meng, X.L.; Wu, J.G. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Guo, G.H.; Wu, Z.F.; Xiao, R.B.; Chen, Y.B.; Liu, X.N.; Zhang, X.S. Impacts of urban biophysical composition on land surface temperature in urban heat island clusters. Landsc. Urban Plan. 2015, 135, 1–10. [Google Scholar] [CrossRef]
- Dewan, A.; Corner, R. Dhaka Megacity: Geospatial Perspectives on Urbanization, Environment and Health; Dewan, A., Corner, R., Eds.; Springer Science + Business Media: Berlin, Germany, 2014; pp. 219–238. [Google Scholar]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Gillies, R.R.; Kustas, W.P.; Humes, K.S. A verification of the “triangle” method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. Int. J. Remote Sens. 1997, 18, 3145–3166. [Google Scholar] [CrossRef]
- Goward, S.N.; Xue, Y.; Czajkowski, K.P. Evaluating land surface moisture conditions from the remotely sensed temperature/vegetation index measurements: an exploration with the simplified simple biosphere model. Remote Sens. Environ. 2002, 79, 225–242. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Heinl, M.; Hammerle, A.; Tappeiner, U.; Leitinger, G. Determinants of urban—rural land surface temperature differences—A landscape scale perspective. Landsc. Urban Plan. 2015, 134, 33–42. [Google Scholar] [CrossRef]
- Quattrochi, D.A.; Ridd, M.K. Analysis of Vegetation within a Semi-Arid Urban Environment Using High Spatial Resolution Airborne Thermal Infrared Remote Sensing Data. Atmos. Environ. 1998, 32, 19–33. [Google Scholar] [CrossRef]
- Zhang, Y.; Odeh, I.; Han, C. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 256–264. [Google Scholar] [CrossRef]
- Zhang, Y.; Odeh, I.; Ramadan, E. Assessment of land surface temperature in relation to landscape metrics and fractional vegetation cover in an urban/peri-urban region using Landsat data. Int. J. Remote Sens. 2013, 34, 168–189. [Google Scholar] [CrossRef]
- Weng, Q.H.; Lu, D.H.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Environ. Res. Lett. 2011, 6, 1–7. [Google Scholar] [CrossRef]
- Gao, Z.Q.; Gao, W.; Chang, N.B. Integrating temperature vegetation dryness index (TVDI) and regional water stress index (RWSI) for drought assessment with the aid of LANDSAT TM/ETM+ images. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 495–503. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, Z.M.; Liu, X.; Yan, D.C. A quantitative analysis of the relationship between vegetation indices and land surface temperature based on remote sensing a case study of TM data for Beijing. Remote Land Resour. 2010, 4, 108–112. [Google Scholar]
- Yang, C.H.; Lei, B.; Wang, Y.C.; Zhang, S. Remote sensing of the spatial pattern of urban heat island effects and its influencing factors using TM data: A case study in core areas of Chongqing city. J. Basic Sci. Eng. 2014, 22, 227–238. [Google Scholar]
- Zhang, J.H.; Guo, W.J.; Yao, F.M. The study on vegetation water content estimating model based on remote sensing technique. J. Basic Sci. Eng. 2007, 15, 45–53. [Google Scholar]
- Zarco-Teijda, P.J.; Rueda, C.A.; Ustin, S.L. Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sens. Environ. 2003, 85, 109–124. [Google Scholar] [CrossRef]
- Penuelas, J.; Filella, I.; Sweeano, L. Cell wall elastivity and water index (R970nm/R900nm) in wheat under different nitrogen availabilities. Int. J. Remote Sens. 1996, 17, 373–382. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of Normalized Difference Water Index (NDWI) in the delineation of open water feature. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Zhao, Y. Remote sensing of visible light—Reflectance infrared. In Principle and Method of Remote Sensing Application and Analysis, 2nd ed.; Science Press: Beijing, China, 2013; pp. 68–69. [Google Scholar]
- Chen, L.Q.; Guo, D.Z.; Hu, Z.L.; Sheng, Y.H.; Zhang, H.R. Research on spatial differentiation of urban growth using multi-temporal Landsat thematic mapper satellite remote sensing images. J. China Coal Soc. 2004, 29, 308–312. [Google Scholar]
- Jin, M.; Li, J.; Wang, J.; Shang, R. A practical split-window algorithm for retrieving land surface temperature from Landsat-8 data and a case study of an urban area in China. Remote Sens. 2015, 7, 4371–4390. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Cuenca, R.H.; Ciotti, S.P.; Hagimoto, Y. Application of Landsat to evaluate effects of irrigation forbearance. Remote Sens. 2013, 5, 3776–3802. [Google Scholar] [CrossRef]
- Gilmore, S.; Saleemm, A.; Dewan, A.A. Effectiveness of DOS (Dark-Object Subtraction) method and water index techniques to map wetlands in a rapidly urbanizing megacity with Landsat 8 data. Available online: http://ceur-ws.org/Vol-1323/paper41.pdf (accessed on 13 August 2015).
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Qin, Z.H.; Li, J.W.; Xu, B.; Chen, Z.X.; Liu, J. Estimating of the essential atmospheric parameters of mono-window algorithm for land surface temperature retrieval from Landsat TM6. Remote Land Resour. 2003, 2, 37–43. [Google Scholar]
- Yao, W.; Li, Z.J.; Yao, G.; Wu, J.F.; Jiang, D.L. Atmospheric correction model for Landsat images. Trans. Atmos. Sci. 2011, 34, 251–256. [Google Scholar]
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors 2014, 14, 5768–5780. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Ren, H.Z.; Qin, Q.M.; Meng, J.J.; Li, J. Split-window algorithm For estimating land surface temperature from Landsat 8 TIRs data. In Proceedings of the 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada, 13–18 July 2014; pp. 3578–3581.
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Skokovic, D.; Matter, C.; Cristobal, J. Land surface temperature retrieval methods from Landsat-8 Thermal Infrared Sensor data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sens. 2015, 7, 4268–4289. [Google Scholar] [CrossRef]
- Griend, A.A.; Owe, M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Int. J. Remote Sens. 1993, 14, 1119–1131. [Google Scholar] [CrossRef]
- Valor, E.; Caselles, V. Mapping land surface emissivity from NDVI: Application to European, African and South American areas. Remote Sens. Environ. 1996, 57, 167–184. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, A. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J. Remote Sens. 2000, 21, 353–366. [Google Scholar] [CrossRef]
- Qin, Z.H.; Li, J.W.; Xu, B.; Chen, Z.X.; Liu, J. The estimation of Land surface emissivity for Landsat TM6. Remote Land Resour. 2004, 3, 28–32. [Google Scholar]
- Sobrino, J.A.; Jimenez-Munoz, J.C.; Soria, G.; Romaguera, M.; Guanter, L.; Moreno, J. Land Surface Emissivity Retrieval from Different VNIR and TIR Sensors. In Proceedings of the Workshop on Remote Sensing and Modeling of Surface Properties, Paris, France, 20–22 June 2008; pp. 316–327.
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Plaza, A.; Guanter, L.; Moreno, J.; Martínez, P. Comparison between fractional vegetation cover retrievals from vegetation indices and spectral mixture analysis: Case study of PROBA/CHRIS data over an agricultural area. Sensors 2009, 9, 770–793. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.M.; Qiu, J.H. The empirical expressions of the relation between precipitable water and ground water vapor pressure for some areas in China. Sci. Atmos. Sin. 1996, 20, 620–626. [Google Scholar]
- Kauth, K.J.; Thomas, G.S. The tasseled cap a graphic description of the spectra-temporal development of agricultural crops as seen by Landsat. In Proceedings of the Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, Indiana, 21 June–1 July 1976; pp. 41–51.
- Baig, M.H.A.; Zhang, L.F.; Shuai, T.; Tong, Q.X. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. Application of the tasseled cap concept to simulated thematic mapper data. Photogramm. Eng. Remote Sens. 1984, 50, 343–352. [Google Scholar]
- Oke, T.R. The energetic basis of the urban heat island. Quart. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Xu, H.Q.; He, H.; Huang, S.L. Analysis of fractional vegetation cover change and its impact on thermal environment in the Hetian basinal area of County Changting, Fujian province, China. Acta Ecol. Sin. 2013, 33, 2954–2963. [Google Scholar]
- Deng, J.L. Control problems of grey systems. Syst. Control Lett. 1982, 1, 288–294. [Google Scholar]
- Chen, J.; Chen, B.Z.; Black, T.A.; Innes, J.L.; Wang, G.Y.; Kiely, G.; Hirano, T.; Wohlfahrt, G. Comparison of terrestrial evapotranspiration estimates using the mass transfer and Penman-Monteith equations in land surface models. J. Geophys. Res.-Biogeosci. 2013, 118, 1715–1731. [Google Scholar] [CrossRef]
- Schwalm, C.R.; Williams, C.A.; Schaefer, K.; Anderson, R.; Arain, M.A.; Baker, I.; Barr, A.; Black, T.A.; Chen, G.; Chen, J.M.; et al. A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis. J. Geophys. Res. 2010, 115, G00H05. [Google Scholar]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Xi, C.; Shen, Z.; Luo, J.; Zhou, Y.; Zhang, X. A “global-local” impervious surface area extraction model using multispectral remote sensing images. J. Remote Sens. 2013, 17, 1191–1205. [Google Scholar]
- Nie, Q.; Xu, J. Understanding the effects of the impervious surfaces pattern on land surface temperature in an urban area. Front. Earth Sci. 2015, 9, 276–285. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Chen, L.; Wang, Y.; Chen, L.; Yao, F.; Wu, P.; Wang, B.; Li, Y.; Zhou, T.; Zhang, T. Research on the Contribution of Urban Land Surface Moisture to the Alleviation Effect of Urban Land Surface Heat Based on Landsat 8 Data. Remote Sens. 2015, 7, 10737-10762. https://doi.org/10.3390/rs70810737
Zhang Y, Chen L, Wang Y, Chen L, Yao F, Wu P, Wang B, Li Y, Zhou T, Zhang T. Research on the Contribution of Urban Land Surface Moisture to the Alleviation Effect of Urban Land Surface Heat Based on Landsat 8 Data. Remote Sensing. 2015; 7(8):10737-10762. https://doi.org/10.3390/rs70810737
Chicago/Turabian StyleZhang, Yu, Longqian Chen, Yuchen Wang, Longgao Chen, Fei Yao, Peiyao Wu, Bingyi Wang, Yuanyuan Li, Tianjian Zhou, and Ting Zhang. 2015. "Research on the Contribution of Urban Land Surface Moisture to the Alleviation Effect of Urban Land Surface Heat Based on Landsat 8 Data" Remote Sensing 7, no. 8: 10737-10762. https://doi.org/10.3390/rs70810737
APA StyleZhang, Y., Chen, L., Wang, Y., Chen, L., Yao, F., Wu, P., Wang, B., Li, Y., Zhou, T., & Zhang, T. (2015). Research on the Contribution of Urban Land Surface Moisture to the Alleviation Effect of Urban Land Surface Heat Based on Landsat 8 Data. Remote Sensing, 7(8), 10737-10762. https://doi.org/10.3390/rs70810737