Towards Detection of Cutting in Hay Meadows by Using of NDVI and EVI Time Series
"> Figure 1
<p>Study area and sampled hay meadows (red dots) that were used for the analyses. Green areas represent all grasslands in Slovakia (Corine Land Cover class 231 [<a href="#B28-remotesensing-07-06107" class="html-bibr">28</a>]).</p> "> Figure 2
<p>Preliminary detection of cutting on selected sites. A. Cutting before 11.7.2012. B. and C. cutting between 11.7, and 27.7. 2012. D. No cutting in these periods.</p> "> Figure 3
<p>Selection of MODIS homogenous pixels for analyses.</p> "> Figure 4
<p>First difference transformation, notation and selection of input variables for the respective classification run. Solid line—raw data (RD), dotted line—first difference transformed data (FD).</p> "> Figure 5
<p>The effect of Fourier adjustments by using different levels of Fourier terms on temporal profile of VI.</p> "> Figure 6
<p>Temporal profile of NDVI and EVI (bars represent standard deviation) in all sampled hay meadows (286 sites).</p> "> Figure 7
<p>Temporal profile of NDVI and EVI in cut (dot line) and uncut (solid line) hay meadows.</p> "> Figure 8
<p>Classification performance of the all tested data series with different periods used. (<b>a</b>) raw data series RD, (<b>b</b>) seasonal statistics series SS, (<b>c</b>) first difference series FD. NDVI—solid line, EVI—dot line. The best case series for each NDVI and EVI are marked with the value of Cohen`s kappa. Bold line indicated significant difference in comparison to the best case of relevant series. Filled boxes indicated significant difference between EVI <span class="html-italic">vs.</span> NDVI using the same data set.</p> "> Figure 9
<p>Variable importance for the best case classification of the raw data series (RD).</p> "> Figure 10
<p>Variable importance for the best case classification of the seasonal statistics series (SS).</p> "> Figure 11
<p>Variable importance for the best case classification of the first difference series (FD).</p> "> Figure 12
<p>Classification tree and splitting rules of the best case first difference series for EVI (<b>a</b>) and NDVI (<b>b</b>). Values are in VI × 10000. Percentages in parentheses represent the proportion of the classified sites of the respective leaf to the total amount of sites in that specific class. Thus, sum of these percentages represents proportion of sites from the respective class, which were used in the final pruned tree.</p> ">
Abstract
:1. Introduction
2. Study Area and Methods
Training Set | Validation Set | |
---|---|---|
Cut (2012) | 84 | 46 |
Uncut (2012) | 102 | 54 |
Classification Run | VI | Type/Transformation | Period | Number of Input Variables |
---|---|---|---|---|
CT01 | NDVI | RD | 8 January–26 December 2012 | 23 |
CT02 | NDVI | RD | 21 January–10 December 2012 | 21 |
CT03 | NDVI | RD | 9 February–24 November 2012 | 19 |
CT04 | NDVI | RD | 25 February–8 November 2012 | 17 |
CT05 | NDVI | RD | 13 March–23 October 2012 | 15 |
CT06 | NDVI | RD | 29 March–7 October 2012 | 13 |
CT07 | NDVI | RD | 14 April–21 September 2012 | 11 |
CT08 | NDVI | RD | 30 April–5 September 2012 | 9 |
CT09 | NDVI | RD | 16 May–20 August 2012 | 7 |
CT10 | NDVI | RD | 1 June–4 August 2012 | 5 |
CT11 | NDVI | RD | 17 June–19 July 2012 | 3 |
CT12 | NDVI | SS | 8 January–26 December 2012 | 5 |
CT13 | NDVI | SS | 21 January–10 December 2012 | 5 |
CT14 | NDVI | SS | 9 February–24 November 2012 | 5 |
CT15 | NDVI | SS | February25–8 November 2012 | 5 |
CT16 | NDVI | SS | 13 March13–23 October 2012 | 5 |
CT17 | NDVI | SS | 29 March29–7 October 2012 | 5 |
CT18 | NDVI | SS | 14 April–21 September 2012 | 5 |
CT19 | NDVI | SS | 30 April–5 September 2012 | 5 |
CT20 | NDVI | SS | 16 May–20 August 2012 | 5 |
CT21 | NDVI | SS | 1 June–4 August 2012 | 5 |
CT22 | NDVI | SS | 17 June–19 July 2012 | 5 |
CT23 | NDVI | FD | 21 January–26 December 2012 | 22 |
CT24 | NDVI | FD | 9 February–10 December 2012 | 20 |
CT25 | NDVI | FD | 25 February–24 November 2012 | 18 |
CT26 | NDVI | FD | 13 March–8 November 2012 | 16 |
CT27 | NDVI | FD | 29 March–23 October 2012 | 14 |
CT28 | NDVI | FD | 14 April–7 October 2012 | 12 |
CT29 | NDVI | FD | 30 April–21 September 2012 | 10 |
CT30 | NDVI | FD | 16 May–5 September 2012 | 8 |
CT31 | NDVI | FD | 1 June–20 August 2012 | 6 |
CT32 | NDVI | FD | 17 June–4 August 2012 | 4 |
CT33 | NDVI | FD | 3 July–19 July 2012 | 2 |
CT34 | NDVI | FA(2 harmonics) of the RD | 30 April–5 September 2012 | 9 |
CT35 | NDVI | FA(3 harmonics) of the RD | 30 April–5 September 2012 | 9 |
CT36 | NDVI | FA(4 harmonics) of the RD | 30 April–5 September 2012 | 9 |
CT37 | NDVI | FA(5 harmonics) of the RD | 30 April–5 September 2012 | 9 |
CT38 | NDVI | SS using FA(2 harmonics) instead of RD | 16 May–20 August 2012 | 5 |
CT39 | NDVI | SS using FA(3 harmonics) instead of RD | 16 May–20 August 2012 | 5 |
CT40 | NDVI | SS using FA(4 harmonics) instead of RD | 16 May–20 August 2012 | 5 |
CT41 | NDVI | SS using FA(5 harmonics) instead of RD | 16 May–20 August 2012 | 5 |
CT42 | NDVI | FD using FA(2 harmonics) instead of RD | 1 June–20 August 2012 | 6 |
CT43 | NDVI | FD using FA(3 harmonics) instead of RD | 1 June–20 August 2012 | 6 |
CT44 | NDVI | FD using FA(4 harmonics) instead of RD | 1 June–20 August 2012 | 6 |
CT45 | NDVI | FD using FA(5 harmonics) instead of RD | 1 June–20 August 2012 | 6 |
CT46 | EVI | RD | 8 January–26 December 2012 | 23 |
CT47 | EVI | RD | 21 January–10 December 2012 | 21 |
CT48 | EVI | RD | 9 February–24 November 2012 | 19 |
CT49 | EVI | RD | 25 February–8 November 2012 | 17 |
CT50 | EVI | RD | 13 March–23 October 2012 | 15 |
CT51 | EVI | RD | 29 March–7 October 2012 | 13 |
CT52 | EVI | RD | 14 April–21 September 2012 | 11 |
CT53 | EVI | RD | 30 April–5 September 2012 | 9 |
CT54 | EVI | RD | 16 May–20 August 2012 | 7 |
CT55 | EVI | RD | 1 June–4 August 2012 | 5 |
CT56 | EVI | RD | 17 June–19 July 2012 | 3 |
CT57 | EVI | SS | 8 January–26 December 2012 | 5 |
CT58 | EVI | SS | 21 January–10 December 2012 | 5 |
CT59 | EVI | SS | 9 February–24 November 2012 | 5 |
CT60 | EVI | SS | 25 February–8 November 2012 | 5 |
CT61 | EVI | SS | 13 March–23 October 2012 | 5 |
CT62 | EVI | SS | 29 March–7 October 2012 | 5 |
CT63 | EVI | SS | 14 April–21 September 2012 | 5 |
CT64 | EVI | SS | 30 April–5 September 2012 | 5 |
CT65 | EVI | SS | 16 May– 20 August 2012 | 5 |
CT66 | EVI | SS | 1 June–4 August 2012 | 5 |
CT67 | EVI | SS | 17 June–19 July 2012 | 5 |
CT68 | EVI | FD | 21 January–26 December 2012 | 22 |
CT69 | EVI | FD | 9 February–10 December 2012 | 20 |
CT70 | EVI | FD | 25 February–24 November 2012 | 18 |
CT71 | EVI | FD | 13 March–8 November 2012 | 16 |
CT72 | EVI | FD | 29 March–23 October 2012 | 14 |
CT73 | EVI | FD | 14 April–7 October 2012 | 12 |
CT74 | EVI | FD | 30 April–21 September 2012 | 10 |
CT75 | EVI | FD | 16 May–5 September 2012 | 8 |
CT76 | EVI | FD | 1 June–20 August 2012 | 6 |
CT77 | EVI | FD | 17 June–4 August 2012 | 4 |
CT78 | EVI | FD | 3 July–19 July 2012 | 2 |
CT79 | EVI | FA(2 harmonics) of the RD | 14 April–21 September 2012 | 11 |
CT80 | EVI | FA(3 harmonics) of the RD | 14 April–21 September 2012 | 11 |
CT81 | EVI | FA(4 harmonics) of the RD | 14 April–21 September 2012 | 11 |
CT82 | EVI | FA(5 harmonics) of the RD | 14 April–21 September 2012 | 11 |
CT83 | EVI | SS using FA(2 harmonics) instead of RD | 1 June–4 August 2012 | 5 |
CT84 | EVI | SS using FA(3 harmonics) instead of RD | 1 June–4 August 2012 | 5 |
CT85 | EVI | SS using FA(4 harmonics) instead of RD | 1 June– 4 August 2012 | 5 |
CT86 | EVI | SS using FA(5 harmonics) instead of RD | 1 June– 4 August 2012 | 5 |
CT87 | EVI | FD using FA(2 harmonics) instead of RD | 16 May–5 September 2012 | 8 |
CT88 | EVI | FD using FA(3 harmonics) instead of RD | 16 May–5 September 2012 | 8 |
CT89 | EVI | FD using FA(4 harmonics) instead of RD | 16 May–5 September 2012 | 8 |
CT90 | EVI | FD using FA(5 harmonics) instead of RD | 16 May–5 September 2012 | 8 |
3. Results
Cut | Uncut | Total | User’s Accur. (%) | |
---|---|---|---|---|
Cut | 31 | 14 | 45 | 68.89 |
Uncut | 15 | 40 | 55 | 72.73 |
Total | 46 | 54 | 100 | |
Producer’s Accur. % | 67.39 | 74.07 | ||
Overall Accur. % | 71 | |||
Cohen’s Kappa | 0.42 |
Cut | Uncut | Total | User’s Accur. (%) | |
---|---|---|---|---|
Cut | 29 | 9 | 38 | 76.32 |
Uncut | 17 | 45 | 62 | 72.58 |
Total | 46 | 54 | 100 | |
Producer’s Accur. % | 63.04 | 83.33 | ||
Overall Accur. % | 74 | |||
Cohen’s Kappa | 0.46 |
Cut | Uncut | Total | User’s Accur. (%) | |
---|---|---|---|---|
Cut | 33 | 12 | 45 | 73.33 |
Uncut | 13 | 42 | 55 | 76.36 |
Total | 46 | 54 | 100 | |
Producer’s Accur. % | 71.74 | 77.78 | ||
Overall Accur. % | 75 | |||
Cohen’s Kappa | 0.50 |
Cut | Uncut | Total | User’s Accur. (%) | |
---|---|---|---|---|
Cut | 29 | 5 | 34 | 85.29 |
Uncut | 17 | 49 | 66 | 74.24 |
Total | 46 | 54 | 100 | |
Producer’s Accur. % | 63.04 | 90.74 | ||
Overall Accur. % | 78 | |||
Cohen’s Kappa | 0.54 |
Cut | Uncut | Total | User’s Accur. (%) | |
---|---|---|---|---|
Cut | 39 | 8 | 47 | 82.98 |
Uncut | 7 | 46 | 53 | 86.79 |
Total | 46 | 54 | 100 | |
Producer’s Accur. % | 84.78 | 85.19 | ||
Overall Accur. % | 85 | |||
Cohen’s Kappa | 0.70 |
Cut | Uncut | Total | User’s Accur. (%) | |
---|---|---|---|---|
Cut | 31 | 3 | 34 | 91.18 |
Uncut | 15 | 51 | 66 | 77.27 |
Total | 46 | 54 | 100 | |
Producer’s Accur. % | 67.39 | 94.44 | ||
Overall Accur. % | 82 | |||
Cohen’s Kappa | 0.63 |
4. Discussion
4.1. Temporal Profile of VIs
4.2. Classification Performance
Period | Input Variables | Used Variables | Number of Rules (Splits) | ||
---|---|---|---|---|---|
NDVI | Raw data | 30 April–5 September | 9 | 30 April;17 June; 3 July; 20 August; 19 July | 9 |
Seasonal statistics | 16 May–20 August | 5 | Max; Min; Mean; Sd; Range | 9 | |
First difference | 1 June–20 August | 6 | 3 July; 1 June; 17 June; 19 July; 4 August | 5 | |
EVI | Raw data | 14 April–21 September | 9 | 20 August; 4 August; 1 June; 3 July; 30 April | 9 |
Seasonal statistics | 1 June–4 August | 5 | Max; Min; Mean; Sd; Range | 7 | |
First difference | 16 May–5 September | 8 | 19 July; 1 June; 4 August; 20 August | 5 |
4.3. Optimal Period
4.4. Smoothing Effect
4.5. EVI vs. NDVI
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Garcia-Feced, C.; Weissteiner, C.J.; Baraldi, A.; Paracchini, M.L.; Maes, J.; Zulian, G.; Kempen, M.; Elbersen, B.; Perez-Soba, M. Semi-natural vegetation in agricultural land: European map and links to ecosystem service supply. Agron. Sustain. Dev. 2015, 35, 273–283. [Google Scholar] [CrossRef]
- Halada, L.; Evans, D.; Romao, C.; Petersen, J.E. Which habitats of European importance depend on agricultural practices? Biodivers. Conserv. 2011, 20, 2365–2378. [Google Scholar] [CrossRef]
- Biro, M.; Czucz, B.; Horvath, F.; Revesz, A.; Csatari, B.; Molnar, Z. Drivers of grassland loss in Hungary during the post-socialist transformation (1987–1999). Landsc. Ecol. 2013, 28, 789–803. [Google Scholar] [CrossRef]
- Halada, L.; Ruzičková, H.; David, S.; Halabuk, A. Semi-natural grasslands under impact of changing land use during last 30 years: Trollio-Cirsietum community in the Liptov region (N Slovakia). Community Ecol. 2008, 9, 115–123. [Google Scholar] [CrossRef]
- Munteanu, C.; Kuemmerle, T.; Boltiziar, M.; Butsic, V.; Gimmi, U.; Halada, L.; Kaim, D.; Király, G.; Konkoly-Gyuró, E.; Kozak, J.; et al. Forest and agricultural land change in the Carpathian region-A meta-analysis of long-term patterns and drivers of change. Land Use Pol. 2014, 38, 685–697. [Google Scholar] [CrossRef]
- Bezák, P.; Mitchley, J. Drivers of change in mountain farming in Slovakia: From socialist collectivisation to the Common Agricultural Policy. Reg. Environ. Chang. 2014, 14, 1343–1356. [Google Scholar] [CrossRef]
- Franke, J.; Keuck, V.; Siegert, F. Assessment of grassland use intensity by remote sensing to support conservation schemes. J. Nat. Conserv. 2012, 20, 125–134. [Google Scholar] [CrossRef]
- Mucher, C.A.; Steinnocher, K.T.; Kressler, F.P.; Heunks, C. Land cover characterization and change detection for environmental monitoring of pan-Europe. Int. J. Remote Sens. 2000, 21, 1159–1181. [Google Scholar] [CrossRef]
- Griffiths, P.; Mueller, D.; Kuemmerle, T.; Hostert, P. Agricultural land change in the Carpathian ecoregion after the breakdown of socialism and expansion of the European Union. Environ. Res. Lett. 2013, 8, 1–12. [Google Scholar] [CrossRef]
- Esch, T.; Metz, A.; Marconcini, M.; Keil, M. Combined use of multi-seasonal high and medium resolution satellite imagery for parcel-related mapping of cropland and grassland. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 230–237. [Google Scholar] [CrossRef]
- Hill, M.J.; Vickery, P.J.; Furnival, E.P.; Donald, G.E. Pasture land cover in eastern Australia from NOAA-AVHRR NDVI and classified Landsat TM. Remote Sens. Environ. 1999, 67, 32–50. [Google Scholar] [CrossRef]
- Hill, M.J. Vegetation index suites as indicators of vegetation state in grassland and savanna: An analysis with simulated SENTINEL 2 data for a North American transect. Remote Sens. Environ. 2013, 137, 94–111. [Google Scholar] [CrossRef]
- Kurtz, D.B.; Schellberg, J.; Braun, M. Ground and satellite based assessment of rangeland management in sub-tropical Argentina. Appl. Geogr. 2010, 30, 210–220. [Google Scholar] [CrossRef]
- Roeder, A.; Udelhoven, T.; Hill, J.; del Barrio, G.; Tsiourlis, G. Trend analysis of Landsat-TM and -ETM+ imagery to monitor grazing impact in a rangeland ecosystem in Northern Greece. Remote Sens. Environ. 2008, 112, 2863–2875. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Radeloff, V.C.; Dubinin, M.; Alcantara, C. The effect of Landsat ETM/ETM plus image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 2012, 126, 195–206. [Google Scholar] [CrossRef]
- Alcantara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens. Environ. 2012, 124, 334–347. [Google Scholar] [CrossRef]
- Nitze, I.; Barrett, B.; Cawkwell, F. Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 136–146. [Google Scholar] [CrossRef]
- Lucas, R.; Rowlands, A.; Brown, A.; Keyworth, S.; Bunting, P. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS J. Photogramm. Remote Sens. 2007, 62, 165–185. [Google Scholar] [CrossRef]
- Cui, X.; Guo, Z.G.; Liang, T.G.; Shen, Y.Y.; Liu, X.Y.; Liu, Y. Classification management for grassland using MODIS data: a case study in the Gannan region, China. Int. J. Remote Sens. 2012, 33, 3156–3175. [Google Scholar] [CrossRef]
- Schuster, C.; Ali, I.; Lohmann, P.; Frick, A.; Forster, M.; Kleinschmit, B. Towards detecting swath events in TerraSAR-X time series to establish NATURA 2000 grassland habitat swath management as monitoring parameter. Remote Sens. 2011, 3, 1308–1322. [Google Scholar] [CrossRef]
- Voormansik, K.; Jagdhuber, T.; Olesk, A.; Hajnsek, I.; Papathanassiou, K.P. Towards a detection of grassland cutting practices with dual polarimetric TerraSAR-X data. Int. J. Remote Sens. 2013, 34, 8081–8103. [Google Scholar] [CrossRef]
- Lieskovský, J.; Bezák, P.; Izakovičová, Z. Protection of representative landscape ecosystem of Slovakia—New landscape ecological approach. In Proceedings of 10th International Multidisciplinary Scientific GeoConference (SGEM 2010), Albena, Bulgaria, 20–26 June 2010; pp. 717–724.
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.G.; Mucher, C.A.; Watkins, J.W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 2005, 14, 549–563. [Google Scholar] [CrossRef]
- Bezak, P.; Halada, L. Sustainable management recommendations to reduce the loss of agricultural biodiversity in the mountain regions of NE Slovakia. Mt. Res. Dev. 2010, 30, 192–204. [Google Scholar] [CrossRef]
- Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31992L0043&from=EN (accessed on 20 February 2015).
- Ružičková, H.; Kalivoda, H. Hay Meadows—Natural Heritage of Slovakia (in Slovak); Kvetnaté lúky-Prírodné bohatstvo Slovenska, Veda: Bratislava, Slovakia, 2007; p. 133. [Google Scholar]
- Tan, B.; Woodcock, C.E.; Hu, J.; Zhang, P.; Ozdogan, M.; Huang, D.; Yang, W.; Knyazikhin, Y.; Myneni, R.B. The impact of gridding artifacts on the local spatial properties of MODIS data: Implications for validation, compositing, and band-to-band registration across resolutions. Remote Sens. Environ. 2006, 105, 98–114. [Google Scholar] [CrossRef]
- Feranec, J.; Otahel, J.; Šúri, M. The Corine Land Cover Project in Slovakia. Ekologia-Bratislava 1995, 14, 49–52. [Google Scholar]
- Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C. Time Series Analysis: Forecasting and Control, 3rd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1994. [Google Scholar]
- Moody, A.; Johnson, D.M. Land-surface phenologies from AVHRR using the discrete Fourier transform. Remote Sens. Environ. 2001, 75, 305–323. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth: Belmont, CA, USA, 1984. [Google Scholar]
- Huang, X.; Jensen, J.R. A Machine-learning approach to automated knowledge based building for remote sensing image analysis with GIS data. Photogramm. Eng. Remote Sens. 1997, 63, 1185–1194. [Google Scholar]
- Quinlan, J.R. Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 1996, 4, 77–90. [Google Scholar]
- Zambon, M.; Lawrence, R.; Bunn, A.; Powell, S. Effect of Alternative Splitting Rules on Image Processing Using Classification Tree Analysis. Photogramm. Eng. Remote Sens. 2006, 72, 25–30. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Foody, G.M. Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Schmidt, T.; Schuster, C.; Kleinschmit, B.; Forster, M. Evaluating an intra-annual time series for grassland classification—How many acquisitions and what seasonal origin are optimal? IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3428–3439. [Google Scholar] [CrossRef]
- Guo, X.L.; Price, P.; Stiles, J. Grasslands discriminant analysis using Landsat TM single and multitemporal data. Photogramm. Eng. Remote Sens. 2003, 69, 1255–1262. [Google Scholar] [CrossRef]
- Aragon, R.; Oesterheld, M. Linking vegetation heterogeneity and functional attributes of temperate grasslands through remote sensing. Appl. Veg. Sci. 2008, 11, 117–130. [Google Scholar] [CrossRef]
- Pocas, I.; Cunha, M.; Pereira, L.S. Dynamics of mountain semi-natural grassland meadows inferred from SPOT-VEGETATION and field spectroradiometer data. Int. J. Remote Sens. 2012, 33, 4334–4355. [Google Scholar] [CrossRef]
- Peterson, U.; Aunap, R. Changes in agricultural land use in Estonia in the 1990s detected with multitemporal Landsat MSS imagery. Landsc. Urban Plann. 1998, 41, 193–201. [Google Scholar] [CrossRef]
- Clerici, N.; Weissteiner, C.J.; Halabuk, A.; Hazeu, G.; Roerink, G.; Mücher, S. Phenology Related Measures and Indicator at Varying Spatial Scales: Investigation of Phenology Information for Habitat Classification Using SPOT VGT and MODIS NDVI Data; Alterra Series; Alterra: Wageningen, The Netherlands, 2012; p. 77. [Google Scholar]
- Paruelo, J.M.; Lauenroth, W.K. Regional patterns of normalized difference vegetation index in North-American shrublands and grasslands. Ecology 1995, 76, 1888–1898. [Google Scholar] [CrossRef]
- Wen, Q.K.; Zhang, Z.X.; Liu, S.; Wang, X.; Wang, C. Classification of grassland types by MODIS time-series images in Tibet, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 404–409. [Google Scholar] [CrossRef]
- Geerken, R.; Zaitchik, B.; Evans, J.P. Classifying rangeland vegetation type and coverage from NDVI time series using Fourier Filtered Cycle Similarity. Int. J. Remote Sens. 2005, 26, 5535–5554. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Shao, Y.; Ediriwickrema, J.; Lyon, J.G. Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 81–88. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L. A comparison of MODIS 250-m EVI and NDVI data for crop mapping: A case study for southwest Kansas. Int. J. Remote Sens. 2010, 31, 805–830. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halabuk, A.; Mojses, M.; Halabuk, M.; David, S. Towards Detection of Cutting in Hay Meadows by Using of NDVI and EVI Time Series. Remote Sens. 2015, 7, 6107-6132. https://doi.org/10.3390/rs70506107
Halabuk A, Mojses M, Halabuk M, David S. Towards Detection of Cutting in Hay Meadows by Using of NDVI and EVI Time Series. Remote Sensing. 2015; 7(5):6107-6132. https://doi.org/10.3390/rs70506107
Chicago/Turabian StyleHalabuk, Andrej, Matej Mojses, Marek Halabuk, and Stanislav David. 2015. "Towards Detection of Cutting in Hay Meadows by Using of NDVI and EVI Time Series" Remote Sensing 7, no. 5: 6107-6132. https://doi.org/10.3390/rs70506107
APA StyleHalabuk, A., Mojses, M., Halabuk, M., & David, S. (2015). Towards Detection of Cutting in Hay Meadows by Using of NDVI and EVI Time Series. Remote Sensing, 7(5), 6107-6132. https://doi.org/10.3390/rs70506107