Comparison of Laser and Stereo Optical, SAR and InSAR Point Clouds from Air- and Space-Borne Sources in the Retrieval of Forest Inventory Attributes
"> Figure 1
<p>Study area and the location of sample plots. Background image is a canopy height model created from ALS data.</p> "> Figure 2
<p>Flowchart of the method and procedure for prediction of forest attribute using point cloud.</p> "> Figure 3
<p>Profiles of 60 m long and 4 m wide section of various data.</p> "> Figure 4
<p>Relative root mean square errors (RMSE)s of forest attribute estimates from RS point clouds.</p> "> Figure 5
<p>Inventory map for H<sub>g</sub> (m) from ALS-900 (first image) and the difference of inventory maps between ALS-900 and other RS data.</p> "> Figure 6
<p>Inventory map for D<sub>g</sub> (cm) from ALS-900 (first image) and the difference of inventory maps between ALS-900 and other RS data.</p> "> Figure 7
<p>Inventory map for G (m<sup>2</sup>/ha) from ALS-900 (first image) and the difference of inventory maps between ALS-900 and other RS data.</p> "> Figure 8
<p>Inventory map for Vol (m<sup>3</sup>/ha) from ALS-900 (first image) and the difference of inventory maps between ALS-900 and other RS data.</p> "> Figure 9
<p>Inventory map for AGB (Mg/ha) from ALS-900 (first image) and the difference of inventory maps between ALS-900 and other RS data.</p> "> Figure 10
<p>Increase in relative RMSEs for attribute estimates when plot size was reduced from 32 m × 32 m to 16 m × 16 m.</p> ">
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Test Site
2.2. Field Data
Minimum | Maximum | Mean | Standard Deviation | |
---|---|---|---|---|
(a) 91 sample plots of 32 m × 32 m | ||||
Hg (m) | 10.02 | 31.09 | 21.09 | 4.41 |
Dg (cm) | 13.92 | 46.42 | 25.78 | 7.50 |
G (m2/ha) | 6.60 | 43.17 | 26.79 | 7.83 |
VOL (m3/ha) | 34.46 | 518.39 | 270.14 | 110.04 |
AGB (Mg/ha) | 19.06 | 230.63 | 134.49 | 48.33 |
Plot density (trees/ha) | 342 | 3057 | 940 | 554 |
(b) 364 sample plots of 16 m × 16 m | ||||
Hg (m) | 7.59 | 33.23 | 21.02 | 4.54 |
Dg (cm) | 10.35 | 52.95 | 25.72 | 7.89 |
G (m2/ha) | 3.67 | 57.26 | 26.79 | 9.17 |
VOL (m3/ha) | 21.25 | 786.08 | 270.14 | 123.83 |
AGB (Mg/ha) | 12.30 | 326.37 | 134.49 | 54.80 |
Plot density (trees/ha) | 195 | 3242 | 940 | 596 |
2.3. Remote Sensing Data and Preprocessing into Point Clouds
2.3.1. Airborne Laser Scanning Data
2.3.2. Open ALS Data
ALS from 900 m Altitude (ALS-900) | ALS from 2500 m Altitude (ALS-2500) | ALS from NLS Open Data (ALS-NLS) | |
---|---|---|---|
Date | 5 September 2014 | 22 May 2014/8 September 2014 | 7 May 2012/13 May 2012 |
Scanner | Leica ALS70-HA SN7202 | Leica ALS70-HA SN7202 | Optech ALTM GEMINI/Leica ALS50 |
Altitude (m) | 900 | 2500 | 1830/2200 |
Pulse density (pulses/m2) | 6 | 0.7/0.7 | 0.8/0.8 |
Pulse rate (KHz) | 240 | 105 | |
Accuracy in XY (cm) | 10 | 15 | 30/20 |
Accuracy in Z (cm) | 8 | 8 | 15/10 |
2.3.3. Aerial Images
2.3.4. WorldView-2 Satellite Imagery
Acquisition Date | Flight Altitude (km) | Overlap | Ground Sampling Distance (m) | Images or Image Pairs | Convergence Angle/off Nadir Angle (degree) | |
---|---|---|---|---|---|---|
AI-5000 | 22 May 2014 | 5 | 80% forward/64% side | 0.5 | 24 in two strips | |
WV-2 | 11 July 2014 | 770 | Along track | 0.5 | 1 | 13.6/(6.8, 13.6) |
2.3.5. TerraSAR-X Satellite Data
Source | ID | Date | Incidence Angle (°) | Time (UTC) | Orbit | Weather(°C) | Resolution | Notes |
---|---|---|---|---|---|---|---|---|
TSX | D1 | 9 July 2014 | 26 | 4:57 | Desc./right | 19 | Clear | |
D2 | 4 July 2014 | 36 | 4:48 | Desc./right | 14 | Clear | ||
D3 | 29 June 2014 | 44 | 4:40 | Desc./right | 14 | Rain showers | ||
A1 | 9 July 2014 | 30 | 15:45 | Asc./right | 27 | Clear | ||
A2 | 3 July 2014 | 40 | 15:54 | Asc./right | 18 | Clear | ||
A3 | 8 July 2014 | 47 | 16:03 | Asc./right | 25 | Clear, possibly rain showers | ||
TDX | 5 June 2014 | 48 | 16:03 | Asc. | 26 | 2.4 m in range/3.3 m in azimuth | Clear |
2.3.6. TanDEM-X SAR Interferometry Data
3. Methods
3.1. Data Co-Registration
3.2. Plot Feature Derivation
Feature | Definition |
---|---|
Hmax | Maximum of the normalized heights of all points |
Hmean | Arithmetic mean of normalized height of all points above 2 m threshold |
Hmod | Mode of normalized height of all points above 2 m threshold |
Hstd | Standard deviation of normalized height of all points above 2 m threshold |
Hcv | coefficient of variation calculated as Hstd/Hmean |
PR | Nh<= 2/Ntotal, where Ntotal is the number of all points, and Nh<= 2 the number of points below and equal to 2 m. |
Vc | Canopy volume calculated as Hmean*(1-PR) |
HP10–HP90 | 10% to 90% percentiles of normalized height of all points above 2 m threshold with a 10% increment |
CC1–CC10 | CCi = Ni/Ntotal, where i = 1 to 10, Ni is the number of points within ith layer when tree height was divided into 10 intervals starting from 2 m, Ntotal is the number of all points. |
3.3. Prediction of Forest Inventory Attributes
3.4. Evaluation of Accuracy
4. Results and Discussion
4.1. Image-based Point Cloud versus ALS Point Cloud
ALS-900 | ALS-2500 | ALS-NLS | AI-5000 | WV-2 | TSX | TDX | |
---|---|---|---|---|---|---|---|
Minimum | 7.64 | 0.82 | 0.72 | 0.76 | 0.55 | 0.03 | 0.00 |
Maximum | 20.34 | 1.43 | 7.67 | 1.00 | 1.01 | 0.13 | 0.06 |
Mean | 11.96 | 1.18 | 2.67 | 0.96 | 0.90 | 0.06 | 0.05 |
4.2. Accuracy of Plot Attribute Estimation
Bias | Bias (%) | RMSE | RMSE (%) | R | |
---|---|---|---|---|---|
ALS-900 | |||||
Hg (m) | 0.02 | 0.11 | 1.12 | 5.30 | 0.97 |
Dg (cm) | 0.08 | 0.33 | 3.28 | 12.74 | 0.90 |
G (m2/ha) | 0.15 | 0.57 | 3.95 | 14.75 | 0.86 |
Vol (m3/ha) | 2.38 | 0.88 | 42.99 | 15.91 | 0.92 |
AGB (Mg/ha) | 0.77 | 0.57 | 19.18 | 14.26 | 0.92 |
ALS-2500 | |||||
Hg (m) | 0.05 | 0.23 | 0.97 | 4.61 | 0.98 |
Dg (cm) | 0.07 | 0.28 | 3.03 | 11.74 | 0.91 |
G (m2/ha) | 0.13 | 0.48 | 4.26 | 15.91 | 0.84 |
Vol (m3/ha) | 0.64 | 0.24 | 43.52 | 16.11 | 0.92 |
AGB (Mg/ha) | −0.07 | −0.05 | 21.29 | 15.83 | 0.90 |
ALS-NLS | |||||
Hg (m) | 0.05 | 0.22 | 1.09 | 5.17 | 0.97 |
Dg (cm) | 0.01 | 0.04 | 3.05 | 11.82 | 0.91 |
G (m2/ha) | 0.09 | 0.33 | 4.23 | 15.80 | 0.84 |
Vol (m3/ha) | 1.41 | 0.52 | 45.16 | 16.72 | 0.91 |
AGB (Mg/ha) | 0.21 | 0.16 | 21.47 | 15.96 | 0.90 |
AI-5000 | |||||
Hg (m) | 0.00 | 0.00 | 1.46 | 6.90 | 0.94 |
Dg (cm) | 0.11 | 0.42 | 3.34 | 12.94 | 0.89 |
G (m2/ha) | 0.12 | 0.43 | 4.89 | 18.24 | 0.78 |
Vol (m3/ha) | 1.64 | 0.61 | 52.34 | 19.37 | 0.88 |
AGB (Mg/ha) | −0.11 | −0.08 | 24.01 | 17.85 | 0.87 |
WV-2 | |||||
Hg (m) | −0.01 | −0.03 | 1.40 | 6.63 | 0.95 |
Dg (cm) | −0.01 | −0.04 | 3.44 | 13.33 | 0.89 |
G (m2/ha) | 0.03 | 0.12 | 4.32 | 16.11 | 0.83 |
Vol (m3/ha) | 1.45 | 0.54 | 42.95 | 15.90 | 0.92 |
AGB (Mg/ha) | 0.31 | 0.23 | 21.79 | 16.20 | 0.89 |
TSX | |||||
Hg (m) | −0.17 | −0.83 | 2.83 | 13.40 | 0.77 |
Dg (cm) | −0.14 | −0.53 | 5.32 | 20.62 | 0.70 |
G (m2/ha) | 0.03 | 0.12 | 6.91 | 25.79 | 0.49 |
Vol (m3/ha) | 0.59 | 0.22 | 84.19 | 31.17 | 0.64 |
AGB (Mg/ha) | −0.21 | −0.16 | 36.97 | 27.49 | 0.64 |
TDX | |||||
Hg (m) | 0.00 | −0.02 | 2.01 | 9.53 | 0.89 |
Dg (cm) | −0.02 | −0.07 | 4.95 | 19.20 | 0.75 |
G (m2/ha) | −0.15 | −0.58 | 5.58 | 20.85 | 0.70 |
Vol (m3/ha) | −0.29 | −0.11 | 59.32 | 21.96 | 0.84 |
AGB (Mg/ha) | 0.20 | 0.15 | 27.83 | 20.69 | 0.82 |
4.3. Feature Importance
4.4. Effect of Plot Size
5. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hyyppä, J.; Inkinen, M. Detecting and estimating attributes for single trees using laser scanner. Photogramm. J. Finl. 1999, 16, 27–42. [Google Scholar]
- Yu, X.; Hyyppä, J.; Vastaranta, M.; Holopainen, M.; Viitala, R. Predicting individual tree attributes from airborne laser point clouds based on random forests technique. ISPRS J. Photogramm. Remote Sens. 2011, 66, 28–37. [Google Scholar] [CrossRef]
- Næsset, E. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ. 1997, 61, 246–253. [Google Scholar] [CrossRef]
- Naesset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- Næsset, E. Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 1997, 52, 49–56. [Google Scholar] [CrossRef]
- Hyyppä, J.; Kelle, O.; Lehikoinen, M.; Inkinen, M. A segmentation-based method to retrieve stem volume estimates from 3-dimensional tree height models produced by laser scanner. IEEE Trans. Geosci. Remote Sens. 2001, 39, 969–975. [Google Scholar] [CrossRef]
- Holmgren, J.; Persson, Å. Identifying species of individual trees using airborne laser scanning. Remote Sens. Environ. 2004, 90, 415–423. [Google Scholar] [CrossRef]
- Brandtberg, T.; Warner, T.; Landenberger, R.; McGraw, J. Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America. Remote Sens. Environ. 2003, 85, 290–303. [Google Scholar] [CrossRef]
- Hyyppä, J.; Yu, X.; Rönnholm, P.; Kaartinen, H.; Hyyppä, H. Factors affecting object-oriented forest growth estimates obtained using laser scanning. Photogramm. J. Finl. 2003, 18, 16–31. [Google Scholar]
- Yu, X.; Hyyppä, J.; Kaartinen, H.; Maltamo, M. Automatic detection of harvested trees and determination of forest growth using airborne laser scanning. Remote Sens. Environ. 2004, 90, 451–462. [Google Scholar] [CrossRef]
- Yu, X.; Hyyppä, J.; Kukko, A.; Maltamo, M.; Kaartinen, H. Change detection techniques for canopy height growth measurements using airborne laser scanner data. Photogramm. Eng. Remote Sens. 2006, 72, 1339–1348. [Google Scholar] [CrossRef]
- Hyyppä, J.; Hyyppä, H.; Leckie, D.; Gougeon, F.; Yu, X.; Maltamo, M. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int. J. Remote Sens. 2008, 29, 1339–1366. [Google Scholar] [CrossRef]
- Nurminen, K.; Karjalainen, M.; Yu, X.; Hyyppä, J.; Honkavaara, E. Performance of dense digital surface models based on image matching in the estimation of plot-level forest variables. ISPRS J. Photogram. Remote Sens. 2013, 83, 104–115. [Google Scholar] [CrossRef]
- Honkavaara, E.; Markelin, L.; Rosnell, T.; Nurminen, K. Influence of solar elevation in radiometric and geometric performance of multispectral photogrammetry. ISPRS J. Photogramm. Remote Sens. 2012, 67, 13–26. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Bohlin, J.; Wallerman, J.; Fransson, J.E.S. Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scand. J. For. Res. 2012, 27, 692–699. [Google Scholar] [CrossRef]
- Järnstedt, J.; Pekkarinen, A.; Tuominen, S.; Ginzler, C.; Holopainen, M.; Viitala, R. Forest variable estimation using a high-resolution digital surface model. ISPRS J. Photogram. Remote Sens. 2012, 74, 78–84. [Google Scholar] [CrossRef]
- Vastaranta, M.; Wulder, M.A.; White, J.C.; Pekkarinen, A.; Tuominen, S.; Ginzler, C.; Kankare, V.; Holopainen, M.; Hyyppä, J.; Hyyppa, H. Airborne laser scanning and digital stereo imagery measures of forest structure: Comparative results and implications to forest mapping and inventory update. Can. J. Remote Sens. 2013, 39, 382–395. [Google Scholar] [CrossRef]
- White, J.; Wulder, M.; Vastaranta, M.; Coops, N.; Pitt, D.; Woods, M. The utility of image-based point clouds for forest inventory: A comparison with airborne laser scanning. Forests 2013, 4, 518–536. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, P.; Deng, L.; Li, J. Generation of a top-of-canopy Digital Elevation Model (DEM) in tropical rain forest regions using radargrammetry. Int. J. Remote Sens. 2007, 28, 4345–4349. [Google Scholar] [CrossRef]
- Perko, R.; Raggam, H.; Gutjahr, K.; Schardt, M. The capabilities of TerraSAR-X imagery for retrieval of forest parameters. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 452–456. [Google Scholar]
- Karjalainen, M.; Kankare, V.; Vastaranta, M.; Holopainen, M.; Hyyppä, J. Prediction of plot-level forest variables using TerraSAR-X stereo SAR data. Remote Sens. Environ. 2012, 17, 338–347. [Google Scholar] [CrossRef]
- Persson, H.; Fransson, J.E. Forest variable estimation using radargrammetric processing of TerraSAR-X images in boreal forests. Remote Sens. 2014, 6, 2084–2107. [Google Scholar] [CrossRef]
- Solberg, S.; Riegler, G.; Nonin, P. Estimating forest biomass from TerraSAR-X stripmap radargrammetry. IEEE Trans. Geosci. Remote Sens. 2015, 53, 154–161. [Google Scholar] [CrossRef]
- Solberg, S.; Astrup, R.; Breidenbach, J.; Nilsen, B.; Weydahl, D. Monitoring spruce volume and biomass with InSAR data from TanDEM-X. Remote Sens. Environ. 2013, 139, 60–67. [Google Scholar] [CrossRef]
- Karila, K.; Vastaranta, M.; Karjalainen, M.; Kaasalainen, S. Tandem-X interferometry in the prediction of forest inventory attributes in managed boreal forests. Remote Sens. Environ. 2015, 159, 259–268. [Google Scholar] [CrossRef]
- Persson, H.; Wallerman, J.; Olsson, H.; Fransson, J.E.S. Estimating forest biomass and height using optical stereo satellite data and a DTM from laser scanning data. Can. J. Remote Sens. 2013, 39, 251–262. [Google Scholar] [CrossRef]
- St-Onge, B.; Hu, Y.; Vega, C. Mapping the height and above-ground biomass of a mixed forest using lidar and stereo Ikonos images. Int. J. Remote Sens. 2008, 29, 1277–1294. [Google Scholar] [CrossRef]
- Neigh, C.; Masek, J.; Bourget, P.; Cook, B.; Huang, C.; Rishmawi, K.; Zhao, F. Deciphering the precision of stereo IKONOS canopy height models for US forests with G-LiHT airborne lidar. Remote Sens. 2014, 6, 1762–1782. [Google Scholar] [CrossRef]
- Montesano, P.M.; Sun, G.Q.; Dubayah, R.; Ranson, K.J. The uncertainty of plot-scale forest height estimates from complementary spaceborne observations in the taiga-tundra ecotone. Remote Sens. 2014, 6, 10070–10088. [Google Scholar] [CrossRef]
- Rahlf, J.; Breidenbach, J.; Solberg, S.; Næsset, E.; Astrup, R. Comparison of four types of 3D data for timber volume estimation. Remote Sens. Environ. 2014, 155, 325–333. [Google Scholar] [CrossRef]
- Laasasenaho, J. Taper Curve and Volume Functions for Pine, Spruce and Birch; Finnish Forest Research Institute: Helsinki, Finland, 1982. [Google Scholar]
- Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fennica 2009, 43, 625–647. [Google Scholar] [CrossRef]
- Axelsson, P. DEM generation from laser scanner data using adaptive TIN models. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2000, 33, 110–117. [Google Scholar]
- Hinz, A.; Dörstel, C.; Heier, H. DMC—The digital sensor technology of Z/I-Imaging. In Photogrammetric Week 2001, Proceedings of 48th Photogrammetric Week, Heidelberg, Germany, 24–28 September 2001; Fritsch, D., Spiller, R., Eds.; Wichmann Verlag: Heidelberg, Germany, 2001; pp. 93–103. [Google Scholar]
- Jensen, J.L.R.; Humes, K.S.; Vierling, L.A.; Hudak, A.T. Discrete return lidar-based prediction of leaf area index in two conifer forests. Remote Sens. Environ. 2008, 112, 3947–3957. [Google Scholar] [CrossRef]
- Kim, Y.; Yang, Z.; Cohen, W.B.; Pflugmacher, D.; Lauver, C.L.; Vankat, J.L. Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data. Remote Sens. Environ. 2009, 113, 2499–2510. [Google Scholar] [CrossRef]
- Yu, X.; Hyyppä, J.; Holopainen, M.; Vastaranta, M. Comparison of area-based and individual tree-based methods for predicting plot-level forest attributes. Remote Sens. 2010, 2, 1481–1495. [Google Scholar] [CrossRef]
- Vastaranta, M.; Kankare, V.; Holopainen, M.; Yu, X.; Hyyppä, J.; Hyyppä, H. Combination of individual tree detection and area-based approach in imputation of forest variables using airborne laser data. ISPRS Photogramm. Remote Sens. 2012, 67, 73–79. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Baltsavias, E.; Gruen, A.; Eisenbeiss, H.; Zhang, L.; Waser, L.T. High-quality image matching and automated generation of 3D tree models. Int. J. Remote Sens. 2008, 29, 1243–1259. [Google Scholar] [CrossRef]
- Fransson, J.E.S.; Israelsson, H. Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data. Int. J. Remote Sens. 1999, 20, 123–137. [Google Scholar] [CrossRef]
- Holopainen, M.; Haapanen, E.; Karjalainen, M.; Vastaranta, M.; Hyyppä, J.; Yu, X.; Tuominen, S.; Hyyppä, H. Comparing accuracy of airborne laser scanning and TerraSAR-x radar images in the estimation of plot-level forest variables. Remote Sens. 2010, 2, 432–445. [Google Scholar] [CrossRef] [Green Version]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Hyyppä, J.; Karjalainen, M.; Nurminen, K.; Karila, K.; Vastaranta, M.; Kankare, V.; Kaartinen, H.; Holopainen, M.; Honkavaara, E.; et al. Comparison of Laser and Stereo Optical, SAR and InSAR Point Clouds from Air- and Space-Borne Sources in the Retrieval of Forest Inventory Attributes. Remote Sens. 2015, 7, 15933-15954. https://doi.org/10.3390/rs71215809
Yu X, Hyyppä J, Karjalainen M, Nurminen K, Karila K, Vastaranta M, Kankare V, Kaartinen H, Holopainen M, Honkavaara E, et al. Comparison of Laser and Stereo Optical, SAR and InSAR Point Clouds from Air- and Space-Borne Sources in the Retrieval of Forest Inventory Attributes. Remote Sensing. 2015; 7(12):15933-15954. https://doi.org/10.3390/rs71215809
Chicago/Turabian StyleYu, Xiaowei, Juha Hyyppä, Mika Karjalainen, Kimmo Nurminen, Kirsi Karila, Mikko Vastaranta, Ville Kankare, Harri Kaartinen, Markus Holopainen, Eija Honkavaara, and et al. 2015. "Comparison of Laser and Stereo Optical, SAR and InSAR Point Clouds from Air- and Space-Borne Sources in the Retrieval of Forest Inventory Attributes" Remote Sensing 7, no. 12: 15933-15954. https://doi.org/10.3390/rs71215809
APA StyleYu, X., Hyyppä, J., Karjalainen, M., Nurminen, K., Karila, K., Vastaranta, M., Kankare, V., Kaartinen, H., Holopainen, M., Honkavaara, E., Kukko, A., Jaakkola, A., Liang, X., Wang, Y., Hyyppä, H., & Katoh, M. (2015). Comparison of Laser and Stereo Optical, SAR and InSAR Point Clouds from Air- and Space-Borne Sources in the Retrieval of Forest Inventory Attributes. Remote Sensing, 7(12), 15933-15954. https://doi.org/10.3390/rs71215809