Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa
<p>Map of the study catchment in northwestern Benin.</p> ">
<p>Comparison between (<b>a</b>) a raw TSX image, (<b>b</b>) a corresponding image filtered with the Lee adaptive filter (window size of 7 × 7) and (<b>c</b>) a non-local means (NLM) filtered image (similarity window of 9 × 9 and search window of 21 × 21).</p> ">
<p>Cropping calendar for each of the crops considered in the study based on 2013 field surveys. Each bar represents the start of land preparation to the harvest period. The start or the harvest period indicated may differ by up to two weeks or more.</p> ">
<p>Schematic of the methodological approach. Analysis was conducted in the order indicated by the steps. RE, RapidEye; RF, random forest.</p> ">
<p>Differences/similarities in the phenological cycles of same/different crops in the study area. Cotton 1 and 2 exhibit different phenological cycles, while Cotton 1 and Maize 1 having similar phenological cycles. Each profile represents the mean signature of a field.</p> ">
<p>Flowchart of the hierarchical scheme adopted to discriminate the crop classes. Different image sets (optical with or without SAR) were used to classify crops at different levels of the hierarchical scheme.</p> ">
<p>(<b>a</b>) The manually-digitized fields’ (reference) <span class="html-italic">versus</span> segmented fields’ (<b>b</b>) proportion of cropland pixels in segments classified as cropland. Percentages have been sorted in ascending order.</p> ">
<p>A detailed look of the overlay of the segmentation results on the derived crop mask.</p> ">
<p>Comparison of the F1 score achieved for the various crops in the four experiments.</p> ">
Abstract
:1. Introduction
2. Study Area
3. Data and Image Pre-Processing
3.1. RapidEye (RE)
3.2. TerraSAR-X (TSX)
3.2.1. Polarimetric Analysis
3.2.2. SAR Data Filtering
3.3. Training and Validation Data
4. Methodological Approach
4.1. Classification Algorithm
4.2. Derivation of a Crop Mask
4.3. Crop Classification
4.3.1. Experimental Design
4.3.2. Classification Approach
4.4. Derivation of Field Boundaries
4.5. Accuracy Assessment
5. Results and Discussion
5.1. Derivation of Crop Mask
5.2. Image Segmentation
5.3. Crop Classification
5.3.1. Accuracy Assessment
5.3.2. Contribution of TSX Data to Crop Mapping
5.4. Reliability of Modal Class Assignment
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lambin, E.F.; MeyFroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar]
- Ramankutty, N.; Graumlich, L.; Achard, F.; Alves, D.; Chhabra, A.; DeFries, R.S.; Foley, J.A.; Geist, H.; Houghton, R.A.; Goldewijk, K.K.; et al. Global land-cover change: Recent progress, remaining challenges. In Land Use and Land-Cover Change: Local Processes and Global Impacts; Lambin, E.F., Geist, H., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2006; pp. 9–39. [Google Scholar]
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land use choices: Balancing human needs and ecosystem function. Front Ecol. Environ 2001, 2, 249–257. [Google Scholar]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar]
- Turker, M.; Arikan, M. Sequential masking classification of multi-temporal Landsat7 ETM+ images for field-based crop mapping in Karacabey, Turkey. Int. J. Remote Sens 2005, 26, 3813–3830. [Google Scholar]
- Fisette, T.; Maloley, M.; Chenier, R.; White, L.; Huffman, T.; Ogston, R.; Pacheco, A.; Gasser, P.Y. Towards a national agricultural land cover classification-evaluating decision tree approach. Proceedings of the 26th Canadian Symposium on Remote Sensing, Wolfville, NS, Canada, 14–16 June 2005.
- Conrad, C.; Fritsch, S.; Zeidler, J.; Rücker, G.; Dech, S. Per-field irrigated crop classification in arid central Asia using SPOT and ASTER data. Remote Sens 2010, 2, 1035–1056. [Google Scholar]
- De Wit, A.J.W.; Clevers, J.G.P.W. Efficiency and accuracy of per-field classification for operational crop mapping. Int. J. Remote Sens 2004, 25, 4091–4112. [Google Scholar]
- Förster, S.; Kaden, K.; Foerster, M.; Itzerott, S. Crop type mapping using spectral-temporal profiles and phenological information. Comput. Electron. Agric 2012, 89, 30–40. [Google Scholar]
- Conrad, C.; Dech, S.; Dubovyk, O.; Fritsch, S.; Klein, D.; Löw, F.; Schorcht, G.; Zeidler, J. Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Comput. Electron. Agric 2014, 103, 63–74. [Google Scholar]
- Löw, F.; Michel, U.; Dech, S.; Conrad, C. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines. ISPRS J. Photogramm. Remote Sens 2013, 85, 102–119. [Google Scholar]
- Forkuor, G.; Conrad, C.; Thiel, M.; Landmann, T. Possibilities of using multi-temporal RapidEye data to map crops and crop groups in West Africa. Environ. Monit. Assess 2014. under review. [Google Scholar]
- Blaes, X.; Vanhalle, L.; Defourny, P. Efficiency of crop identification based on optical and SAR image time series. Remote Sens. Environ 2005, 96, 352–365. [Google Scholar]
- McNairn, H.; Ellis, J.; van der Sanden, J.J.; Hirose, T.; Brown, R.J. Providing crop information using RADARSAT-1 and satellite optical imagery. Int. J. Remote Sens 2002, 23, 851–870. [Google Scholar]
- Forkuor, G.; Cofie, O. Dynamics of land-use and land-cover change in Freetown, Sierra Leone and its effects on urban and peri-urban agriculture—A remote sensing approach. Int. J. Remote Sens 2011, 32, 1017–1037. [Google Scholar]
- Ruelland, D.; Levavasseur, F.; Tribotte, A. Patterns and dynamics of land-cover changes since the 1960s over three experimental areas in Mali. Int. J. Appl. Earth Observ. Geoinf 2010, 12, s11–s17. [Google Scholar]
- Tappan, G.G.; Sall, M.; Wood, E.C.; Cushing, M. Ecoregions and land cover trends in Senegal. J. Arid Environ 2004, 59, 427–462. [Google Scholar]
- Henderson, F.; Chasan, R.; Portolese, J.; Hart, J. Evaluation of SAR-optical imagery synthesis techniques in a complex coastal ecosystem. Photogramm. Eng. Remote Sens 2002, 68, 839–846. [Google Scholar]
- Lopez-Sanchez, J.M.; Ballester-Berman, J.D.; Hajnsek, I. First results of rice monitoring practices in Spain by means of time series of TerraSAR-X dual-pol images. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens 2010, 4, 412–422. [Google Scholar]
- Baghdadi, N.; Cresson, R.; Todoroff, P.; Moinet, S. Multitemporal observations of sugarcane by TerraSAR-X images. Sensors 2010, 10, 8899–8919. [Google Scholar]
- Schuster, C.; Ali, I.; Lohmann, P.; Frick, A.; Foerster, M.; Kleinschmit, B. Towards detecting swath events in TerraSAR-X time series to establish NATURA 2000 grassland habitat swath management as monitoring parameter. Remote Sens 2011, 3, 1308–1322. [Google Scholar]
- Haack, B.N. A comparison of land use/cover mapping with varied radar incident angles and seasons. GISci. Remote Sens. 2007, 44, 1–15. [Google Scholar]
- McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and synthetic aperture radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens 2009, 64, 434–449. [Google Scholar]
- Soria-Ruiz, J.; Fernandez-Ordonez, Y.; McNairm, H. Crop monitoring and crop yield using optical and microwave remote sensing. In Geoscience and Remote Sensing; Ho, P.G.P, Ed.; Intech: Rijeka, Croatia, 2009; pp. 405–419. [Google Scholar]
- Bargiel, D.; Hermann, S. Multi-temporal land-cover classification of agricultural areas in two european regions with high resolution spotlight TerraSAR-X data. Remote Sens 2011, 3, 859–877. [Google Scholar]
- Gerstl, S.A. Physics concepts of optical and radar reflectance signatures. Int. J. Remote Sens 1990, 11, 1109–1117. [Google Scholar]
- Hong, G.; Zhang, A.; Zhou, F.; Townley-Smith, L.; Brisco, B.; Olthof, I. Crop-type identification potential of Radarsat-2 and MODIS images for the Canadian prairies. Can. J. Remote Sens 2011, 37, 45–54. [Google Scholar]
- Rosenthal, W.D.; Blanchard, B.J. Active microwave responses: An aid in improved crop classification. Photogramm. Eng. Remote Sens 1984, 50, 461–468. [Google Scholar]
- Brisco, B.; Brown, R.J.; Manore, M.J. Early season crop discrimination with combined SAR and TM data. Can. J. Remote Sens 1989, 15, 44–54. [Google Scholar]
- Brisco, B.; Brown, R.J. Multidate SAR/TM synergism for crop classification in western Canada. Photogramm. Eng. Remote Sens 1995, 61, 1009–1014. [Google Scholar]
- Gauthier, Y.; Bernier, M.; Fortin, J.P. Aspect and incident angle sensitivity in ERS-1 SAR data. Int. J. Remote Sens 1998, 19, 2001–2006. [Google Scholar]
- Ban, Y. Synergy of multitemporal ERS-1 SAR and Landsat TM data for classification of agricultural crops. Can. J. Remote Sens 2003, 29, 518–526. [Google Scholar]
- Sheoran, A.; Haack, B. Classification of California agriculture using quad polarization radar data and Landsat Thematic Mapper data. GISci. Remote Sens 2013, 50, 50–63. [Google Scholar]
- Shang, J.; McNairn, H.; Champagne, C.; Jiao, X. Application of multi-frequency synthetic aperture radar (SAR) in crop classification. In Advances in Geosciences and Remote Sensing; Jedlovec, G, Ed.; Intech: Rijeka, Croatia, 2009; pp. 557–568. [Google Scholar]
- Laurin, G.V.; Liesenberg, V.; Chen, Q.; Guerrieroa, L.; del Frate, F.; Bartolini, A.; Coomes, D.; Wileborec, B.; Lindsell, J.; Valentini, R. Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. Int. J. Appl. Earth Observ. Geoinf 2012, 21, 7–16. [Google Scholar]
- Cord, A.; Conrad, C.; Schmidt, M.; Dech, S. Standardized FAO-LCCS land cover mapping in heterogeneous tree savannas of West Africa. J. Arid Environ 2010, 74, 1083–1091. [Google Scholar]
- Tso, B.; Mather, P.M. Crop discrimination using multi-temporal SAR imagery. Int. J. Remote Sens 1999, 20, 2443–2460. [Google Scholar]
- Aplin, P.; Atkinson, P.M. Predicting missing field boundaries to increase per-field classification accuracy. Photogramm. Eng. Remote Sens 2004, 70, 141–149. [Google Scholar]
- Aregheore, E.M. Climate and agro-ecological zones. In Country Pasture/Forage Resource Profiles: The Republic of Benin; Food and Agriculture Organization (FAO): Rome, Italy, 2009; Chapter 3; pp. 11–12. [Google Scholar]
- Sow, P.; Adaawen, S.A.; Scheffran, J. Migration, social demands and environmental change amongst the Frafra of northern Ghana and the Biali in northern Benin. Sustainability 2014, 6, 375–398. [Google Scholar]
- Avohou, H.T.; Sinsin, B. The effects of Topographic factors on aboveground biomass production of grasslands in the Atacora Mountains in northwestern Benin. Mount. Res. Dev 2009, 29, 250–254. [Google Scholar]
- Institut National de la Statistique et de l’Analyse Economique (INSAE), Cashier des villages et quartiers de ville Départment de l’ATACORA; Direction des Etudes Démographiques: Cotonou, Benin, 2004.
- Igue, A.M.; Floquet, A.; Stahr, K. Land use and farming systems in Benin. In Adapted Farming in West Africa: Issues, Potentials and Perspectives; Graef, F., Lawrence, P., von Oppen, M, Eds.; Verlag Ulrich E. Grauer: Stuttgart, Germany, 2007; pp. 227–238. [Google Scholar]
- Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction for Satellite Imagery: ATCOR-2/3 User Guide, Version 8.2.1; ReSe Applications Schläpfer: Wil, Switzerland, 2012; pp. 12–15. [Google Scholar]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Shettle, E.P. MODTRAN 5.2.0.0 User’s Manual; Spectral Sciences, Inc.: Burlington, MA, USA, 2008; pp. 5–74. [Google Scholar]
- Boerner, W.M. Basics of SAR polarimetry I. Radar polarimetry and interferometry. Proceedings of the RTO SET Lecture Series, Brussels, Belgium, 14–15 October 2004. Washington, DC, USA, 18–19 October 2004/Ottawa, ON, Canada, 21–22 October 2004.
- Souissi, B.; Ouarzeddine, M.; Belhadj-Aissa, A. Investigation of the capability of the compact polarimetry mode to reconstruct full polarimetry mode using RADARSAT2 data. Adv. Electromagnet 2012, 1, 19–28. [Google Scholar]
- Guissard, A. Mueller and Kennaugh matrices in radar polarimetry. IEEE Geoscie. Remote Sens 1994, 32, 590–597. [Google Scholar]
- Schmitt, A.; Hogg, A.; Roth, A.; Duffe, J. Shoreline classification using dual-polarized TerraSAR-X images. Proceedings of the Synthetic Aperture Radar, EUSAR 9th European Conference, Nuremburg, Germany, 23–26 April 2012; pp. 239–242.
- Cloude, S.R. Polarisation—Applications in Remote Sensing; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Engdahl, M.; Minchella, A.; Marinkovic, P.; Veci, L.; Lu, J. NEST: An esa open source toolbox for scientific exploitation of SAR data. Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 5322–5324.
- Deutsches Zentrum für Luft- und Raumfahrt (DLR). TerraSAR-X Ground Segment Basic Product Specification Document. V. 1.6; TX-GS-DD-3302. 2009, pp. 1–108. Available online: file:///C:/Users/WASCAL/Downloads/TX-GS-DD-3302_Basic-Products-Specification-Document_V1.6%20(1).pdf (accessed on 14 March 2014).
- Infoterra. Radiometric Calibration of TerraSAR-X Data: Beat Nought and Sigma Nought Coefficient Calculation. TSXX-ITD-TN-0049. 2008, pp. 1–16. Available online: file:///C:/Users/WASCAL/Downloads/TSXX-ITD-TN-0049-radiometric_calculations_I1.00.pdf (accessed on 14 March 2014).
- Buades, A.; Coll, B.; Morel, J.M. A review of image denoising algorithms, with a new one. Multisc. Model. Simul 2005, 4, 490–530. [Google Scholar]
- Deledalle, C.A.; Tupin, F.; Denis, L. Polarimetric SAR estimation based on non-local means. Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS), Honolulu, HI, USA, 25–30 July 2010; pp. 2515–2518.
- Ullmann, T.; Schmitt, A.; Roth, A.; Banks, S.; Baumhauer, R.; Dech, S. Classification of coastal arctic land cover by means of TerraSAR-X dual co-polarized data (HH/VV). Proceedings of the 5th TerraSAR-X Science Team Meeting, Munich, Germany, 10–11 June 2013.
- Wang, X.; Gi, L.; Li, X. Evaluation of filters for ENVISAT ASAR speckle suppression in pasture area. Proceedings of the ISPRS Annals of the XXII ISPRS Congress—Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, VIC, Australia, 25 August–1 September 2012; 1–7, pp. 341–346.
- Pringle, M.J.; Denham, R.J.; Devadas, R. Identification of cropping activity in central and southern Queensland, Australia, with the aid of MODIS MOD13Q1 imagery. Int. J. Appl. Earth Observ. Geoinf 2012, 19, 276–285. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn 2001, 45, 5–32. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by random Forest. R. News 2002, 2, 18–22. [Google Scholar]
- R Core Team, R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013.
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. Patt. Recogn. Lett 2006, 27, 294–300. [Google Scholar]
- Watts, J.; Lawrence, R. Merging random forest classification with an object-oriented approach for analysis of agricultural lands. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2008, 37, 579–582. [Google Scholar]
- Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ 2008, 112, 1096–1116. [Google Scholar]
- Bationo, A.; Kimetu, J.; Vanlauwe, B.; Bagayoko, M.; Koala, S.; Mokwunye, A.U. Comparative analysisof the current and potential role of legumes in integrated soil fertility management in West and Central Africa. In Fighting Poverty in Sub-Saharan Africa: The Multiple Roles of Legumes in Integrated Soil Fertility Management; Bationo, A., Waswa, B., Okeyo, J.M., Maina, F., Mokwunye, U., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 117–150. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data. Principles and Practices, 2nd ed; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Vierich, H.I.D.; Stoop, W.A. Changes in West African savanna agriculture in response to growing population and continuing low rainfall. Agric. Ecosyst. Environ 1990, 31, 115–132. [Google Scholar]
- Conrad, C.; Colditz, R.R.; Dech, S.; Klein, D.; Vlek, P.L.G. Temporal segmentation of MODIS time series for improving crop classification in Central Asian irrigation systems. Int. J. Remote Sens 2011, 32, 8763–8778. [Google Scholar]
- Definiens, eCognition Developer 8.7; Trimble Germany GmbH: Munich, Germany, 2011.
- Van Rijsbergen, C.J. Information Retrieval, 2nd ed.; Butterworths: London, UK, 1979. [Google Scholar]
- Schuster, C.; Foerster, M.; Kleinschmit, B. Testing the red edge channel for improving land-use classifications based on high resolution multi-spectral satellite data. Int. J. Remote Sens 2012, 33, 5583–5599. [Google Scholar]
- Van Niel, T.G.; McVicar, T.R. Determining temporal windows for crop discrimination with remote sensing: A case study in South-East Australia. Comput. Electron. Agric 2004, 45, 91–108. [Google Scholar]
- Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. Variable selection using random forests. Patt. Recogn. Lett 2010, 31, 2225–2236. [Google Scholar]
- Aubert, M.; Baghdadi, N.; Zribi, M.; Douaoui, A.; Loumagne, C.; Baup, F.; El Hajj, M.; Garrigues, S. Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust. Remote Sensi. Environ 2011, 115, 1801–1810. [Google Scholar] [Green Version]
- Macelloni, G.; Paloscia, S.; Pampaloni, P.; Marliani, F.; Gai, M. The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops. Geosci. Remote Sens 2001, 39, 873–884. [Google Scholar]
Date of Acquisition | Incidence Angle | Resolution | |
---|---|---|---|
Ground Range (m) | Azimuth (m) | ||
4 May 2013 | 44.0 | 1.31 | 3.15 |
15 May 2013 | 44.0 | 1.29 | 2.59 |
6 June 2013 | 44.6 | 1.31 | 3.15 |
17 June 2013 | 44.6 | 1.29 | 2.59 |
9 July 2013 | 43.5 | 1.31 | 3.15 |
20 July 2013 | 43.5 | 1.29 | 2.59 |
11 August 2013 | 44.6 | 1.31 | 3.15 |
22 August 2013 | 44.6 | 1.29 | 2.59 |
Crop | Training | Validation |
---|---|---|
Cotton | 19 | 19 |
Maize | 19 | 15 |
Millet | 13 | 10 |
Sorghum | 11 | 8 |
Rice | 12 | 13 |
Yam | 10 | 11 |
Experiment | April | May | June | July | August | September | October | November |
---|---|---|---|---|---|---|---|---|
A | ||||||||
B | ||||||||
C | ||||||||
D |
Class | Cropland | Non-Crop | Total | Producer’s Accuracy | User’s Accuracy | F1 Score | |
---|---|---|---|---|---|---|---|
Reference | Cropland | 2024 | 176 | 2200 | 92.0 | 95.8 | 0.94 |
Non-crop | 87 | 2113 | 2200 | 96.0 | 92.3 | 0.94 | |
Total | 2111 | 2289 | 4400 |
Class | Cereals | Cotton | Maize | Rice | Yam | Total | Prod. Acc | User. Acc | F1 score | |
---|---|---|---|---|---|---|---|---|---|---|
Reference | Cereals | 10 | 1 | 4 | 3 | 18 | 0.56 | 0.45 | 0.50 | |
Cotton | 5 | 13 | 1 | 19 | 0.68 | 0.81 | 0.74 | |||
Maize | 4 | 2 | 8 | 1 | 15 | 0.53 | 0.50 | 0.52 | ||
Rice | 1 | 2 | 7 | 3 | 13 | 0.54 | 0.41 | 0.47 | ||
Yam | 2 | 1 | 6 | 2 | 11 | 0.18 | 0.40 | 0.25 |
Class | Cereals | Cotton | Maize | Rice | Yam | Total | Prod. Acc | User Acc | F1 Score | |
---|---|---|---|---|---|---|---|---|---|---|
Reference | Cereals | 11 | 4 | 2 | 1 | 18 | 0.61 | 0.55 | 0.58 | |
Cotton | 3 | 15 | 1 | 19 | 0.79 | 0.83 | 0.81 | |||
Maize | 4 | 3 | 7 | 1 | 15 | 0.47 | 0.50 | 0.48 | ||
Rice | 10 | 3 | 13 | 0.77 | 0.63 | 0.69 | ||||
Yam | 2 | 2 | 3 | 4 | 11 | 0.36 | 0.50 | 0.42 |
Class | Cereals | Cotton | Maize | Rice | Yam | Total | Prod. Acc | User Acc | F1 Score | |
---|---|---|---|---|---|---|---|---|---|---|
Reference | Cereals | 12 | 2 | 2 | 2 | 18 | 0.67 | 0.60 | 0.63 | |
Cotton | 3 | 13 | 3 | 19 | 0.68 | 0.87 | 0.76 | |||
Maize | 3 | 11 | 1 | 15 | 0.73 | 0.58 | 0.65 | |||
Rice | 7 | 6 | 13 | 0.54 | 0.50 | 0.52 | ||||
Yam | 2 | 3 | 4 | 2 | 11 | 0.18 | 0.25 | 0.21 |
Class | Cereals | Cotton | Maize | Rice | Yam | Total | Prod. Acc | User Acc | F1 Score | |
---|---|---|---|---|---|---|---|---|---|---|
Reference | Cereals | 14 | 2 | 1 | 1 | 18 | 0.78 | 0.78 | 0.78 | |
Cotton | 16 | 3 | 19 | 0.84 | 0.89 | 0.86 | ||||
Maize | 2 | 2 | 11 | 15 | 0.73 | 0.69 | 0.71 | |||
Rice | 10 | 3 | 13 | 0.77 | 0.71 | 0.74 | ||||
Yam | 2 | 3 | 6 | 11 | 0.55 | 0.60 | 0.57 |
Classes to Separate | Top Five Important Variables | |
---|---|---|
Rice, Yam | Cotton, Maize, Cereals | Green band, Sept RE; green band, April RE; green band, June RE; green band, May RE; NIR band, April RE |
Cotton | Maize, Cereals | NIR band, Oct RE; red edge band, Oct RE; VV intensity, Aug TSX; red edge band, Sept RE; green band, Sept RE |
Maize | Cereals | NDVI June RE; NDVI April RE; NDVI May RE |
Rice | Yam | VV intensity, July TSX; VH intensity, July TSX; VV intensity June TSX; VH intensity, May TSX; VV Intensity Aug TSX |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Forkuor, G.; Conrad, C.; Thiel, M.; Ullmann, T.; Zoungrana, E. Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa. Remote Sens. 2014, 6, 6472-6499. https://doi.org/10.3390/rs6076472
Forkuor G, Conrad C, Thiel M, Ullmann T, Zoungrana E. Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa. Remote Sensing. 2014; 6(7):6472-6499. https://doi.org/10.3390/rs6076472
Chicago/Turabian StyleForkuor, Gerald, Christopher Conrad, Michael Thiel, Tobias Ullmann, and Evence Zoungrana. 2014. "Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa" Remote Sensing 6, no. 7: 6472-6499. https://doi.org/10.3390/rs6076472
APA StyleForkuor, G., Conrad, C., Thiel, M., Ullmann, T., & Zoungrana, E. (2014). Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa. Remote Sensing, 6(7), 6472-6499. https://doi.org/10.3390/rs6076472