A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico
">
<p>Inventario Nacional Forestal y de Suelos (INFyS) plot-level aboveground carbon density (AGCD) frequency distribution for different forest types in Mexico: Coniferous forest (CF), mixed coniferous/broadleaved forest (CBF), broadleaved forest (BF), humid tropical forest (THF), dry tropical forest (TDF), and mangroves (MG).</p> ">
<p>Multi-temporal consistency of L-HH and HV backscatter (dB) at INFyS plot locations between images acquired during the dry (May) and rainy (August) seasons.</p> ">
<p>PALSAR L-HV (<b>top</b>), and Landsat canopy density (<b>bottom</b>) mosaics of Mexico.</p> ">
<p>WWF ecoregions in Mexico for which regionalization of the AGCD retrieval was tested.</p> ">
<p>Comparison of predicted <span class="html-italic">versus</span> INFyS AGCD for the independent test (<b>left</b>) and “steep topography” (<b>right</b>) datasets. The “out-of-bag” (OOB) statistics are reported in parentheses. The black line shows the fit of a 4th order polynomial.</p> ">
<p>RandomForest predictor importance ranking for the model developed using all available spatial predictor layers: L-HH/HV (HH/HV), textures (coefficient of variation (CV), range (TXr), variance (TXv), entropy (TXe)), Landsat canopy density (CD), Shuttle Radar Topography Mission (SRTM) elevation (ALT), INFyS forest type (TYP).</p> ">
<p>Retrieval performance for different forest types when repeatedly training randomForest with a stratified random selection of INFyS plots using: (1) all predictors, or when excluding (2) forest type; (3) PALSAR intensity and texture; (4) Landsat CD; or (5) SRTM, respectively. Error bars denote the range (mean +/- standard deviation) of the R<sup>2</sup>, root mean square error (RMSE) and bias.</p> ">
<p>RMSEr in 10 t·C/ha AGCD intervals for pine-oak forests when using CD/PALSAR/ALT (Case 1), CD/ALT (Case 3), or PALSAR/ALT (Case 4) as predictors.</p> ">
<p>AGCD retrieval performance for 21 WWF ecoregions when estimating AGCD with a single national model, or when calibrating models for each ecoregion separately.</p> ">
Abstract
:1. Introduction
1.1. Spatially Explicit Mapping of Forest Aboveground Biomass and Carbon Stocks
1.2. Mapping Forest Aboveground Carbon Density across Mexico
2. Data and Methods
2.1. National Forest Inventory of Mexico
2.2. Earth Observation Data
2.2.1. L-Band SAR Data
2.2.2. Optical Data
2.3. Implementation of the AGCD Retrieval
2.3.1. Spatial Datasets
2.3.2. Modeling, Map Generation and Validation
Modeling Framework
Model Development and Validation Databases
Modeling and Mapping
Multi-Scale Comparison of INFyS and Map
- (1)
- A hexagonal grid with ~27 km distance between hexagon centers (i.e., ~650 km2 large hexagons) was generated, and the average AGCD per hexagon according to INFyS and map was calculated. The hexagonal grid was produced in accordance with the US hexagonal grid that served as a basis for the FIA sampling design [49]. For each hexagon, the average AGCD was calculated from the map using the INEGI Series IV land use map as a forest mask to exclude AGCD estimates for non-forest woody vegetation (see Section 3.4). The average AGCD per hexagon according to INFyS was calculated as a weighted mean of all of the 16,906 INFyS plots (cf. Section 2.1) located within the boundaries of the respective hexagons. The proportion of the hexagon area covered by forest according to the INEGI land use map was used as weight. To facilitate the identification of regional patters of over- and under-estimation, the Local Moran’s-I statistic [79] for the differences between INFyS and the remote sensing predictions of AGCD was computed.
- (2)
- The average AGCD per state was calculated accordingly. The average AGCD in the map for each of the 32 states (including Distrito Federal) was calculated using as well the INEGI Series 4 land use map as a forest/non-forest mask. From INFyS plots, the average forest carbon stock per state was calculated as a weighted average of plot AGCD per forest type, using the proportion of the total state area covered by each forest type according to the INEGI land use map as weight. For plot stratification, forest types in the INEGI database were aggregated to six classes (Figure 1) to avoid specific forest types in a state to be only represented by a few plots; note that due to the lower number of plots, a stratification of plots per forest type was not feasible for the hexagon-scale comparison.
3. Results
3.1. Model Performance
3.2. Predictor Importance
3.3. National Versus Ecoregional Modeling
3.4. Wall-to-Wall AGCD Map
3.5. Multi-Scale Comparison of INFyS and Map
3.5.1. Hexagon-Scale Comparison
3.5.2. State-Level Comparison
3.6. Results in the Context of Published Accuracy Requirements
4. Discussion
5. Conclusions and Outlook
Acknowledgments
Conflicts of Interest
- Author ContributionsOliver Cartus and Josef Kellndorfer designed the study. Oliver Cartus carried out the modeling, map production and accuracy assessment. Josef Kellndorfer and Jesse Bishop developed the Woods Hole Image Processing System (WHIPS) for pre-processing the remote sensing data. Lucio Santos and José María Michel Fuentes provided advice on the forest inventory and carbon estimation protocols in Mexico. All co-authors assisted the lead author in writing and revising the manuscript.
References
- Hall, F.G.; Bergen, K.; Blair, J.B.; Dubayah, R.; Houghton, R.; Hurtt, G.; Kellndorfer, G.; Lefsky, M.; Ranson, J.; Saatchi, S.; et al. Characterizing 3D vegetation structure from space: Mission requirements. Remote Sens. Environ 2011, 115, 2753–2775. [Google Scholar]
- Birdsey, R.; Angeles-Perez, G.; Kurz, W.A.; Lister, A.; Olguin, M.; Pan, Y.; Wayson, C.; Wilson, B.; Johnson, K. Approaches to monitoring changes in carbon stocks for REDD+. Carbon Manag 2013, 4, 519–537. [Google Scholar]
- Jantz, P.; Goetz, S.; Laporte, N. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics. Nat. Clim. Chang 2014, 4, 138–142. [Google Scholar]
- Hansen, M.C.; de Fries, R.S.; Townshend, J.R.G.; Carroll, M.; Dimiceli, C.; Sohlberg, R.A. Global percent tree cover at a spatial resolution of 500 meters: First results of the MODIS Vegetation Continuous Field algorithm. Earth Interact 2003, 7, 1–15. [Google Scholar]
- Reese, H.; Nilsson, M.; Granqvist Pahlén, T.; Hagner, O.; Joyce, S.; Tingelöf, U.; Egberth, M.; Olsson, H. Countrywide estimates of forest variables using satellite data and field data from the National Forest Inventory. Ambio 2003, 32, 542–548. [Google Scholar]
- Wagner, W.; Luckman, A.; Vietmeier, J.; Tansey, K.; Balzter, H.; Schmullius, C.; Davidson, M.; Gaveau, D.; Gluck, M.; Le Toan, T.; et al. Large-scale mapping of boreal forest in SIBERIA using ERS tandem coherence and JERS backscatter data. Remote Sens. Environ 2003, 85, 125–144. [Google Scholar]
- Blackard, J.A.; Finco, M.V.; Helmer, E.H.; Holden, G.R.; Hoppus, M.L.; Jacobs, D.M.; Lister, A.J.; Moisen, G.G.; Nelson, M.D.; Riemann, R.; et al. Mapping US forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ 2008, 112, 1658–1677. [Google Scholar]
- Boudreau, J.; Nelson, R.; Margolis, H.; Beaudoin, A.; Guindon, L.; Kimes, D. Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec. Remote Sens. Environ 2008, 112, 3876–3890. [Google Scholar]
- Lefsky, M.A. A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System. Geophys. Res. Lett 2010, 37, 1–5. [Google Scholar]
- Baccini, A.; Goetz, S.; Walker, W.; Laporte, N.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang 2012, 2, 1–4. [Google Scholar]
- Kellndorfer, J.; Walker, W.; LaPoint, E.; Bishop, J.; Cormier, T.; Fiske, G.; Hoppus, M.; Kirsch, K.; Westfall, J. NACP Aboveground Biomass and Carbon Baseline Data (NBCD 2000), USA, 2000; Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC): Oak Ridge, TN, USA, 2012. [Google Scholar]
- Saatchi, S.S.; Houghton, R.A.; Dos Santos Alvalá, R.C.; Soares, J.V.; Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Chang. Biol 2007, 13, 816–837. [Google Scholar]
- Saatchi, S.S.; Harris, N.; Brown, S.; Lefsky, M.; Mitchard, E.T.; Salas, W.; Zutta, B.R.; Buerman, W.; Lewsi, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci.USA 2011, 108, 9899–9904. [Google Scholar]
- Simard, M.; Pinto, N.; Fisher, J.B.; Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res 2011, 116, 1–12. [Google Scholar]
- Santoro, M.; Beer, C.; Cartus, O.; Schmullius, C.C.; Shvidenko, A.; McCallum, I.; Wegmüller, U.; Wiesmann, A. Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements. Remote Sens. Environ 2011, 115, 490–507. [Google Scholar]
- Santoro, M.; Cartus, O.; Fransson, J.; Shvidenko, A.; McCallum, I.; Beaudoin, A.; Hall, R.; Beer, C.; Schmullius, C. Estimates of forest growing stock volume estimates for Sweden, Central Siberia and Quebec using Envisat Advanced Synthetic Aperture Radar backscatter data. Remote Sens 2013, 5, 4503–4532. [Google Scholar]
- Avitabile, V.; Baccini, A.; Friedl, M.A.; Schmullius, C.C. Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda. Remote Sens. Environ 2012, 117, 366–380. [Google Scholar]
- Cartus, O.; Santoro, M.; Schmullius, C.C.; Li, Z. Large area forest stem volume mapping in the boreal zone using synergy of ERS-1/2 tandem coherence and MODIS vegetation continuous fields. Remote Sens. Environ 2011, 115, 931–943. [Google Scholar]
- Cartus, O.; Santoro, M.; Kellndorfer, J. Mapping of forest aboveground biomass in the northeastern United States with ALOS PALSAR dual-polarization L-band. Remote Sens. Environ 2012, 124, 466–478. [Google Scholar]
- Baccini, A.; Asner, G. Improving pantropical forest carbon maps with airborne lidar sampling. Carbon Manag 2013, 4, 591–600. [Google Scholar]
- Guindon, L.; Beaudoin, A.; Leboeuf, A.; Ung, C.H.; Luther, J.E.; Côté, S.; Lambert, M.C. Regional mapping of Canadian Subarctic Forest Biomass Using a Scaling up Method Combining QuickBird and Landsat Imagery. Proceedings of the 2005 ForestSAT Symosium, Borås, Sweden, 31 May–1 June 2005; pp. 71–75.
- Asner, G.; Clark, J.K.; Mascaro, J.; Galindo Garcia, G.A.; Chadwick, K.D.; Navarette Encinales, D.A.; Paez-Acosta, G.; Montenegro, C.; Kennedy-Bowdoin, T.; Duque, A.; et al. High-resolution mapping of forest carbon stocks in the Colombian Amazon. Biogeosciences 2012, 9, 2683–2696. [Google Scholar]
- Le Toan, T.; Beaudoin, A.; Riom, J.; Guyon, D. Relating forest biomass to SAR data. IEEE Trans. Geosci. Remote Sens 1992, 30, 403–411. [Google Scholar]
- Dobson, M.C.; Ulaby, F.T.; Le Toan, T.; Beaudoin, A.; Kasischke, E.S.; Christensen, N. Dependence of radar backscatter on coniferous forest biomass. IEEE Trans. Geosci. Remote Sens 1992, 30, 412–415. [Google Scholar]
- Ranson, K.J.; Sun, G. Mapping biomass of a northern forest using multifrequency SAR data. IEEE Trans. Geosci. Remote Sens 1994, 32, 388–396. [Google Scholar]
- Imhoff, M. Radar backscatter and biomass saturation: Ramifications for global biomass inventory. IEEE Trans. Geosci. Remote Sens 1995, 33, 511–518. [Google Scholar]
- Ranson, K.J.; Saatchi, S.S.; Sun, G. Boreal forest ecosystem characterization with SIR-C/XSAR. IEEE Trans. Geosci. Remote Sens 1995, 33, 867–876. [Google Scholar]
- Lucas, R.M.; Cronin, N.; Lee, A.; Moghaddam, M.; Witte, C.; Tickle, P. Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia. Remote Sens. Environ 2006, 100, 407–425. [Google Scholar]
- Lucas, R.M.; Armston, J.; Fairfax, R.; Fensham, R.; Accad, A.; Carreiras, J.; Kelley, J.; Bunting, P.; Clewley, D.; Bray, S.; Metcalfe, D.; et al. An evaluation of the ALOS PALSAR L-band backscatter—Above ground biomass relationship Queensland, Australia: Impacts of surface moisture condition and vegetation structure. IEEE J. Sel. Top. Appl. Earth Observ 2010, 3, 576–593. [Google Scholar]
- Mitchard, E.T.A.; Saatchi, S.S.; Woodhouse, I.H.; Nangendo, G.; Ribeiro, N.S.; Williams, M.; Ryan, C.M.; Lewis, S.L.; Feldpausch, T.R.; Meir, P. Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophys. Res. Lett 2009, 36, 1–6. [Google Scholar]
- Sandberg, G.; Ulander, L.M.H.; Fransson, J.E.S.; Holmgren, J.; Le Toan, T. L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest. Remote Sens. Environ 2011, 115, 2874–2886. [Google Scholar]
- Le Toan, T.; Quegan, S.; Davidson, M.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.; Saatchi, S.; Shugart, H.; et al. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ 2011, 115, 2850–2860. [Google Scholar]
- Papathanassiou, K.P.; Cloude, S.R. Single-baseline polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens 2001, 39, 2352–2363. [Google Scholar]
- Reigber, A.; Moreira, A. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans. Geosci. Remote Sens.
- Rauste, Y. Multi-temporal JERS SAR data in boreal forest biomass mapping. Remote Sens. Environ 2005, 97, 263–275. [Google Scholar]
- Walker, W.; Kellndorfer, J.M.; Lapoint, E.; Hoppus, M.; Westfall, J. An empirical InSAR-optical fusion approach to mapping vegetation canopy height. Remote Sens. Environ 2007, 109, 482–499. [Google Scholar]
- Kellndorfer, J.; Walker, W.; LaPoint, E.; Kirsch, K.; Bishop, J.; Fiske, G. Statistical fusion of lidar, InSAR, and optical remote sensing data for forest stand height characterization: Regional-scale method based on LVIS, SRTM, Landsat ETM+, and ancillary data sets. J. Geophys. Res 2010, 115, 1–10. [Google Scholar]
- Andersen, H.E.; Strunk, J.; Temesgen, H.; Atwood, D.; Winterberger, K. Using multilevel remote sensing and ground data to estimate forest biomass resources in remote regions: A case study in boreal forests of interior Alaska. Can. J. Remote Sens 2011, 37, 596–611. [Google Scholar]
- Cartus, O.; Kellndorfer, J.; Rombach, M.; Walker, W. Mapping canopy height and growing stock volume using airborne Lidar, ALOS PALSAR and Landsat ETM+. Remote Sens 2012, 4, 3320–3345. [Google Scholar]
- Montesano, P.M.; Cook, B.D.; Sun, G.; Simard, M.; Nelson, R.F.; Ranson, K.J.; Zhang, Z.; Luthcke, S. Achieving accuracy requirements for forest biomass mapping: A spaceborne data fusion method for estimating forest biomass and LiDAR sampling error. Remote Sens. Environ 2013, 130, 153–170. [Google Scholar]
- Food and Agriculture Organization (FAO), Evaluación de los Recursos Forstales Mundiales 2010—Informe Nacional México; FAO: Rome, Italy, 2010.
- The National Forestry Commission of Mexico (CONAFOR), Inventario Nacional Forestal u de Suelos Informe 2004–2009; CONAFOR: Zapopan, México, 2012.
- The National Commission for the Knowledge and Use of Biodiversity (CONABIO), Capital Natural y bienestar Social. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad; CONABIO: Zapopan, México, 2006.
- Kellndorfer, J.; Walker, W.; Pierce, L.E.; Dobson, M.C.; Fites, J.; Hunsaker, C.; Vona, J.; Clutter, M. Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets. Remote Sens. Environ 2004, 93, 339–358. [Google Scholar]
- Walker, W.; Kellndorfer, J.; Pierce, L. Quality assessment of SRTM C- and X-band interferometric data: Implications for the retrieval of vegetation canopy height. Remote Sens. Environ 2007, 106, 428–448. [Google Scholar]
- Hansen, M.C.; Egorov, A.; Roy, D.P.; Potapov, P.; Ju, J.; Turubanova, S.; Kommareddy, I.; Loveland, T.R. Continuous fields of land cover for the conterminous United States using Landsat data: First results from the Web-Enabled Landsat Data (WELD) project. Remote Sens. Lett 2011, 2, 279–288. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI), Conjunto Nacional de Uso del Suelo y Vegetación a escala 1:250,000, Serie IV; DGG-INEGI: Aguascalientes, México, 2010.
- De Jong, B.H.J.; Anaya, C.; Masera, O.; Olguín, M.; Paz, F.; Etchevers, J.; Martínez, R.D.; Guerrero, G.; Balbontín, C. Greenhouse gas emissions between 1993 and 2002 from land-use change and forestry in Mexico. For. Ecol. Manag 2010, 260, 1689–1701. [Google Scholar]
- Bechtold, W.A.; Patterson, P.L. The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures; General Technical Report; GTR-SRS-080; US Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2005. [Google Scholar]
- The National Forestry Commission of Mexico (CONAFOR), Protocol for Estimation of Carbon Stocks in Forest Biomass in Mexico; CONAFOR: Zapopan, México, unpublished.
- Brown, S. Estimating Biomass and Biomass Change of Tropical Forests: A Primer; FAO Forestry Paper; Food and Agriculture Organization (FAO): Rome, Italy, 1997. [Google Scholar]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.; Chambers, J.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar]
- Challenger, A.; Soberón, J. Los Ecosistemas Terrestres, en Capital Natural de Mexico vol. I: Conocimiento actual de la Biodiversidad; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO): México City, México, 2008. [Google Scholar]
- SARMAP. Available online: www.sarmap.ch (accessed on 12 June 2014).
- Lopes, A.; Nezry, E.; Touzi, R.; Laur, H. Structure detection and statistical adaptive speckle filtering in SAR images. Int. J. Remote Sens 1993, 14, 1735–1758. [Google Scholar]
- Small, D. Flattening Gamma: Radiometric terrain correction for SAR imagery. IEEE Trans. Geosci. Remote Sens 2011, 49, 3081–3093. [Google Scholar]
- Castel, T.; Beaudoin, A.; Stach, N.; Stussi, N.; Le Toan, T.; Durand, P. Sensitivity of space-borne SAR data to forest parameters over sloping terrain—Theory and experiment. Int. J. Remote Sens 2001, 22, 2351–2376. [Google Scholar]
- Santoro, M.; Fransson, J. E. S.; Eriksson, L .E. B.; Magnusson, M.; Ulander, L. M. H.; Olsson, H. Signatures of ALOS PALSAR L-band backscatter in Swedish forest. IEEE Trans. Geosci. Remote Sens 2009, 47, 4001–4019. [Google Scholar]
- Robinson, D.J.; Redding, N.J.; Crisp, D.J. Implementation of a Fast Algorithm for Segmenting SAR Imagery. In Scientific and Technical Report 2002; Defense Science and Technology Organization: Edinburgh, SA, Australia, 2002; pp. 1–34. [Google Scholar]
- Feature Extraction Module Version 4.6. ENVI Feature Extraction Module User’s Guide, 2008 ed; ITT Corporation: Boulder, CO, USA, 2008.
- Hansen, M.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.A.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 343, 850–853. [Google Scholar]
- Rignot, E.; Way, J.; Williams, C.; Viereck, L. Radar estimates of aboveground biomass in boreal forests of interior Alaska. IEEE Trans. Geosci. Remote Sens 1994, 32, 1117–1124. [Google Scholar]
- Rignot, E.; Williams, C.L.; Way, J.; Viereck, L. Mapping of forest types in Alaskan boreal forests using SAR imagery. IEEE Trans. Geosci. Remote Sens 1994, 32, 1051–1059. [Google Scholar]
- Way, J.; Rignot, E.; McDonald, K.C.; Oren, R.; Kwok, R.; Bonan, G.; Dobson, M.C.; Viereck, L.A.; Roth, J.E. Evaluating the type and state of Alaska taiga forests with imaging radar for use in ecosystem models. IEEE Trans. Geosci. Remote Sens 1994, 32, 353–370. [Google Scholar]
- Harrell, P.; Bourgeau-Chavez, L.L.; Kasischke, E.S.; French, N.H.F.; Christensen, N.L. Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest. Remote Sens. Environ 1995, 54, 247–260. [Google Scholar]
- Ranson, K.J.; Sun, G. Effects of environmental conditions on boreal forest classification and biomass estimates with SAR. IEEE Trans. Geosci. Remote Sens 2000, 38, 1242–1252. [Google Scholar]
- Pierce, L.E.; Bergen, K.; Dobson, M.C.; Ulaby, F.T. Multitemporal land-cover classification using SIR-C/X-SAR imagery. Remote Sens. Environ 1998, 64, 20–33. [Google Scholar]
- Pulliainen, J.T.; Kurvonen, L.; Hallikainen, M.T. Multitemporal behavior of L- and C-band SAR observations of boreal forests. IEEE Trans. Geosci. Remote Sens 1999, 37, 927–937. [Google Scholar]
- Saatchi, S.; Moghaddam, M. Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery. IEEE Trans. Geosci. Remote Sens 2000, 38, 697–709. [Google Scholar]
- Salas, W.; Ducey, M.J.; Rignot, E.; Skole, D. Assessment of JERS-1 SAR for monitoring secondary vegetation in Amazonia: I. Spatial and temporal variability in backscatter across a chrono-sequence of secondary vegetation stands in Rondonia. Int. J. Remote Sens 2002, 23, 1357–1379. [Google Scholar]
- Askne, J.I.H.; Santoro, M.; Smith, G.; Fransson, J.E.S. Multitemporal repeat-pass SAR interferometry of boreal forests. IEEE Trans. Geosci. Remote Sens 2003, 41, 1540–1550. [Google Scholar]
- Santoro, M.; Eriksson, L.E.B.; Askne, J.I.H.; Schmullius, C.C. Assessment of stand-wise stem volume retrieval in boreal forest from JERS-1 L-band SAR backscatter. Int. J. Remote Sens 2006, 27, 3425–3454. [Google Scholar]
- Kasischke, E.S.; Tanase, M.; Bourgeau-Chavez, L.L.; Borr, M. Soil moisture limitations on monitoring boreal forest regrowth using spaceborne L-band SAR data. Remote Sens. Environ 2011, 115, 227–232. [Google Scholar]
- Baker, J.; Luckman, A. Microwave observations of boreal forests in the NOPEX area of Sweden and a comparison with observations of a temperate plantation in the United Kingdom. Agric. For. Meteorol 1999, 98–99, 389–416. [Google Scholar]
- GDAL–Geospatial Data Abstraction Library. Available online: www.gdal.org (accessed on 12 June 2014).
- Breiman, L. Random forests. Mach. Learn 2001, 45, 5–23. [Google Scholar]
- Walker, W.S.; Stickler, C.M.; Kellndorfer, J.M.; Kirsch, K.M.; Nepstad, D.C. Large-area classification and mapping of forest and land cover in the Brazilian Amazon: A comparative analysis of ALOS/PALSAR and Landsat TM data sources. IEEE J. Sel. Topics Appl. Earth Observ 2010, 3, 594–604. [Google Scholar]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar]
- Anselin, L. The local indicators of spatial association—LISA. Geogr. Anal 1995, 27, 93–115. [Google Scholar]
- Liaw, A.; Wierner, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Cartus, O.; Santoro, M.; Schmullius, C. C-Band Intensity-Based Growing Stock Volume Estimates versus MODIS Vegetation Continuous Fields Tree Canopy Cover: Does C-Band See More than Canopy Cover? Proceedings of the Symposium of ESA Living Planet, Bergen, Norway, 28 June–2 July 2010.
- Aguirre-Salado, C.A.; Treviño-Garza, E.J.; Aguirre-Calderón, O.A.; Jiménez-Pérez, J.; González-Tagle, M.A.; Valdéz-Lazalde, J.R.; Sánchez-Díaz, G.; Haapanen, R.; Aguirre-Salado, A.I.; Miranda-Aragón, L. Mapping aboveground biomass by integrating geospatial and forest inventory data through a k-nearest neighbor strategy in North Central Mexico. J. Arid Land 2014, 6, 80–96. [Google Scholar]
- Askne, J.I.H.; Dammert, P.B.G.; Ulander, L.M.H.; Smith, G. C-band repeat-pass interferometric SAR observations of the forest. IEEE Trans. Geosci. Remote Sens 1997, 35, 25–35. [Google Scholar]
- Harrell, P.; Kasischke, E.S.; Bourgeau-Chavez, L.L.; Haney, E.; Christensen, N.L. Evaluation of approaches to estimating aboveground biomass in Southern pine forests using SIR-C data. Remote Sens. Environ 1997, 59, 223–233. [Google Scholar]
- Wang, Y.; Day, J.; Davis, F. Sensitivity of modeled C-and L-band radar backscatter to ground surface parameters in loblolly pine forest. Remote Sens. Environ 1998, 342, 331–342. [Google Scholar]
- Rosenqvist, A.; Shimada, M.; Ito, N.; Watanabe, M. ALOS PALSAR A pathfinder mission for global-scale monitoring of the environment. IEEE Trans. Geosci. Remote Sens 2007, 45, 3307–3316. [Google Scholar]
- Kurvonen, L.; Pulliainen, J.T.; Hallikainen, M.T. Retrieval of biomass in boreal forests from multitemporal ERS-1 and JERS-1 SAR images. IEEE Trans. Geosci. Remote Sens 1999, 37, 198–205. [Google Scholar]
- Champion, I.; Germain, C.; Da Costa, J.P.; Alborini, A.; Dubois-Fernandez, P. Retrieval of forest stand age from SAR image texture for varying distance and orientation values of the gray level co-occurrence matrix. IEEE Geosci. Remote Sens. Lett 2014, 11, 5–9. [Google Scholar]
- Sarker, L.R.; Nichol, J.E.; Iz, H.B.; Ahmad, B.B.; Rahman, A.A. Forest biomass estimation using texture measurements of high-resolution dual-polarization C-band SAR data. IEEE Trans. Geosci. Remote Sens 2013, 51, 3371–3384. [Google Scholar]
- Lucas, R.M.; Mitchell, A.L.; Rosenqvist, A.; Christophe, P.; Melius, A.; Ticehurst, C. The potential of L-band SAR for quantifying mangrove characteristics and change: Case studies from the tropics. Aquat. Conserv 2007, 17, 245–264. [Google Scholar]
- Urquiza-Haas, T.; Dolman, P.M.; Peres, C.A. Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico: Effects of forest disturbance. For. Ecol. Manag 2007, 247, 80–90. [Google Scholar]
- De Jong, B.H.J. Spatial distribution of biomass and links to reported disturbances in tropical lowland forests of southern Mexico. Carbon Manage 2013, 4, 601–615. [Google Scholar]
- Frey, O.; Santoro, M.; Werner, C.L.; Wegmuller, U. DEM-Based SAR pixel-area estimation for enhanced geocoding refinement and radiometric normalization. IEEE Geosci. Remote Sens. Lett 2013, 10, 48–52. [Google Scholar]
- Goetz, S.J.; Baccini, A.; Laporte, N.T.; Johns, T.; Walker, W.; Kellndorfer, J.; Houghton, R.A.; Sun, M. Mapping and monitoring carbon stocks with satellite observations: A comparison of methods. Carbon Balance Manag 2009, 4. [Google Scholar] [CrossRef]
- Chave, J.; Condit, R.; Aguilar, S.; Hernandez, A.; Lao, S.; Perez, R. Error propagation for tropical forest biomass estimates. Phil. Trans. R. Soc. Lond. B 2004, 359, 409–420. [Google Scholar]
- Asner, G.P.; Powell, G.V.N.; Mascaro, J.; Knapp, D.E.; Clark, J.K.; Jacobson, J.; Kennedy-Bowdoin, T.; Balaji, A.; Paez-Acosta, G.; Victoria, E.; et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. USA 2010, 107, 16738–16742. [Google Scholar]
- Alianza Mexico-REDD+. Available online: www.alianza-mredd.org (accessed on 12 June 2014).
- Cook, B.D.; Corp, L.A.; Nelson, R.F.; Middleton, E.M.; Morton, D.C.; McCorkel, J.T.; Masek, J.G.; Ranson, K.J.; Ly, V.; Montesano, P.M. NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) airborne imager. Remote Sens 2013, 5, 4045–4066. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Cartus, O.; Kellndorfer, J.; Walker, W.; Franco, C.; Bishop, J.; Santos, L.; Fuentes, J.M.M. A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico. Remote Sens. 2014, 6, 5559-5588. https://doi.org/10.3390/rs6065559
Cartus O, Kellndorfer J, Walker W, Franco C, Bishop J, Santos L, Fuentes JMM. A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico. Remote Sensing. 2014; 6(6):5559-5588. https://doi.org/10.3390/rs6065559
Chicago/Turabian StyleCartus, Oliver, Josef Kellndorfer, Wayne Walker, Carol Franco, Jesse Bishop, Lucio Santos, and José María Michel Fuentes. 2014. "A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico" Remote Sensing 6, no. 6: 5559-5588. https://doi.org/10.3390/rs6065559
APA StyleCartus, O., Kellndorfer, J., Walker, W., Franco, C., Bishop, J., Santos, L., & Fuentes, J. M. M. (2014). A National, Detailed Map of Forest Aboveground Carbon Stocks in Mexico. Remote Sensing, 6(6), 5559-5588. https://doi.org/10.3390/rs6065559