Analysis of MERIS Reflectance Algorithms for Estimating Chlorophyll-a Concentration in a Brazilian Reservoir
"> Figure 1
<p>(<b>A</b>) Location of Funil Hydroelectric Reservoir. Sampling points from: (<b>B</b>) May 2012, (<b>C</b>) September 2012; and (<b>D</b>) April 2013. Color Composite TM-Landsat5 R3G2B1. Orbit/Point: 218/76. Date of Passage: 5 September 2011.</p> "> Figure 2
<p>Box-plots with the summary statistics for chl-<span class="html-italic">a</span> (concentrations in µg∙L<sup>−1</sup>) at each campaign.</p> "> Figure 3
<p>Scheme of Monte Carlo simulation to calibrate the models.</p> "> Figure 4
<p>Calibration/validation scheme.</p> "> Figure 5
<p>R<sub>RS</sub> spectra from Funil reservoir in: (<b>A</b>) May 2012; (<b>B</b>) September 2012 and (<b>C</b>) April 2013.</p> "> Figure 6
<p>Histograms of the R<sup>2</sup> distribution for: (<b>A</b>) May 2012; (<b>B</b>) September 2012; and (<b>C</b>) April 2013. Hyperspectral data with chl-<span class="html-italic">a</span> values below 20 µg∙L<sup>−1</sup>.</p> "> Figure 7
<p>Scatterplots of the Measured <span class="html-italic">vs.</span> Estimated chl-<span class="html-italic">a</span> for each model using <span class="html-italic">in situ</span> hyperspectral data with chl-<span class="html-italic">a</span> values below 20 µg∙L<sup>−1</sup>.</p> "> Figure 8
<p>Histograms of the R<sup>2</sup> distribution for: (<b>A</b>) May 2012; (<b>B</b>) September 2012 and (<b>C</b>) April 2013. All hyperspectral data.</p> "> Figure 9
<p>Scatterplots of the measured <span class="html-italic">vs.</span> estimated chl-<span class="html-italic">a</span> for each model using all <span class="html-italic">in situ</span> hyperspectral data. (<b>A</b>) All chl-<span class="html-italic">a</span> range; (<b>B</b>) Limiting the range to clarify the analysis.</p> "> Figure 10
<p>Histograms of the R<sup>2</sup> distribution for: (<b>A</b>) May 2012; (<b>B</b>) September 2012; and (<b>C</b>) April 2013. OLCI simulated data with no chl-<span class="html-italic">a</span> below 20 µg∙L<sup>−1</sup>.</p> "> Figure 11
<p>Scatterplots of the measured <span class="html-italic">vs.</span> estimated chl-<span class="html-italic">a</span> using OLCI simulated bands.</p> ">
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Remote Sensing Reflectance
2.2.2. Chl-a
Maximum | Minimum | Range | Average | Median | Standard
Deviation | |
---|---|---|---|---|---|---|
May 2012 | 32.96 | 2.33 | 30.63 | 8.59 | 4.88 | 7.81 |
September 2012 | 306.03 | 4.37 | 301.67 | 67.08 | 14.82 | 90.80 |
April 2013 | 52.78 | 4.92 | 47.86 | 19.49 | 12.89 | 15.28 |
2.3. Chl-a MERIS Bio-Optical Models
Abbreviation | Reference | Model |
---|---|---|
2BDA | 19 | |
3BDA | 36 | |
NDCI | 12 |
2.4. Calibration and Validation
|
2.5. OLCI Simulated Bands
3. Results and Discussion
3.1. Remote Sensing Reflectance Behavior
3.2. Bio-Optical Models
3.2.1. Calibration and Validation of the Hyperespectral Data with chl-a Concentration bellow 20 µg∙L−1
Slope | Intercept | R² | |
---|---|---|---|
2BDA | 41.8 | −15.0 | 0.90 |
3BDA | 581.1 | 25.5 | 0.90 |
NDCI | 54.0 | 23.8 | 0.90 |
Bias (µg∙L−1) | RMSE (µg∙L−1) | NRMSE% | p Value | |
---|---|---|---|---|
2BDA | 0.01 | 2.92 | 18.32 | 0.987 |
3BDA | −0.01 | 3.14 | 19.68 | 0.993 |
NDCI | −0.03 | 2.84 | 17.85 | 0.970 |
3.2.2. Calibration of All in situ Hyperspectral Data
Slope | Intercept | R2 | |
---|---|---|---|
2BDA | 47.3 | −17.9 | 0.9 |
3BDA | 714.3 | 28.9 | 0.9 |
NDCI | 67.6 | 28.0 | 0.9 |
Bias (µg∙L−1) | RMSE (µg∙L−1) | NRMSE% | p Value | |
---|---|---|---|---|
2BDA | −1.02 | 9.65 | 4.74 | 0.493 |
3BDA | 11.34 | 32.90 | 16.17 | 0.175 |
NDCI | −17.88 | 44.24 | 21.74 | 0.180 |
3.2.3. Calibration and Validation of OLCI Simulated Data
Slope | Intercept | R² | |
---|---|---|---|
2BDA | 45.4 | −16.3 | 0.90 |
3BDA | 646.8 | 27.1 | 0.90 |
NDCI | 57.7 | 25.7 | 0.90 |
Bias (µg∙L−1) | RMSE (µg∙L−1) | NRMSE% | p Value | |
---|---|---|---|---|
2BDA | −0.02 | 2.88 | 18.07 | 0.982 |
3BDA | −0.03 | 3.23 | 20.27 | 0.978 |
NDCI | 0.05 | 2.81 | 17.64 | 0.957 |
3.3. Comparison with Other Studies
Model | Reference | Location | Slope | Intercept |
---|---|---|---|---|
2BDA | This study | Funil reservoir | 41.8 | −15 |
Mishra and Mishra [12] | Chesapeake Bay and Delaware Bay | 20.96 | −8.88 | |
Moses et al. [9] | Azov Sea | 0.00002 | 0.61 | |
Gitelson et al. [8] | Nebraska and Iowa Reservoirs | 0.95 | 4.55 | |
Gitelson et al. [8] | Nebraska Reservoirs | 0.94 | 12.1 | |
Gitelson et al. [8] | Lake Minnetonka | 0.94 | 6.82 | |
Gitelson et al. [8] | Choptank River | 0.98 | 11.91 | |
Huang et al. [41] | 5 Lakes in China | 64.01 | −46.19 | |
3BDA | This study | Funil reservoir | 581.1 | 25.5 |
Mishra and Mishra [12] | Chesapeake Bay and Delaware Bay | 136.13 | 11.52 | |
Gitelson et al. [8] | Nebraska and Iowa Reservoirs | 0.89 | 2.84 | |
Gitelson et al. [8] | Nebraska Reservoirs | 0.95 | 4.57 | |
Gitelson et al. [8] | Lake Minnetonka | 1.07 | -2.39 | |
Gitelson et al. [8] | Choptank River | 0.96 | 3.33 | |
Huang et al. [41] | 5 Lakes in China | 90.05 | 19.63 | |
NDCI | This study | Funil reservoir | 54 | 23.8 |
Mishra and Mishra [12] | Chesapeake Bay and Delaware Bay | 87.99 | 13.55 |
Model | Reference | Location | RMSE | NRMSE |
---|---|---|---|---|
2BDA | This study | Funil | 2.92 | 18.32 |
Mishra and Mishra [12] | Chesapeake Bay and Delaware Bay | 2.82 | ||
Moses et al. [42] | Azov Sea | 6.04 | ||
Gitelson et al. [8] | Nebraska and Iowa Reservoirs | 10.2 | 36.2 | |
Gitelson et al. [8] | Nebraska Reservoirs | 14.8 | 57.3 | |
Gitelson et al. [8] | Lake Minnetonka | 6.15 | 25.3 | |
Gitelson et al. [8] | Choptank River | 10.7 | 15.2 | |
Huang et al. [41] | 5 Lakes in China | 13.17 | 53.59 | |
3BDA | This study | Funil | 3.14 | 19.68 |
Mishra and Mishra [12] | Chesapeake Bay and Delaware Bay | 2.69 | ||
Moses et al. [42] | Azov Sea | 6.68 | ||
Gitelson et al. [8] | Nebraska and Iowa Reservoirs | 8.7 | 52.6 | |
Gitelson et al. [8] | Nebraska Reservoirs | 11.2 | 46 | |
Gitelson et al. [8] | Lake Minnetonka | 4.2 | 20.7 | |
Gitelson et al. [8] | Choptank River | 6 | 47.9 | |
Huang et al. [41] | 5 Lakes in China | 12.58 | 51.19 | |
NDCI | This study | Funil | 2.84 | 17.85 |
Mishra and Mishra [12] | Chesapeake Bay and Delaware Bay | 1.43 | ||
Zhang et al. [43] | Lake Taihu | 6.48 | ||
Zhang et al. [43] | Lake Taihu | 22.53 | ||
Zhang et al. [43] | Lake Taihu | 5.73 |
3.4. MERIS Models Applied to OLCI Simulated Dataset
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tundisi, J.G.; Matsumura-Tundisi, T.; Tundisi, J.E.M. Reservoirs and human wellbeing: New challenges for evaluating impacts and benefits in the neotropics. Braz. J. Biol. 2008, 68, 1133–1135. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.; Phinn, S.R.; Dekker, A.G.; Brando, V.E. Remote sensing of water quality in an Australian tropical freshwater impoundment using matrix inversion and MERIS images. Remote Sens. Environ. 2011, 115, 2402–2414. [Google Scholar] [CrossRef] [Green Version]
- Gons, H.J.; Auer, M.T.; Effler, S.W. MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes. Remote Sens. Environ. 2008, 112, 4098–4106. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Gitelson, A.A. The peak near 700 nm on radiance spectra of algae and water: Relationships of its magnitude and position with chlorophyll concentration. Int. J. Remote Sens. 1992, 13, 3367–3373. [Google Scholar] [CrossRef]
- Richardson, L.L. Remote Sensing of algal bloom dynamics: New research fuses remote sensing of aquatic ecosystems with algal accessory pigment analysis. BioScience 1996, 46, 492–501. [Google Scholar] [CrossRef]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Waters; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data—Successes and challenges. Environ. Res. Lett. 2009, 4, 045005–045013. [Google Scholar] [CrossRef]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Lu, H. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. Remote Sens. Environ. 2009, 113, 1175–1182. [Google Scholar] [CrossRef]
- Shen, F.; Zhou, Y.-X.; Li, D.-J.; Zhu, W.-J. Suhyb Salama, M. Medium resolution imaging spectrometer (MERIS) estimation of chlorophyll-a concentration in the turbid sediment-laden waters of the Changjiang (Yangtze) Estuary. Int. J. Remote Sens. 2010, 31, 4635–4650. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Matthews, M.W.; Bernard, S.; Robertson, L. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens. Environ. 2012, 124, 637–652. [Google Scholar] [CrossRef]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.E.; Schaepman, M. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Gordon, H.R.; Morel, A. Remote assessment of ocean color for interpretation of satellite visible imagery. In Lecture Notes on Coastal and Estuarine Studies; Barber, R.T., Mooers, C.N.K., Bowman, M.J., Zeitzschel, B., Eds.; Springer: New York, NY, USA, 1983; p. 114. [Google Scholar]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; McClain, C. Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res. 1998, 103, 24937–24953. [Google Scholar] [CrossRef]
- Campbell, J.; Antoine, D.; Armstrong, R.; Arrigo, K.; Balch, W.; Barber, R.; Behrenfeld, M.; Bidigare, R.; Bishop, J.; Carr, M.-E.; et al. Comparison of algorithms for estimating ocean primary production from surface chlorophyll, temperature, and irradiance. Global Biogeochem. Cycle. 2002. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Gitelson, A.A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: Experimental results. Appl. Opt. 2005, 44, 412–422. [Google Scholar] [PubMed]
- MERIS. Product Handbook; European Space Agency (ESA): Paris, France, 2006. [Google Scholar]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.-H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The global monitoring for environment and security (GMES) sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Furnas. Sistema Furnas de Geração e Transmissão. Available online: http://www.furnas.com.br/hotsites/sistemafurnas/usina_hidr_funil.asp (accessed on 28 February 2013).
- Primo, A.R.R. Avaliação da influência do reservatório de Funil na qualidade da água do rio Paraíba do Sul. Master’s Thesis, Universidade de São Paulo, Paulo, Brazil, 2006. [Google Scholar]
- Instituto Estadual do Ambiente (INEA). Avaliação ambiental do Rio Paraíba do Sul; INEA: Rio de Janeiro, Brazil, 2010. [Google Scholar]
- Bobeda, C. Isolamento, Purificação e Caracterização de Microcistinas (Hepta-Peptídeos Tóxicos) Encontrados em uma Floração de Cianobactérias Ocorrida no Reservatório do Funil. Master’s Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 1983. [Google Scholar]
- Governo do Estado do Rio de Janeiro. Programa Estadual de Investimentos da Bacia do Rio Paraíba do Sul-RJ; Diagnóstico Ambiental; Fundação Superintendência Estadual de Rios e Lagoas (SERLA), Secretaria de Estado de Meio Ambiente: Rio de Janeiro, Brasil, 1997.
- Rocha, M.I.A.; Branco, C.W.C.; Sampaio, G.F.; Gômara, G.A.; De Filippo, R. Spatial and temporal variation of limnological features, Microcystis aeruginosa and zooplankton in a eutrophic reservoir (Funil Reservoir, Rio de Janeiro). Acta Limnol. Brasil. 2002, 14, 73–76. [Google Scholar]
- Novo, E.; Stech, J.; Alcântara, E.H.; Londe, L.; Assireu, A.; Barbosa, C. Integração de dados do Sistema de Monitoramento Automático de Variáveis Ambientais (SIMA) e de imagens orbitais na avaliação do estado trófico do reservatório da UHE funil. Geografia 2010, 35, 641–660. (in Portuguese). [Google Scholar]
- TriOS. RAMSES Hyperspectral Radiometer Manual; TriOS Optical Sensor: Rastede, Germany, 2010. [Google Scholar]
- Hooker, S.; Lazin, G.; Zibord, G.; McLean, S. An evaluation of above- and in-water methods for determining water-leaving radiances. J. Atmos. Ocean. Technol. 2002, 19, 486–515. [Google Scholar] [CrossRef]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef]
- Ohde, T.; Siegel, H. Derivation of immersion factors for the hyperspectral TriOS radiance sensor. J. Opt. A: Pure Appl. Opt. 2003, 5, L12–L14. [Google Scholar] [CrossRef]
- Nush, E.A. Comparison of different methods for chlorophyll and phaeopigment determination. Arch. Hydrobiol. Beih. Ergebn. Limnol. 1980, 14, 14–36. [Google Scholar]
- Lorenzen, C.J. Determination of chlorophyll and pheo-pigments: Spectrophotometric equations. Limnol. Oceanogr. 1967, 12, 343–346. [Google Scholar] [CrossRef]
- Gons, H.J. Optical teledetection of chlorophyll a in turbid inland waters. Environ. Sci. Technol. 1999, 33, 1127–1132. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, U.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Wynne, T.T.; Stumpf, R.P.; Tomlinson, M.C.; Warner, R.A.; Tester, P.A.; Dyble, J.; Fahnenstiel, G.L. Relating spectral shape to cyanobacterial blooms in the Laurentian Great Lakes. Int. J. Remote Sens. 2008, 29, 3665–3672. [Google Scholar] [CrossRef]
- Schalles, J.F.; Yacobi, Y.Z. Remote detection and seasonal patterns of phycocyanin, carotenoid, and chlorophyll pigments in eutrophic waters. Arch. Hydrobiol. 2000, 55, 153–168. [Google Scholar]
- Yacobi, Y.Z.; Moses, W.J.; Kaganovsky, S.; Sulimani, B.; Leavitt, B.C.; Gitelson, A.A. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Water Res. 2011, 45, 2428–2436. [Google Scholar] [CrossRef] [PubMed]
- Aas, E.; Høkedal, J.; Sørensen, K. Spectral backscattering coefficient in coastal waters. Int. J. Remote Sens. 2005, 26, 331–343. [Google Scholar] [CrossRef]
- Huang, C.; Zou, J.; Li, Y.; Yang, H.; Shi, K.; Li, J.; Wang, Y.; Chena, X.; Zheng, F. Assessment of NIR-red algorithms for observation of chlorophyll-a in highly turbid inland waters in China. ISPRS J. Photogramm. Remote Sens. 2014, 93, 29–39. [Google Scholar] [CrossRef]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Saprygin, V.; Povazhnyi, V. Operational MERIS-based NIR-red algorithms for estimating chlorophyll-a concentrations in coastal waters—The Azov Sea case study. Remote Sens. Environ. 2012, 121, 118–124. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, R.; Duan, H.; Loiselle, S.; Xu, J. A spectral decomposition algorithm for estimating chlorophyll-a concentrations in Lake Taihu, China. Remote Sens. 2014, 6, 5090–5106. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augusto-Silva, P.B.; Ogashawara, I.; Barbosa, C.C.F.; De Carvalho, L.A.S.; Jorge, D.S.F.; Fornari, C.I.; Stech, J.L. Analysis of MERIS Reflectance Algorithms for Estimating Chlorophyll-a Concentration in a Brazilian Reservoir. Remote Sens. 2014, 6, 11689-11707. https://doi.org/10.3390/rs61211689
Augusto-Silva PB, Ogashawara I, Barbosa CCF, De Carvalho LAS, Jorge DSF, Fornari CI, Stech JL. Analysis of MERIS Reflectance Algorithms for Estimating Chlorophyll-a Concentration in a Brazilian Reservoir. Remote Sensing. 2014; 6(12):11689-11707. https://doi.org/10.3390/rs61211689
Chicago/Turabian StyleAugusto-Silva, Pétala B., Igor Ogashawara, Cláudio C. F. Barbosa, Lino A. S. De Carvalho, Daniel S. F. Jorge, Celso Israel Fornari, and José L. Stech. 2014. "Analysis of MERIS Reflectance Algorithms for Estimating Chlorophyll-a Concentration in a Brazilian Reservoir" Remote Sensing 6, no. 12: 11689-11707. https://doi.org/10.3390/rs61211689
APA StyleAugusto-Silva, P. B., Ogashawara, I., Barbosa, C. C. F., De Carvalho, L. A. S., Jorge, D. S. F., Fornari, C. I., & Stech, J. L. (2014). Analysis of MERIS Reflectance Algorithms for Estimating Chlorophyll-a Concentration in a Brazilian Reservoir. Remote Sensing, 6(12), 11689-11707. https://doi.org/10.3390/rs61211689