Characterization of Rape Field Microwave Emission and Implications to Surface Soil Moisture Retrievals
<p>The Upper Danube catchment in Europe; the radiometer test site is marked with a circle.</p> ">
<p>Radiometer ELBARA II with angle of aperture α, incidence angle θ and the two halfaxes a and b of the elliptical footprint on the left; location of ground measurements (LAI and handheld soil moisture (FDR) inside the field of view (FOV), vegetation water content (VWC) outside the FOV; soil moisture and soil temperature stations for both fields are located to the right of the radiometer, the meteorological station to the left of the radiometer.</p> ">
<p>Daily soil moisture measured at a depth of 5 cm and precipitation as daily sum for the whole campaign period; the data gaps are due to technical problems during winter-time.</p> ">
<p>Development of vegetation water content and leaf area index for the duration of the experiment.</p> ">
<p>Photographs of the winter rape canopy demonstrating stages of phenology at the beginning of October (top left), middle of November(top centre) and middle of December (top right) as well as May (bottom left) and July (bottom right).</p> ">
<p>Digital elevation model of a roughness measurement performed in October 2009, clearly visible is the tractor track on the right. The heights are relative to the lower edge of the scaffold.</p> ">
<p>Measured ELBARA brightness temperatures (TB) for angle 50° (left) and 65° (right) for both vertical and horizontal polarization.</p> ">
<p>Development of TB and soil moisture in 5 cm depth − 50°, horizontal polarisation.</p> ">
<p>Comparison between simulated and measured TB on the basis of using the standard parameters according to literature—horizontal polarization.</p> ">
Abstract
:1. Introduction
2. Field Experiment
2.1. Test Site
2.2. Measurements
2.2.1. Meteorological and Soil Moisture Measurements
2.2.2. Vegetation Measurements
2.2.3. Surface Roughness Measurements
2.2.4. Ground Based Radiometer
3. Model and Methods
3.1. Microwave Radiative Transfer Model
3.2. Methods
- A 1P-soil moisture retrieval where Hr is not constant but a function of measured soil moisture
- A two parameter (2P)-retrieval with soil moisture and roughness as free parameters
4. Results and Discussion
4.1. SMOS Default Parameterization and Sensitivity Study
4.2. Retrieval Results for Early Growing Period
4.3. Retrieval Results for Late Growing Period
4.4. Discussion of the Chosen Approach
5. Conclusions
Acknowledgments
References
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Martinuzzi, J.-M.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens 2001, 39, 1729–1735. [Google Scholar]
- Entekhabi, D.; Asrar, G.R.; Betts, A.K.; Beven, K.J.; Bras, R.L.; Duffy, C.J.; Dunne, T.; Koster, R.D.; Lettenmaier, D.P.; Mclaughlin, D.B.; et al. An agenda for land-surface hydrology research and a call for the second international hydrological decade. Bull. Am. Meteorol. Soc 1999, 80, 2043–2057. [Google Scholar]
- Wagner, W.; Naeimi, V.; Scipal, K.; de Jeu, R.; Martínez-Fernández, J. Soil moisture from operational meteorological satellites. Hydrogeol. J 2007, 15, 121–131. [Google Scholar]
- Aires, F.; Prigent, C.; Rossow, W.B. Sensitivity of satellite microwave and infrared observations to soil moisture at a global scale: 2. Global statistical relationships. J. Geophys. Res 2005, 110, D11103. [Google Scholar]
- Loew, A.; Ludwig, R.; Mauser, W. Derivation of surface soil moisture from ENVISAT ASAR wide swath and image mode data in agricultural areas. IEEE Trans. Geosci. Remote Sens 2006, 44, 889–899. [Google Scholar]
- Mauser, W.; Rombach, M.; Bach, H.; Demircan, A.; Kellndorfer, J. Determination of spatial and temporal soil-moisture development using multitemporal ERS-1 data. Proc. SPIE 1995, 2314, 502–515. [Google Scholar]
- Wagner, W.; Blöschl, G.; Pampaloni, P.; Calvet, J.-C.; Bizzarri, B.; Wigneron, J.-P.; Kerr, Y. Operational readiness of microwave remote sensing of soil moisture for hydrologic applications. Nord. Hydrol 2007, 38, 1–20. [Google Scholar]
- Wigneron, J.P.; Kerr, Y.; Waldteufel, P.; Saleh, K.; Escorihuela, M.J.; Richaume, P.; Ferrazzoli, P.; de Rosnay, P.; Gurney, R.; Calvet, J.C.; et al. L-band Microwave Emission of the Biosphere (L-MEB) Model: Description and calibration against experimental data sets over crop fields. Remote Sens. Environ 2007, 107, 639–655. [Google Scholar]
- de Rosnay, P.; Calvet, J.-C.; Kerr, Y.; Wigneron, J.-P.; Lemaître, F.; Escorihuela, M.J.; Sabater, J.M.; Saleh, K.; Barrié, J.; Bouhours, G.; et al. SMOSREX: A long term field campaign experiment for soil moisture and land surface processes remote sensing. Remote Sens. Environ 2006, 102, 377–389. [Google Scholar]
- Grant, J.P.; Wigneron, J.P.; Van de Griend, A.A.; Kruszewski, A.; Søbjærg, S.S.; Skou, N. A field experiment on microwave forest radiometry: L-band signal behaviour for varying conditions of surface wetness. Remote Sens. Environ 2007, 109, 10–19. [Google Scholar]
- Schwank, M.; Matzler, C.; Guglielmetti, M.; Fluhler, H. L-band radiometer measurements of soil water under growing clover grass. IEEE Trans. Geosci. Remote Sens 2005, 43, 2225–2237. [Google Scholar]
- Schwank, M.; Stahli, M.; Wydler, H.; Leuenberger, J.; Matzler, C.; Fluhler, H. Microwave L-band emission of freezing soil. IEEE Trans. Geosci. Remote Sens 2004, 42, 1252–1261. [Google Scholar]
- Loew, A.; Schwank, M.; Schlenz, F. Assimilation of an L-band microwave soil moisture proxy to compensate for uncertainties in precipitation data. IEEE Trans. Geosci. Remote Sens 2009, 47, 2606–2616. [Google Scholar]
- Loew, A.; Schwank, M. Calibration of a soil moisture model over grassland using L-band microwave radiometry. Int. J. Remote Sens 2010, 31, 5163–5177. [Google Scholar]
- Schwank, M.; Wiesmann, A.; Werner, C.; Mätzler, C.; Weber, D.; Murk, A.; Völksch, I.; Wegmüller, U. ELBARA II, An L-band radiometer system for soil moisture research. Sensors 2009, 10, 584–612. [Google Scholar]
- Cano, A.; Saleh, K.; Wigneron, J.-P.; Antolín, C.; Balling, J.; Kerr, Y.; Kruszewski, A.; Millán-Scheiding, C.; Søbjærg, S.; Skou, N. The SMOS Mediterranean Ecosystem L-Band characterisation EXperiment (MELBEX-I) over natural shrubs. Remote Sens. Environ 2010, 114, 844–853. [Google Scholar]
- Rautiainen, K.; Lemmetyinen, J.; Pulliainen, J.; Vehviläinen, J.; Drusch, M.; Kontu, A.; Kainulainen, J.; Seppänen, J. L-Band radiometer observations of soil processes in boreal and sub-arctic environments. IEEE Trans. Geosci. Remote Sens 2011, in press.. [Google Scholar]
- Schlenz, F.; Gebhardt, T.; Loew, A.; Marzahn, P.; Mauser, W. L-Band Radiometer Experiment in the SMOS Test Site Upper Danube. Proceedings of EGU General Assembly 2010, Vienna, Austria, 2–7 May 2010; p. 9677.
- FNR e.V. Jahresbericht 2009/2010; Fachagentur Nachwachsende Rohstoffe e.V. (FNR): Gülzow-Prüzen, Germany, 2010.
- Dall’Amico, J.T.; Schlenz, F.; Loew, A.; Mauser, W.; Kainulainen, J.; Balling, J.; Bouzinac, C. Airborne and ground campaigns in the Upper Danube Catchment: Data sets for calibration, validation and downscaling of SMOS data. IEEE Trans. Geosci. Remote Sens 2011. submitted. [Google Scholar]
- Delwart, S.; Bouzinac, C.; Wursteisen, P.; Berger, M.; Drinkwater, M.; Martin-Neira, M.; Kerr, Y.H. SMOS Validation and the COSMOS Campaigns. IEEE Trans. Geosci. Remote Sens 2008, 46, 695–704. [Google Scholar]
- Teuling, A.J.; Hupet, F.; Uijlenhoet, R.; Troch, P.A. Climate variability effects on spatial soil moisture dynamics. Geophys. Res. Lett 2007, 34, L06406. [Google Scholar]
- LI-COR, Inc. LAI-2000 Plant Canopy Analyzer: Instruction Manual; LI-COR, Inc.: Lincoln, NL, USA, 2003. [Google Scholar]
- Behrens, T.; Diepenbrock, W. Using digital image analysis to describe canopies of winter oilseed rape (Brassica napus L.) during vegetative developmental stages. J. Agron. Crop Sci 2006, 192, 295–302. [Google Scholar]
- Rieke-Zapp, D.H.; Rosenbauer, R.; Schlunegger, F. A photogrammetric surveying method for field applications. Photogramm. Rec 2009, 24, 5–22. [Google Scholar]
- Marzahn, P.; Rieke-Zapp, D.; Ludwig, R. Assessment of soil surface roughness statistics for microwave remote sensing applications using a simple photogrammetric acquisition system. ISPRS 2011. submitted.. [Google Scholar]
- Taconet, O.; Ciarletti, V. Estimating soil roughness indices on a ridge-and-furrow surface using stereo photogrammetry. Soil Till. Res 2007, 93, 64–76. [Google Scholar]
- Marzahn, P.; Ludwig, R. On the derivation of soil surface roughness from multi parametric PolSAR data and its potential for hydrological modeling. Hydrol. Earth Syst. Sci 2009, 13, 381–394. [Google Scholar]
- Wigneron, J.P.; Chanzy, A.; Kerr, Y.H.; Lawrence, H.; Shi, J.; Escorihuela, M.J.; Mironov, V.; Mialon, A.; Demontoux, F.; de Rosnay, P.; Saleh-Contell, K. Evaluating an improved parameterization of the soil emission in L-MEB. IEEE Trans. Geosci. Remote Sens 2011, 49, 1177–1189. [Google Scholar]
- Woodhouse, I.H. Introduction to Microwave Remote Sensing; Taylor and Francis: London, UK, 2006. [Google Scholar]
- Holmes, T.R.H.; de Rosnay, P.; de Jeu, R.; Wigneron, R.J.P.; Kerr, Y.; Calvet, J.C.; Escorihuela, M.J.; Saleh, K.; Lemaître, F. A new parameterization of the effective temperature for L-band radiometry. Geophys. Res. Lett 2006, 33, L07405. [Google Scholar]
- Mätzler, C. Thermal Microwave Radiation. Applications for Remote Sensing; Institution of Engineering and Technology: London, UK, 2006. [Google Scholar]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens 1985, GE-23. 35–46. [Google Scholar]
- Mironov, V.; Bobrov, P. Spectroscopic microwave dielectric model of moist soils. In Advances in Geoscience and Remote Sensing; Jedlovec, G., Ed.; InTech: Vukovar, Croatia, 2009; pp. 279–302. [Google Scholar]
- Kerr, Y.; Waldteufel, P.; Richaume, P.; Davenport, P.; Ferrazzoli, P.; Wigneron, J.-P. SMOS Level 2 Processor Soil Moisture Algorithm Theoretical Basis Document (ATBD) V 3.5; CBSA, UoR, TV and INRA: Toulouse, France, 2011. [Google Scholar]
- Saleh, K.; Kerr, Y.H.; Richaume, P.; Escorihuela, M.J.; Panciera, R.; Delwart, S.; Boulet, G.; Maisongrande, P.; Walker, J.P.; Wursteisen, P.; Wigneron, J.P. Soil moisture retrievals at L-band using a two-step inversion approach (COSMOS/NAFE'05 Experiment). Remote Sens. Environ 2009, 113, 1304–1312. [Google Scholar] [Green Version]
- Panciera, R.; Walker, J.P.; Kalma, J.D.; Kim, E.J.; Saleh, K.; Wigneron, J.-P. Evaluation of the SMOS L-MEB passive microwave soil moisture retrieval algorithm. Remote Sens. Environ 2009, 113, 435–444. [Google Scholar]
- Van de Griend, A.A.; Wigneron, J.P. On the measurement of microwave vegetation properties: Some guidelines for a protocol. IEEE Trans. Geosci. Remote Sens 2004, 42, 2277–2289. [Google Scholar]
- Escorihuela, M.J.; Kerr, Y.H.; de Rosnay, P.; Wigneron, J.P.; Calvet, J.C.; Lemaitre, F. A simple model of the bare soil microwave emission at L-band. IEEE Trans. Geosci. Remote Sens 2007, 45, 1978–1987. [Google Scholar]
- Escorihuela, M.J.; Chanzy, A.; Wigneron, J.P.; Kerr, Y.H. Effective soil moisture sampling depth of L-band radiometry: A case study. Remote Sens. Environ 2010, 114, 995–1001. [Google Scholar] [Green Version]
- Panciera, R.; Walker, J.P.; Merlin, O. Improved understanding of soil surface roughness parameterization for L-band passive microwave soil moisture retrieval. IEEE Geosci. Remote Sens. Lett 2009, 6, 625–629. [Google Scholar]
Time | s [cm] |
---|---|
September 2009 | 1.161 |
March 2010 | 1.005 |
September 2010 | 1.312 |
Incidence Angle [°] | FOV Length [m] | FOV Width [m] | FOV Area [m2] |
---|---|---|---|
50 | 10.41 | 4.78 | 38.92 |
55 | 12.04 | 5.2 | 49.19 |
60 | 13.82 | 6.82 | 74.06 |
65 | 21.51 | 7.46 | 125.74 |
70 | 41.91 | 10.32 | 340.41 |
Parameter | w0/bw0 | tth/ttv | ωh/ωv | Hr | NH | Nv | Qr | b1 | b2 | b |
---|---|---|---|---|---|---|---|---|---|---|
SMOS default | 0.3/0.3 | 1/1 | 0/0 | 0.1 | 2 | 0 | 0 | 0.06 | 0 | - |
Early period | 0.3/0.3 | 1/1 | 0.07/0 | 0.71 | 0 | −1 | 0 | 0.12 | 0.08 | - |
Late period | 0.3/0.3 | 1/1 | 0/0 | 0.93 | 0 | −1 | 0 | 0.09 | 0.08 | 0.07 |
Soil moisture [m3/m3] | HR [-] | Vegetation optical depth [-] | |
---|---|---|---|
Early period | 0.3 (0.1) | 0.8 (0.1) | 0.2 (1.0) |
Late period | 0.35 (0.1) | 0.8 (0.1) | 0.3 (1.0) |
Period | Retrieval | R2 | RMSE [m3/m3] | Gain | Offset |
---|---|---|---|---|---|
Early | 3P(sm;tau; Hr) | 0.76 | 0.057 | 1.7 | 0.21 |
2P(sm; Hr))_lai | 0.33 | 0.045 | 1.61 | −0.21 | |
1P(Hr =0.71) | 0.33 | 0.086 | 2.57 | −0.48 | |
1P(Hr =f(sm)) | 0.22 | 0.078 | 1.88 | −0.22 | |
Late | 3P(sm;tau;Hr) | 0.70 | 0.049 | 0.80 | 0.02 |
2P(sm; Hr))_lai | 0.40 | 0.051 | 0.60 | 0.12 | |
2P(sm; Hr)_vwc | 0.35 | 0.076 | 0.84 | 0 | |
1P (Hr =0.93) | 0.16 | 0.108 | 0.69 | 0.14 | |
1P(Hr =f(sm)) | 0.14 | 0.097 | 0.59 | 0.15 |
Share and Cite
Schlenz, F.; Fallmann, J.; Marzahn, P.; Loew, A.; Mauser, W. Characterization of Rape Field Microwave Emission and Implications to Surface Soil Moisture Retrievals. Remote Sens. 2012, 4, 247-270. https://doi.org/10.3390/rs4010247
Schlenz F, Fallmann J, Marzahn P, Loew A, Mauser W. Characterization of Rape Field Microwave Emission and Implications to Surface Soil Moisture Retrievals. Remote Sensing. 2012; 4(1):247-270. https://doi.org/10.3390/rs4010247
Chicago/Turabian StyleSchlenz, Florian, Joachim Fallmann, Philip Marzahn, Alexander Loew, and Wolfram Mauser. 2012. "Characterization of Rape Field Microwave Emission and Implications to Surface Soil Moisture Retrievals" Remote Sensing 4, no. 1: 247-270. https://doi.org/10.3390/rs4010247
APA StyleSchlenz, F., Fallmann, J., Marzahn, P., Loew, A., & Mauser, W. (2012). Characterization of Rape Field Microwave Emission and Implications to Surface Soil Moisture Retrievals. Remote Sensing, 4(1), 247-270. https://doi.org/10.3390/rs4010247