Comparing PlanetScope to Landsat-8 and Sentinel-2 for Sensing Water Quality in Reservoirs in Agricultural Watersheds
<p>Map of Oklahoma showing the BUMP reservoirs across the state (grey polygons and speckles) and the 13 reservoirs used in this study (in colors). The spatial data for this map were obtained from the Oklahoma Water Resource Board’s website [<a href="#B34-remotesensing-13-01847" class="html-bibr">34</a>].</p> "> Figure 2
<p>Flow diagram showing the procedure for model development, model selection, and model validation.</p> "> Figure 3
<p>Histograms of the Chl-a (µg/L), Turb (NTU), and SD (cm) data from the study reservoirs that correspond to their respective PS, Landsat-8, and Sentinel-2 images.</p> "> Figure 4
<p>Scatter plots showing relationships between the model-derived concentrations and measured concentrations of Chl-a (µg/L), Turb (NTU), and SD (cm) with PS, Landsat-8 (L8), and Sentinel-2 (S2). The R<sup>2</sup> (R-sq) values are displayed at the top of each graph along with the associated parameters and satellite platforms.</p> "> Figure 5
<p>Average R<sup>2</sup> values in the 10-fold cv of the parameters with PS, Landsat-8, and Sentinel-2.</p> "> Figure 6
<p>Average RMSE values in the 10-fold cv of the parameters with PS, Landsat-8, and Sentinel-2.</p> "> Figure 7
<p>PS (<b>Left</b>) and Landsat-8 (<b>Right</b>) maps of Chl-a in Lake McMurtry, northcentral Oklahoma. Both satellites acquired their images on 27 November 2019, during an active algal bloom event. The overview maps at the top show the location of Lake McMurtry in Oklahoma (Top Right spec in a red box) and Lake McMurtry (Top Left) showing the focus area delineated in a red box. The color bars represent concentration ranges as estimated by each of the two satellites.</p> "> Figure 8
<p>PS (<b>Left</b>) and Sentinel-2 (<b>Right</b>) maps of Chl-a in Lake McMurtry, northcentral Oklahoma. Both satellites acquired their images on 1 December 2019, during an active algal bloom event. The overview maps at the top show the location of Lake McMurtry in Oklahoma (Top right spec in a red box) and Lake McMurtry (Top left) showing the focus area delineated by a red box. The color bars represent concentration ranges as estimated by each of the two satellites.</p> "> Figure 9
<p>PlanetScope maps of Chl-a on four dates of image acquisition in Lake McMurtry, northcentral Oklahoma. The upper left panel is from an image acquired on 27 November 2019; the upper right panel is from an image acquired on 30 November 2019; the lower left panel is from an image acquired on 1 December 2019; the bottom right panel is from an image acquired on 3 December 2019. The color bars in the legends represent Chl-a concentration ranges on each date.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Water Quality Data
2.3. Satellite Imagery
2.4. Band Combination and Band Selection
2.5. Best-Fit Model Selection and Validation
- The relationships should be significant on a 95% confidence interval (α ≤ 0.05);
- A strong relationship between the dependent variable and the predictors (R2 ≥ 0.5);
- Low standard deviation of the residuals (RMSE) relative to the range of values;
- Low correlation between the predictors (VIF < 10).
2.6. Case Study Application—Algal Bloom in Lake McMurtry, Oklahoma
3. Results
3.1. Range of Values of the Three Parameters
3.2. Best Fit Models
Validation of the Best Fit Models
3.3. Case Study Application—Algal Bloom in Lake McMurtry, Oklahoma
4. Discussion
4.1. PlanetScope Nanosatellites
4.2. PlanetScope Compared to Landsat-8 and Sentinel-2
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Henley, W.F.; Patterson, M.A.; Neves, R.J.; Lemly, A.D. Effects of Sedimentation and Turbidity on Lotic Food Webs: A Concise Review for Natural Resource Managers. Rev. Fish. Sci. 2010, 8, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Havens, K.E.; James, R.T.; East, T.L.; Smith, V.H. N:P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Env. Pol. 2003, 122, 379–390. [Google Scholar] [CrossRef]
- Chen, M.; Ding, S.; Chen, X.; Sun, Q.; Fan, X.; Lin, J.; Ren, M.; Yang, L.; Zhang, C. Mechanisms driving phosphorus release during algal blooms based on hourly changes in iron and phosphorus concentrations in sediments. Water Res. 2018, 133, 153–164. [Google Scholar] [CrossRef]
- Larsen, D.P.; Urquhart, N.S.; Kugle, D.L. Regional Scale Monitoring of Indicators of Trophic Conditions of Lakes. JAWRA 1995, 31, 117–140. [Google Scholar] [CrossRef]
- Urquhart, N.S.; Paulsen, S.G.; Larsen, D.P. Monitoring for policy-relevant regional trends over time. Ecol. Appl. 1998. [Google Scholar] [CrossRef]
- Rodríguez, J.P.; Beard, T.D., Jr.; Bennett, E.M.; Cumming, G.S.; Cork, S.J.; Agard, J.; Dobson, A.P.; Peterson, G.D. Trade-offs across space, time, and ecosystem services. Ecol. Soc. 2006, 11. [Google Scholar] [CrossRef] [Green Version]
- Harvey, E.T.; Kratzer, S.; Philipson, P. Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters. Remote Sens. Environ. 2015, 158, 417–430. [Google Scholar] [CrossRef]
- Olmanson, L.; Brezonik, P.; Bauer, M. Remote Sensing for Regional Lake Water Quality Assessment: Capabilities and Limitations of Current and Upcoming Satellite Systems. In The Handbook of Environmental Chemistry; Springer: Cham, Switzerland, 2015; Volume 33, pp. 111–140. [Google Scholar]
- Han, L.; Rundquist, D.C. Comparison of NIR/RED ratio and first derivative of reflectance in estimating algal-chlorophyll concentration: A case study in a turbid reservoir. Remote Sens. Environ. 1997, 62, 253–261. [Google Scholar] [CrossRef]
- Mishra, S.; Mishra, D.R. Normalized difference chlorophyll index: A novel model for remote estimation of chlorophyll-a concentration in turbid productive waters. Remote Sens. Environ. 2012, 117, 394–406. [Google Scholar] [CrossRef]
- Becker, B.L.; Lusch, D.P.; Qi, J. Identifying optimal spectral bands from in situ measurements of Great Lakes coastal wetlands using second-derivative analysis. Remote Sens. Environ. 2005, 97, 238–248. [Google Scholar] [CrossRef]
- Liu, L.; Lee, S.; Chahl, J.S. Transformation of a high-dimensional color space for material classification. J. Opt. Soc. Am. A 2017, 34, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Mhosisi, M.; Dube, T.; Nhiwatiwa, T.; Choruma, D. Testing utility of Landsat 8 for remote assessment of water quality in two subtropical African reservoirs with contrasting trophic states. Geocarto Int. 2017, 33, 667–680. [Google Scholar]
- USEPA. World Health Organization (WHO) 1999 Guideline Values for Cyanobacteria in Freshwater. 2003. Available online: https://www.epa.gov/cyanohabs/world-health-organization-who-1999-guideline-values-cyanobacteria-freshwater (accessed on 13 January 2021).
- Jensen, J.R. Introductory Digital Image Processing—A Remote Sensing Perspective, 4th ed.; Botting, C., Ed.; Pearson Education Inc.: Columbia, SC, USA, 2015. [Google Scholar]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Satellite Estimation of Chlorophyll-a Concentration Using the Red and NIR Bands of MERIS—The Azov Sea Case Study. IEEE Geosci. Remote Sens. Lett. 2009, 6, 845–849. [Google Scholar] [CrossRef]
- Tebbs, E.J.; Harper, D.M.; Remedios, J.J. Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline–alkaline, flamingo lake, using Landsat ETM+. Remote Sens. Environ. 2013, 135, 92–106. [Google Scholar] [CrossRef]
- Yacobi, Y.Z.; Moses, W.J.; Kaganovsky, S.; Sulimani, B.; Leavitt, B.C.; Gitelson, A.A. NIR-red reflectance-based algorithms for chlorophyll-a estimation in mesotrophic inland and coastal waters: Lake Kinneret case study. Water Res. 2011, 45, 2428–2436. [Google Scholar] [CrossRef] [Green Version]
- Torbick, N.; Hu, F.; Zhang, J.; Qi, J.; Zhang, H.; Becker, B. Mapping Chlorophyll-a Concentrations in West Lake, China using Landsat 7 ETM+. Great Lakes Res. 2008, 34, 559–565. [Google Scholar] [CrossRef]
- Torbick, N.; Hessionb, S.; Hagena, S.; Wiangwangb, N.; Beckerc, B.; Qib, J. Mapping inland lake water quality across the Lower Peninsula of Michigan using Landsat TM imagery. Int. J. Remote Sens. 2013, 34, 7607–7624. [Google Scholar] [CrossRef]
- Rotta, L.H.S.; Alcântara, E.H.; Watanabe, F.S.Y.; Rodrigues, T.W.P.; Imai, N.N. Atmospheric correction assessment of SPOT-6 image and its influence on models to estimate water column transparency in tropical reservoir. Remote Sens. Appl. Soc. Environ. 2016, 4, 158–166. [Google Scholar] [CrossRef]
- Allee, R.J.; Johnson, J.E. Use of satellite imagery to estimate surface chlorophyll-a and Secchi disc depth of Bull Shoals Reservoir, Arkansas, USA. Int. J. Remote Sens. 1999, 20, 1057–1072. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Finlay, J.C.; Bauer, M.E. Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes. Remote Sens. Environ. 2016. [Google Scholar] [CrossRef]
- Nguyen, U.N.T.; Pham, L.T.H.; Dang, T.D. An automatic water detection approach using Landsat 8 OLI and Google Earth Engine cloud computing to map lakes and reservoirs in New Zealand. Environ. Monit. Assess. 2019, 191. [Google Scholar] [CrossRef] [PubMed]
- Ansper, A.; Alikas, K. Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sens. 2019, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- ESA. Sentinel-2. European Space Agency, 2020. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2 (accessed on 14 January 2021).
- Poursanidis, D.; Traganos, D.; Chrysoulakis, N.; Reinartz, P. Cubesats Allow High Spatiotemporal Estimates of Satellite-Derived Bathymetry. Remote Sens. 2019, 11, 1299. [Google Scholar] [CrossRef] [Green Version]
- Milad, N.-J.; Bovolo, F.; Bruzzone, L.; Gege, P. Physics-based Bathymetry and Water Quality Retrieval Using PlanetScope Imagery: Impacts of 2020 COVID-19 Lockdown and 2019 Extreme Flood in the Venice Lagoon. Remote Sens. 2020, 12, 2381–2398. [Google Scholar]
- Pramaditya, W.; Wahyu, L. Assessment of PlanetScope images for benthic habitat and seagrass species mapping in a complex optically shallow water environment. Int. J. Remote Sens. 2018, 39, 5739–5765. [Google Scholar]
- Gabr, B.; Ahmed, M.; Marmoush, Y. PlanetScope and Landsat 8 Imageries for Bathymetry Mapping. J. Mar. Sci. Eng. 2020, 8, 143. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, C.; de Matos Valerio, A.; Ward, N.; Loken, L.; Sawakuchi, H.O.; Kampel, M.; Richey, J.; Stadler, P.; Crawford, J.; Striegl, R.; et al. Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity. Remote Sens. Environ. 2019, 224, 104–118. [Google Scholar] [CrossRef] [Green Version]
- Bramich, J.; Bolch, C.J.S.; Fischer, A. Improved red-edge chlorophyll-a detection for Sentinel 2. Ecol. Indic. 2021, 120, 106876–106885. [Google Scholar] [CrossRef]
- OWRB. Water Facts. 14 March 2018. Available online: https://www.owrb.ok.gov/util/waterfact.php (accessed on 13 February 2021).
- OWRB. Data & Maps—Surface Water. Oklahoma Water Resources Board, 2020. Available online: http://www.owrb.ok.gov/maps/PMG/owrbdata_SW.html (accessed on 12 February 2021).
- Williams, K.W. Farm Ponds. In The Encyclopedia of Oklahoma History and Culture; Oklahoma Historical Society: Oklahoma City, OK, USA, 2007. [Google Scholar]
- Arango, J.G.; Holzbauer-Schweit, B.K.; Nairn, R.W.; Knox, R.C. Generation of geolocated and radiometrically corrected true reflectance surfaces in the visible portion of the electromagnetic spectrum over large bodies of water using images from a sUAS. J. Unmanned Veh. Syst. 2020, 8, 172–185. [Google Scholar] [CrossRef]
- OWRB. Lakes, Oklahoma Water Resources Board. 21 July 2020. Available online: https://www.owrb.ok.gov/quality/monitoring/bumplakes.php (accessed on 12 February 2021).
- OWRB. Oklahoma Lakes Report—Benificial Use Monitoring Program; Oklahoma Water Resource Board (OWRB): Oklahoma City, OK, USA, 2017.
- Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens. Environ. 2002, 82, 38–47. [Google Scholar] [CrossRef]
- OWRB. Standard Operating Procedure for the Collection and Processing of Chlorophyll-a Samplesin Lakes. November 2019. Available online: https://www.owrb.ok.gov/quality/monitoring/bump/pdf_bump/Lakes/SOPs/Chlorophyll-aCollectionSOP.pdf (accessed on 1 February 2021).
- OWRB. Standard Operating Procedure for the Measurement of Turbidity in Lakes; Oklahoma Water Resources Board: Oklahoma City, OK, USA, 2005.
- Planet. Planet Imagery Product Specifications. 2019. Available online: https://www.planet.com/products/planet-imagery/ (accessed on 10 February 2021).
- USGS. Earth Explorer. 17 May 2018. Available online: https://earthexplorer.usgs.gov/ (accessed on 15 January 2021).
- McCullough, M.; Loftin, C.S.; Sader, S.S. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity. Remote Sens. Environ. 2012, 123, 109–115. [Google Scholar] [CrossRef]
- Kirk, T.O. Light and Photosynthesis in Aquatic Ecosystems, 3rd ed.; Cambridge University Press: New York, NY, USA, 2011. [Google Scholar]
- Salem, S.I.; Higa, H.; Kim, H.; Kobayashi, H.; Oki, K.; Oki, T. Assessment of Chlorophyll-a Algorithms Considering Different Trophic Statuses and Optimal Bands. Sensors 2017, 17, 1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, D.; Apblett, A.; Materer, N.F. Iron-rich Oklahoma Clays as a Natural Source of Chromium in Monitoring Wells. J. Environ. Monit. 2011, 13, 3380–3385. [Google Scholar] [CrossRef] [PubMed]
- Oyama, Y.; Matsushita, B.; Fukushima, T. Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands. Remote Sens. Environ. 2015, 157, 35–47. [Google Scholar] [CrossRef]
- Minitab. Minitab 19. 2021. Available online: https://www.minitab.com/en-us/ (accessed on 2 February 2021).
- Bengio, Y.; Grandvalet, Y. No Unbiased Estimator of the Variance of K-Fold Cross-Validation. J. Mach. Learn. Res. 2004, 5, 1089–1105. [Google Scholar]
- Nagel, G.W.; de Moraes Novo, E.M.L.; Kampel, M. Nanosatellites applied to optical Earth observation: A review. Ambiente Água Interdiscip. J. Appl. Sci. 2020. [Google Scholar] [CrossRef]
- Robert, E.; Grippa, M.; Kergoat, L.; Pinet, S.; Gal, L.; Cochonneau, G.; Martinez, J.-M. Monitoring water turbidity and surface suspended sediment concentration of the Bagre Reservoir (Burkina Faso) using MODIS and field reflectance data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 243–251. [Google Scholar] [CrossRef]
- Rounds, S. Estimation of Secchi Depth from Turbidity Data in the Willamette River at Portland, OR (14211720). Oregon Water Science Center, 2016. Available online: https://or.water.usgs.gov/will_morrison/secchi_depth_model.html (accessed on 2 March 2021).
- Gitelson, A.; Gurlin, D.; Moses, W.J.; Barrow, T. A bio-optical algorithm for the remote estimation of the chlorophyll-a concentration in case 2 waters. Environ. Res. Lett. 2009, 4. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 2019, 145–161. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. Daily Retrieval of NDVI and LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and MODIS Data. Remote Sens. 2018, 10, 890. [Google Scholar] [CrossRef] [Green Version]
- Houborg, R.; McCabe, M.F. A Cubesat enabled Spatio-Temporal Enhancement Method (CESTEM) utilizing Planet, Landsat and MODIS data. Remote Sens. Environ. 2018, 209, 211–226. [Google Scholar] [CrossRef]
- Yan, L.; Roy, D.P.; Zhang, H.; Li, J.; Huang, H. An Automated Approach for Sub-Pixel Registration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) Imagery. Remote Sens. 2016, 8, 520. [Google Scholar] [CrossRef] [Green Version]
Characteristics | PS | Landsat-8 | Sentinel-2 |
---|---|---|---|
Revisit time (temporal resolution) | Daily | 16 days | 10 days with each satellite (Sentinel 2A and 2B). Five days with combined satellites. |
Spectral resolution | Four 3-m bands | Eight 30-m bands, two 100-m bands, one 15-m panchromatic band (11 bands) | Four 10-m bands, six 20-m bands, and three 60-m bands (13 bands) |
Pixel size (spatial resolution) | More pixels in small areas/reservoirs | Few or no pixels in small areas/reservoirs (e.g., with area 0.001 km2 or less) | Few pixels in small areas/reservoirs (e.g., with area 0.001 km2 or less) |
Bandwidth in nm (visible and NIR) | Blue: 465–517; Green: 547–595; Red: 650–682; NIR: 846–888 | Blue: 435–512; Green: 533–590; Red: 636–673; NIR: 851–879, Shortwave IR1 (SWIR1): 1570–1650; Shortwave IR2 (SWIR2): 2110–2290 | Blue: 458–523; Green: 543–578; Red: 650–680; Red-Edge (RE1): 698–713; Red-Edge (RE2): 733–748; Red-Edge (RE3): 773–793; NIR: 785–899; SWIR1: 1565–1655; SWIR2: 2100–2280 |
Availability of free imagery | 10,000 km2 per month for education purpose | Unlimited | Unlimited |
Reservoir | Surface Area (km2) | Trophic Status | Impairment Status | |
---|---|---|---|---|
Chl-a | Turb | |||
Arcadia | 7.40 | Hypereutrophic | Impaired | Impaired |
Broken Bow | 57.50 | Mesotrophic | Not impaired | Not impaired |
Canton | 32.00 | Hypereutrophic | Insufficient data | Impaired |
Eucha | 11.60 | Eutrophic | Impaired | Not impaired |
Fort Gibson | 60.30 | Eutrophic | Insufficient data | Not impaired |
Foss | 35.61 | Mesotrophic | Insufficient data | Impaired |
Hefner | 10.11 | Hypereutrophic | Insufficient data | Not impaired |
Grand | 188.20 | Eutrophic | Insufficient data | Not impaired |
Kaw | 68.96 | Hypereutrophic | Insufficient data | Impaired |
McMurtry | 4.67 | Eutrophic | Insufficient data | Impaired |
Oologah | 119.22 | Mesotrophic | Insufficient data | Impaired |
Thunderbird | 24.60 | Hypereutrophic | Impaired | Impaired |
Waurika | 40.87 | Eutrophic | Impaired | Impaired |
Spectral Bands and Band Ratios | Wavelength Range, nm (λi–λn; i = 1) | Properties |
---|---|---|
Blue (B) | PS: λ465–λ517 Landsat-8: λ435–λ512 Sentinel-2: λ458–λ523 | This is the region of deepest light penetration in clear waters. However, most of Oklahoma lakes are turbid. The B band is susceptible to scattering in the atmosphere and water [45]. |
Green (G) | PS: λ547–λ595 Landsat-8: λ533–λ590 Sentinel-2: λ543–λ578 | The reflectance peak of different concentrations of Chl-a are at wavelengths in this region [46]. |
Red (R) | PS: λ650–λ682 Landsat-8: λ636–λ674 Sentinel-2: λ650–λ680 | The Chl-a absorption peak is at λ660 [15], which falls within the R band. Ferric-rich soils in Oklahoma [47] end up in reservoirs through surface runoff, making the R band a crucial spectral signature for Turb (reflectance), and also for Chl-a and SD detection when used as a ratio to other bands. |
Near-infrared (NIR) | PS: λ846–λ888; Landsat-8: λ851–λ879; Sentinel-2: λ785–λ899 | This band is absorbed in water [15]. Its high reflectance will indicate the presence of substances other than water. |
Red-Edge (RE) | RE1: λ698–λ713 RE2: λ733–λ748 RE3: λ773–λ793 | The RE band transitions between the R and NIR bands, and it uniquely correlates with Chl-a [32] |
Shortwave infrared (SWIR) | Landsat-8: SWIR1: λ1570–λ1650 SWIR2: λ2110–λ2290 Sentinel-2: SWIR1: λ1565–λ1655 SWIR2: λ2100–λ2280 | The longer wavelengths in the SWIR band give it the advantage of minimal scattering by mineral Turb in the water, making it suitable to detect algal pigments [31]. It is also useful to differentiate between algal pigments and those in aquatic macrophytes [48] |
Parameter | R2 | RMSE | Maximum VIF | ||||||
---|---|---|---|---|---|---|---|---|---|
PS | L8 | S2 | PS | L8 | S2 | PS | L8 | S2 | |
Chl-a | 0.58 | 0.75 | 0.85 | 4.41 µg/L | 2.04 µg/L | 1.19 µg/L | 5.47 | 1.20 | 2.74 |
Turb | 0.79 | 0.60 | 0.78 | 1.61 NTU | 1.54 NTU | 1.60 NTU | 2.37 | 1.43 | 2.57 |
SD | 0.76 | 0.58 | 0.80 | 1.54 cm | 1.50 cm | 1.35 cm | 2.01 | 3.59 | 6.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansaray, A.S.; Dzialowski, A.R.; Martin, M.E.; Wagner, K.L.; Gholizadeh, H.; Stoodley, S.H. Comparing PlanetScope to Landsat-8 and Sentinel-2 for Sensing Water Quality in Reservoirs in Agricultural Watersheds. Remote Sens. 2021, 13, 1847. https://doi.org/10.3390/rs13091847
Mansaray AS, Dzialowski AR, Martin ME, Wagner KL, Gholizadeh H, Stoodley SH. Comparing PlanetScope to Landsat-8 and Sentinel-2 for Sensing Water Quality in Reservoirs in Agricultural Watersheds. Remote Sensing. 2021; 13(9):1847. https://doi.org/10.3390/rs13091847
Chicago/Turabian StyleMansaray, Abubakarr S., Andrew R. Dzialowski, Meghan E. Martin, Kevin L. Wagner, Hamed Gholizadeh, and Scott H. Stoodley. 2021. "Comparing PlanetScope to Landsat-8 and Sentinel-2 for Sensing Water Quality in Reservoirs in Agricultural Watersheds" Remote Sensing 13, no. 9: 1847. https://doi.org/10.3390/rs13091847
APA StyleMansaray, A. S., Dzialowski, A. R., Martin, M. E., Wagner, K. L., Gholizadeh, H., & Stoodley, S. H. (2021). Comparing PlanetScope to Landsat-8 and Sentinel-2 for Sensing Water Quality in Reservoirs in Agricultural Watersheds. Remote Sensing, 13(9), 1847. https://doi.org/10.3390/rs13091847