Air-Sea Interactions over Eddies in the Brazil-Malvinas Confluence
"> Figure 1
<p>Mean maps: (<b>a</b>) sea surface temperature (SST), (<b>b</b>) sea level anomaly (SLA) and (<b>c</b>) surface wind of the Brazil–Malvinas Current (BMC), respectively, representing these variables’ mean fields during the INTERCONF-32 campaign. The black line represents the ship’s track. White dots represent the coincident radiosonde and XBT/CTD launching positions. SST is an 8-day mean of MODIS image between 16–23 October 2013; SLA is a daily composite of 17 October 2013 and wind is an ASCAT 3-day mean between 16–18 October 2013. Warm core eddy (ED1) and cold core eddy (ED2) locations are indicated by the black arrows.</p> "> Figure 2
<p>Micrometeorological tower with sensors mounted on the Polar Ship Almirante Maximiano’s bow. The tower is 9 m tall and the upper sensors are about 15 m above the sea level. The micrometeorological data used in this study were obtained with these instruments.</p> "> Figure 3
<p>(<b>a</b>) Translational trajectories of the ED1 (22 September to 13 November 2013, red line) and ED2 (13 September to 1 November 2013, blue line) superimposed onto the bathymetry (m) of the Southwestern Atlantic Ocean. The ship’s track during the INTERCONF-32 campaign with the radiosonde and XBT/CTD launching positions (white circles) between 16–18 October 2013 are also shown. (<b>b</b>) Zoomed trajectories of ED1 and ED2 in the BMC: circles and triangles indicate the initial and final positions of the eddies, respectively. During their lifespans, SLA data indicated that ED1 diameters varied between 86 (day 1) and 122 km (day 53); ED2 diameters varied between 95 (day 1) and 114 km (day 50).</p> "> Figure 4
<p>SLA (<b>a</b>–<b>e</b>), ASCAT (<b>f</b>–<b>i</b>) and WindSat (<b>k</b>–<b>o</b>) wind magnitude maps of the BMC throughout ED1 and ED2 life spans. Columns from left to right indicate consecutive dates in 1 October, 11 October, 21 October, 31 October and 10 November 2013, respectively. ED1 and ED2 translational trajectories (<a href="#remotesensing-13-01335-f003" class="html-fig">Figure 3</a>) are also represented here.</p> "> Figure 5
<p>Time series of (<b>a</b>) ERA5 sea level pressure; (<b>b</b>) Sea level anomaly; (<b>c</b>) ASCAT wind magnitude; (<b>d</b>) WindSat wind magnitude; (<b>e</b>) ERA5 wind magnitude of both ED1 (red lines) and ED2 (blue lines) measured along their trajectories during their life spans. The green lines represent the time series of the same variables derived from ERA5 reanalysis at the neutral region of the Zapiola Rise (45 °S, 42 °W) during the same period when both eddies were tracked.</p> "> Figure 6
<p>Time series of ERA5: (<b>a</b>) the sea level air temperature (T<sub>air</sub>); (<b>b</b>) dew point temperature; (<b>c</b>) SST; (<b>d</b>) SST-T<sub>air</sub>; (<b>e</b>) air-sea sensible heat flux; (<b>f</b>) air-sea latent heat flux of both ED1 (red lines) and ED2 (blue lines) measured along their trajectories during their lifespans. The green lines represent the time series of the same variables derived from ERA5 reanalysis at the neutral region of the Zapiola Rise (45 °S, 42 °W) during the same period when both eddies were tracked.</p> "> Figure 7
<p>Synoptic characteristics of the coupled air-sea system in the BMC observed during the INTERCONF-32 campaign. Water temperatures were obtained from a combination of XBT and CTD data while the air temperature and the meridional component of the wind were obtained from radiosondes launched along the ship’s trajectory (<a href="#remotesensing-13-01335-f001" class="html-fig">Figure 1</a>). ED1 and ED2 positions in 16 and 17 October 2013, respectively, are denoted by the black arrows.</p> "> Figure 8
<p>ERA5 weather maps at 00Z during days 16 (<b>a</b>), 17 (<b>b</b>) and 18 (<b>c</b>) October 2013. Black lines represent the atmospheric pressure (hPa), the black arrows represent the surface wind vectors (m s<sup>−1</sup>) and the color scale from red to blues represent the thermal advection from warm to cold (°C day<sup>−1</sup>). The black dots represent the ship’s position in the study area at 00Z every day during the entire INTERCONF-32 campaign (14–20 October 2013) along the ship’s track (green line).</p> "> Figure 9
<p>Time series of meteorological and derived heat flux variables measured or computed along the ship’s track during the INTERCONF-32 campaign. (<b>a</b>) SLP (grey line) and the wind magnitude at 10 m level (U<sub>10</sub>, black line); (<b>b</b>) T<sub>10</sub> (grey line) and SST; (<b>c</b>) wind vector; (<b>d</b>) SST-T<sub>10</sub> (grey line) and relative humidity at 10 m level (RH<sub>10</sub>, black line); (<b>e</b>) <span class="html-italic">H<sub>EC</sub></span> (grey line) and <span class="html-italic">H<sub>bulk</sub></span> (black line); (<b>f</b>) <span class="html-italic">Hl<sub>EC</sub></span> (grey line) and <span class="html-italic">Hl<sub>bulk</sub></span> (black line); (<b>g</b>) <span class="html-italic">H<sub>b</sub></span>-<span class="html-italic">H<sub>EC</sub></span> (grey line) and <span class="html-italic">Hl<sub>b</sub></span>-<span class="html-italic">Hl<sub>EC</sub></span> biases (black line); (<b>h</b>) Monin–Obukhov stability parameter ζ.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eddies Identification and Tracking
2.2. Satellite-Derived Wind Magnitudes and Atmospheric Reanalysis Time Series
2.3. The INTERCONF-32 Campaign
2.4. Bulk Parameterization and Eddy Covariance Measurements of Air-Sea Heat Fluxes
3. Results and Discussion
3.1. Eddies Identification and Tracking
3.2. Satellite-Derived Wind Magnitudes and Atmospheric Reanalysis Time Series
3.3. The INTERCONF-32 Campaign
3.4. Comparing ERA5 and In Situ Measurements of Heat Fluxes over ED1 and ED2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chelton, D.B.; Schlax, M.G.; Witter, D.L.; Richmann, J.G. GEOSAT altimeter observations of the surface circulation of the Southern Ocean. J. Geophys. Res. 1990, 95, 877–903. [Google Scholar] [CrossRef]
- Garzoli, S.; Simionato, C. Baroclinic instabilities and forced oscillations in the Brazil/Malvinas Confluence front. Deep-Sea Res. 1990, 37, 1053–1074. [Google Scholar] [CrossRef]
- Garcia, C.A.E.; Sarma, Y.V.B.; Mata, M.M.; Garcia, V.M.T. Chlorophyll variability and eddies in the Brazil–Malvinas Confluence region. Deep-Sea Res. 2004, 51, 159–172. [Google Scholar] [CrossRef]
- Souza, R.B.; Mata, M.M.; Garcia, C.A.; Kampel, M.; Oliveira, E.N.; Lorenzzetti, J.A. Multi-sensor satellite and in situ measurements of a warm core ocean eddy south of the Brazil-Malvinas Confluence region. Remote Sens. Environ. 2006, 100, 52–66. [Google Scholar] [CrossRef] [Green Version]
- Small, R.J.; DeSzoeke, S.P.; Xie, S.-P.; O’Neill, L.; Seo, H.; Song, Q.; Cornillon, P.; Spall, M.; Minobe, S. Air-sea interaction over ocean fronts and eddies. Dyn. Atmos. Oceans 2008, 45, 274–319. [Google Scholar] [CrossRef]
- Chelton, D.B.; Xie, S.-P. Coupled ocean–atmosphere interaction at oceanic mesoscales. Oceanography 2010, 23, 52–69. [Google Scholar] [CrossRef]
- Rouault, M.; Veley, P.; Backeberg, B. Wind changes above warm Agulhas Current eddies. Ocean. Sci. 2016, 12, 495–506. [Google Scholar] [CrossRef] [Green Version]
- Leyba, I.M.; Saraceno, M.; Solman, S.A. Air-sea fluxes associated to mesoscale eddies in the Southwestern Atlantic Ocean and their dependence on different regional conditions. Clim. Dyn. 2017, 49, 2491–2501. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Clayson, C.A.; Brown, S.; Lee, T.; Parfitt, R.; Ferrar, J.T.; Bourassa, M.; Minnett, P.; Seo, H.; Gille, S.T.; et al. FluxSat: Measuring the ocean-atmosphere turbulent exchange of heat and moisture from space. Remote Sens. 2020, 12, 1796. [Google Scholar] [CrossRef]
- Pezzi, L.P.; Souza, R.B.; Santini, M.F.; Miller, A.J.; Carvalho, J.T.; Parise, C.K.; Quadro, M.F.; Rosa, E.B.; Justino, F.; Sutil, U.A.; et al. Oceanic eddy-induced modifications on the air-sea heat and CO2 fluxes in the Brazil-Malvinas Confluence. Sci. Rep. 2020. in revision. [Google Scholar]
- Lindzen, R.S.; Nigam, S. On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci. 1987, 44, 2418–2436. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Hayes, S.P.; McPhaden, M.J.; Wallace, J.M. The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Weekly to monthly variability. J. Clim. 1989, 2, 1500–1506. [Google Scholar] [CrossRef] [2.0.CO;2" target='_blank'>Green Version]
- Wallace, J.M.; Mitchell, T.P.; Deser, C.J. The influence of sea-surface temperature on surface wind in the Eastern Equatorial Pacific: Weekly to monthly variability. J. Clim. 1989, 2, 1492–1499. [Google Scholar] [CrossRef]
- Pezzi, L.P.; Souza, R.B.; Dourado, M.S.; Garcia, C.A.E.; Mata, M.M.; Silva Dias, M.A.F. Ocean-atmosphere in situ observations at the Brazil-Malvinas Confluence region. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Pezzi, L.P.; Souza, R.B.; Acevedo, O.; Wainer, I.E.K.; Mata, M.M.; Garcia, C.A.E.; Camargo, R. Multi-year measurements of the Oceanic and Atmospheric Boundary Layers at the Brazil-Malvinas Confluence Region. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Santini, M.F.; Souza, R.B.; Pezzi, L.P.; Swart, S. Observations of air-sea heat fluxes in the southwestern Atlantic under high-frequency ocean and atmospheric perturbations. Q. J. R. Meteorol. Soc. 2020, 146, 4226–4251. [Google Scholar] [CrossRef]
- Tokinaga, H.; Tanimoto, Y.; Xie, S.P. SST-induced wind variations over Brazil/Malvinas Confluence: Satellite and in-situ observations. J. Clim. 2005, 18, 3470–3482. [Google Scholar] [CrossRef]
- Gramcianinov, C.B.; Hodges, K.I.; Camargo, R. The properties and genesis environments of South Atlantic cyclones. Clim. Dyn. 2019, 53, 4115–4140. [Google Scholar] [CrossRef]
- Gan, M.A.; Rao, V.B. Surface cyclogenesis over South America. Mon. Weather Rev. 1991, 119, 1293–1302. [Google Scholar] [CrossRef]
- Reboita, M.S.; da Rocha, R.P.; Ambrizzi, T.; Sugahara, S. South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Clim. Dyn. 2010, 35, 1331–1347. [Google Scholar] [CrossRef]
- Dias Pinto, J.R.; da Rocha, R.P. The energy cycle and structural evolution of cyclones over southeastern South America in three case studies. J. Geophys. Res. 2011, 116, D14112. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.L.; Braun, A. A Climatology of Subtropical Cyclones in the South Atlantic. J. Clim. 2012, 25, 7328–7340. [Google Scholar] [CrossRef]
- Gozzo, L.F.; da Rocha, R.P.; Reboita, M.S.; Sugahara, S. Subtropical Cyclones over the Southwestern South Atlantic: Climatological aspects and case study. J. Clim. 2014, 27, 8543–8562. [Google Scholar] [CrossRef]
- Acevedo, O.C.; Pezzi, L.P.; Souza, R.B.; Anabor, V.; Degrazia, G.A. Atmospheric boundary layer adjustment to the synoptic cycle at the Brazil-Malvinas Confluence, South Atlantic Ocean. J. Geophys. Res. Atmos. 2010, 115, 1–12. [Google Scholar] [CrossRef] [Green Version]
- De Camargo, R.; Todesco, E.; Pezzi, L.P.; Souza, R.B. Modulation mechanisms of marine atmospheric boundary layer at the Brazil-Malvinas Confluence region. J. Geophys. Res. Atmos. 2013, 118, 6266–6280. [Google Scholar] [CrossRef] [Green Version]
- Hackerott, J.A.; Pezzi, L.P.; Bakhoday Paskyabi, M.; Oliveira, A.P.; Reuder, J.; Souza, R.B.; Camargo, R. The role of roughness and stability on the momentum flux in the Marine Atmospheric Surface Layer: A study on the Southwestern Atlantic Ocean. J. Geophys. Res. 2018, 123, 3914–3932. [Google Scholar] [CrossRef]
- Sugimoto, S.; Aono, K.; Fukui, S. Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region. Sci. Rep. 2017, 7, 11871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, F.S.C.; Polito, P.S. Mesoscale eddy detection in satellite imagery of the oceans using the Radon transform. Prog. Oceanogr. 2018, 167, 150–163. [Google Scholar] [CrossRef]
- Henson, S.A.; Thomas, A.C. A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep-Sea Res. Part I 2008, 55, 163–176. [Google Scholar] [CrossRef]
- Chang, Y.L.; Oey, L.Y. Analysis of STCC eddies using the Okubo–Weiss parameter on model and satellite data. Ocean Dyn. 2014, 64, 259–271. [Google Scholar] [CrossRef]
- Frenger, I.; Gruber, N.; Knutti, R.; Münnich, M. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat. Geosci. 2013, 6, 608–612. [Google Scholar] [CrossRef]
- Chelton, D.; Schlax, M.G.; Samelson, R.M.; Szoeke, R.A. Global observations of large oceanic eddies. Geophys. Res. Lett. 2007, 34, l15606. [Google Scholar] [CrossRef]
- Lentini, C.A.D.; Olson, D.B.; Podestá, G. Statistics of Brazil Current rings observed from AVHRR: 1993 to 1998. Geophys. Res. Lett. 2002, 29, 58-1–58-4. [Google Scholar] [CrossRef]
- Volkov, D.L.; Fu, L.-L. The role of vorticity fluxes in the dynamics of the Zapiola Anticlyclone. Geophys. J. Geophys. Res. 2008, 113, C11015. [Google Scholar] [CrossRef] [Green Version]
- Saraceno, M.; Provost, C.; Zajaczkovski, U. Long-term variation in the anticyclonic ocean circulation over the Zapiola Rise as observed by satellite altimetry: Evidence of possible collapses. Deep-Sea Res. Part I 2009, 56, 1077–1092. [Google Scholar] [CrossRef]
- Oliveira, L.R.; Piola, A.R.; Mata, M.M.; Soares, I.D. Brazil Current surface circulation and energetics observed from drifting buoys. J. Geophys. Res. 2009, 114, C10006. [Google Scholar] [CrossRef]
- Fratini, F.; Ibrom, A.; Arriga, N.; Burba, G.; Papale, D. Relative humidity effects of water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. Agric. For. Meteorol. 2012, 165, 53–63. [Google Scholar] [CrossRef]
- Edson, J.B.; Jampana, V.; Weller, R.A.; Bigorre, S.P.; Plueddemann, A.J.; Fairall, C.W.; Miller, S.D.; Mahrt, L.; Vickers, D.; Hersbach, H. On the Exchange of Momentum over the Open Ocean. J. Phys. Oceanogr. 2013, 43, 1589–1610. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.D.; Hristov, T.S.; Edson, J.B.; Friehe, C.A. Platform motion effects on measurements of turbulence and air-sea exchange over the open ocean. J. Atmos. Ocean. Technol. 2008, 25, 1683–1694. [Google Scholar] [CrossRef]
- Fujitani, T. Direct measurement of turbulent fluxes over the sea during AMTEX. Pap. Meteorol. Geophys. 1981, 32, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Edson, J.B.; Hinton, A.A.; Prada, K.E.; Hare, J.E.; Fairall, C.W. Direct covariance flux estimates from mobile platforms at sea. J. Atmos. Ocean. Technol. 1998, 15, 547–562. [Google Scholar] [CrossRef] [Green Version]
- McGilis, W.R.; Edson, J.B.; Hare, J.E.; Fairall, C.W. Direct covariance air–sea CO2 fluxes. J. Geophys. Res. 2001, 106, 16729–16745. [Google Scholar] [CrossRef]
- Miller, S.D.; Marandino, C.; Saltzman, E.S. Ship-based measurement of air–sea CO2 exchange by eddy covariance. J. Geophys. Res. 2010, 115, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Flügge, M.; Edson, J.B.; Reuder, J. Sensor movement correction for direct turbulence measurements in the marine atmospheric boundary layer. Energy Procedia 2012, 24, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Martins, L.G.N.; Miller, S.D.; Acevedo, O.C. Using empirical mode decomposition to filter out non-turbulent contributions to air–sea fluxes. Bound. Layer Meteorol. 2016, 163, 123. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res. Oceans 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988; 666p. [Google Scholar]
- Aubinet, M.; Vesala, T.; Papale, D. (Eds.) Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Atmospheric Sciences; Springer: Berlin, Germany, 2012; ISBN 978-94-007-2351-1. [Google Scholar]
- Pattey, E.; Strachan, I.B.; Desjardins, R.L. Measuring nighttime CO2 flux over terrestrial ecosystems using eddy covariance and nocturnal boundary layer methods. Agric. For. Meteorol. 2002, 113, 145–158. [Google Scholar] [CrossRef]
- Yusup, Y.; Liu, H. Effects of atmospheric surface layer stability on turbulent fluxes of heat and water vapor across the water-atmosphere interface. J. Hidrometeorol. 2016, 17, 2835–2851. [Google Scholar] [CrossRef]
- Sun, Y.; Jia, L.; Chen, Q.; Zheng, C. Optimizing window length for turbulent heat flux calculations from airborne eddy covariance measurements under near neutral to unstable atmospheric stability conditions. Remote Sens. 2018, 10, 670. [Google Scholar] [CrossRef] [Green Version]
- Legeckis, R.; Gordon, A.L. Satellite observations of the Brazil and Falkland Currents—1975 to 1976 and 1978. Deep-Sea Res. 1982, 29, 375–401. [Google Scholar] [CrossRef]
- Bharti, V.; Fairall, C.W.; Blomquist, B.W.; Huang, Y.; Protat, A.; Sullivan, P.P.; Siems, S.T.; Manton, M.J. Air-sea heat and momentum fluxes in the Southern Ocean. J. Geophys. Res. Atmos. 2019, 124, 12426–12443. [Google Scholar] [CrossRef] [Green Version]
- Villas Bôas, A.B.; Sato, O.T.; Chaigneau, A.; Castelão, G.P. The signature of mesoscale eddies on the air-sea turbulent heat fluxes in the South Atlantic Ocean. Geophys. Res. Lett. 2015, 42, 1856–1862. [Google Scholar] [CrossRef]
- Messager, C.; Swart, S. Significant atmospheric boundary layer change observed above an Agulhas Current warm cored eddy. Adv. Meteorol. 2016, 2016, 3659657. [Google Scholar] [CrossRef] [Green Version]
- Bouin, M.-N.; Caniaux, G.; Traullé, O.; Legain, D.; Le Moigne, P. Long-term heat exchanges over a Mediterranean lagoon. J. Geophys. Res. 2012, 117, D23104. [Google Scholar] [CrossRef]
- Marion, J.R. Providing the Best Turbulent Heat Flux Estimates from Eddy Correlation and Bulk Methods Using DYNAMO Data. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2014. [Google Scholar]
- Blomquist, B.W.; Huebert, B.J.; Fairall, C.W.; Bariteau, L.; Edson, J.B.; Hare, J.E.; McGillis, W.R. Advances in Air-Sea CO2 Flux Measurement by Eddy Correlation. Bound. Layer Meteorol. 2014, 152, 245–276. [Google Scholar] [CrossRef] [Green Version]
- Butterworth, B.J.; Miller, S.D. Automated underway eddy covariance system for air-sea momentum, heat, and CO2 fluxes in the Southern Ocean. J. Atmos. Oceans Technol. 2016, 33, 635–652. [Google Scholar]
- Bourassa, M.A.; Gille, S.T.; Bitz, C.; Carlson, D.; Cerovecki, I.; Clayson, C.A.; Cronin, M.F.; Drennan, W.M.; Fairall, C.W.; Hoffman, R.N.; et al. High-latitude ocean and sea ice surface fluxes: Challenges for climate research. Bull. Am. Meteorol. Soc. 2013, 94, 403–423. [Google Scholar] [CrossRef]
- Fairall, C.; Hare, J.; Edson, J.; Mcgilllis, W. Parameterization and micrometeorological measurement of air-sea gas transfer. Bound. Layer Meteorol. 2000, 96, 63–105. [Google Scholar] [CrossRef]
Sensor | Model | Manufacturer |
---|---|---|
3D sonic anemometer | CSAT3 | Campbell Scientific |
Gas analyzer | LI-7200 | LI-COR |
Pyranometer | CMP3-L | CKipp & Zonen |
Magnetic compass | C100 | KVH Industries |
GPS | GPS16X-HVS | Garmin |
Multi-axis inertial motion unit | MotionPak II | Systron Donner |
Barometric pressure sensor | CS106 | Vaisala |
Thermohygrometer | HC2S3 | Campbell Scientific |
ERA5 and Satellite | INTERCONF-32 | |||
---|---|---|---|---|
+ED1 | +ED2 | *ED1 | *ED2 | |
Tair (°C) | 12.2 ± 2.75 | 8.4 ± 2.45 | 15.2 ± 0.9 | 12.2 ± 0.64 |
Td (°C) | 7.1 ± 3.85 | 5.3 ± 3.29 | 12.9 ± 2.3 | 10.6 ± 1.2 |
SST (°C) | 14.4 ± 0.89 | 9.7 ± 1.29 | 14.7 ± 0.9 | 10.1 ± 0.3 |
SST-Tair (°C) | 2.2 ± 2.54 | 1.2 ± 1.83 | −0.4 ± 0.3 | −2.1 ± 0.5 |
Hb (W m−2) | 10.3 ± 11.44 | 1.9 ± 7.44 | −3.5 ± 2.1 | −4.3 ± 2.9 |
HEC (W m−2) | -- | -- | −10.3 ± 28.9 | 16.3 ± 23.5 |
Hlb (W m−2) | 41.5 ± 29.55 | 19.9 ± 18.02 | −2.1 ± 10.8 | 5.6 ± 4.8 |
HlEC (W m−2) | -- | -- | 15.2 ± 24.4 | 14.2 ± 12 |
SLP (hPa) | 1019.7 ± 7.6 | 1019.8 ± 8.8 | 1013.5 ± 0.4 | 1012.2 ± 1.1 |
SLA (mm) | 0.3 ± 0.07 | −0.5 ± 0.13 | -- | -- |
ERA5 wind mag. (m s−1) | 7.5 ± 3.29 | 7.6 ± 3.18 | 5.1 ± 2.3 | 3.0 ± 1.1 |
ASCAT wind mag. (m s−1) | 8.3 ± 3.4 | 7.4 ± 3.4 | ||
WindSat wind mag. (m s−1) | 8.8 ± 2.4 | 7.4 ± 3.3 |
ED1 | ED2 | Zapiola Rise | |
---|---|---|---|
Tair (°C) | 12.2 ± 2.8 | 8.4 ± 2.5 | 8.9 ± 2.4 |
SST (°C) | 14.4 ± 0.9 | 9.7 ± 1.3 | 10.5 ± 0.6 |
Hb (W m−2) | 10.3 ± 11.4 | 1.9 ± 7.4 | 3.7 ± 9.6 |
Hlb (W m−2) | 41.5 ± 29.6 | 19.9 ± 18 | 26.7 ± 20.6 |
ED1 | ED2 | |
---|---|---|
Tair (°C) | 37% | −6% |
SST (°C) | 37% | −8% |
Hb (W m−2) | 78% | −49% |
Hlb (W m−2) | 55% | −25% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, R.; Pezzi, L.; Swart, S.; Oliveira, F.; Santini, M. Air-Sea Interactions over Eddies in the Brazil-Malvinas Confluence. Remote Sens. 2021, 13, 1335. https://doi.org/10.3390/rs13071335
Souza R, Pezzi L, Swart S, Oliveira F, Santini M. Air-Sea Interactions over Eddies in the Brazil-Malvinas Confluence. Remote Sensing. 2021; 13(7):1335. https://doi.org/10.3390/rs13071335
Chicago/Turabian StyleSouza, Ronald, Luciano Pezzi, Sebastiaan Swart, Fabrício Oliveira, and Marcelo Santini. 2021. "Air-Sea Interactions over Eddies in the Brazil-Malvinas Confluence" Remote Sensing 13, no. 7: 1335. https://doi.org/10.3390/rs13071335
APA StyleSouza, R., Pezzi, L., Swart, S., Oliveira, F., & Santini, M. (2021). Air-Sea Interactions over Eddies in the Brazil-Malvinas Confluence. Remote Sensing, 13(7), 1335. https://doi.org/10.3390/rs13071335